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Abstract

Partial-order plans (POPs) have the capacity to
compactly represent numerous distinct plan lin-
earizations and as a consequence are inherently ro-
bust. We exploit this robustness to do effective ex-
ecution monitoring. We characterize the conditions
under which a POP remains viable as the regression
of the goal through the structure of a POP. We then
develop a method for POP execution monitoring
via a structured policy, expressed as an ordered al-
gebraic decision diagram. The policy encompasses
both state evaluation and action selection, enabling
an agent to seamlessly switch between POP lin-
earizations to accommodate unexpected changes
during execution. We demonstrate the effective-
ness of our approach by comparing it empirically
and analytically to a standard technique for execu-
tion monitoring of sequential plans. On standard
benchmark planning domains, our approach is 2 to
17 times faster and up to 2.5 times more robust
than comparable monitoring of a sequential plan.
On POPs that have few ordering constraints among
actions, our approach is significantly more robust,
with the ability to continue executing in up to an
exponential number of additional states.
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it's needed most — at execution time. To investigate thistla
we examine the problem of POP execution monitoring.

Models of the world and the effects of agents’ actions on
the world are often imperfect, leading to changes in thestat
of the world that deviate from those predicted by our models.
In execution monitoring (EM), the state of the world is moni-
tored as a plan is being executed. When there is a discrepancy
between the predicted and observed world state, a typical EM
system attempts to repair the plan or replan from scratch. EM
may have many stages including state estimation, evatpatin
if execution can continue (state evaluation), selectimgettr
tion to perform (action selection), and replanning in thespr
ence of plan failure. In this work we are primarily concerned
with state evaluatiorandaction selection given a plan and
the current state of the world, can we continue executing our
plan, and if so how should we proceed.

Effective EM systems determine the subseaetévantcon-
ditions that preserve plan validity and focus on discrejenc
with respect to these conditions. Shakey the robot’s trian-
gle tables were an attempt to model such conditidtikes
et al, 1973. Recently Fritz and McllraitdFritz and Mcll-
raith, 2007 characterized the conditions under which a par-
tially executed sequential plan remains valid as the regpas
of the goal back through the plan that remains. An EM algo-
rithm compares the conditions associated with each step of
the plan to the state of the world and proceeds with the plan
from the matching point. For partial-order planning, EM is
perhaps best exemplified by the SIP®ilkins, 1989 and

Partial-order plans (POPs) reflect a least commitment-strafrodigy[Velosoet al, 1999 systems which take a different
egy [Weld, 1994. Unlike a sequential plan that specifies a approach: monitoring the violation of so-calledusal links
set of actions and a total order over those actions, a POP ongnd attempting to repair them as necessary.

specifies those action orderings necessary to the achieweme In this paper we address the problem of POP EM by build-
of the goal. In so doing, a POP embodies a family of sequening on the insights developed for sequential plan EM. We
tial plans — a set of linearizations all sharing the sameasti

likewise appeal to a notion of regression to identify the-con

but differing with respect to the order of those actions. ditions under which a POP remains viable. We then compile
Partial-order planning has been less popular in recensyeathese conditions into a structured policy that compactipsna
in great part because of the speed with which sequential plaithem to an appropriate action. We evaluate our approach an-
ners can produce a solution using heuristic search tecasiqu alytically and empirically, comparing it to the standardte
However we argue that it is not enough to generate plangique for monitoring sequential plans. On InternationarPI
quickly; an agent or agents must also be able to successfullying Competition (IPC) domains where there are numerous
execute a plan to achieve their goal, and often must do so iardering constraints, and as such few distinct POP linaariz
the face of an unpredictable and changing environment. Fdions, our approach is 2 to 17 times faster and up to 2.5 times
many problems, POPs, when combined with effective execumore robust. On POPs that have few ordering constraints, the
tion monitoring, can provide flexibility and robustness whe number of states for which our POP remains viable may be



exponentially larger than the number of such states regulti ecution. Both SIPE and Prodigy monitor the validity of the
from a sequential plan. We identify further charactersst€  entire POP that remains to be executed. In contrast, we would
a POP that give our approach a distinct advantage. like to monitor the validity of any potential partial exemn
In the next section we provide a brief description of relatedof the POP and not only the current partial execution. Doing
approaches, the state of the art in execution monitoring, anso allows us to continue executing the POP from an arbitrary
describe our characterization of POP viability. We describ point in the plan.
our approach to EM using a structured policy in Section 3and We take an approach to EM that builds directly on insights
present the experimental results in Section 4. We concludésom EM for sequential planning dating back as far as Shakey
with a discussion in Section 5. the robof Fikeset al, 1974, and recently formalized by Fritz
and Mcllraith [2007]. A central task of execution monitor-
: P ing is to determine whether the plan being executed remains
2 Execution Monitoring of a POP valid, given what is known of the current state. Recall that
In this paper we restrict our attention to STRIPS planninggiven a planning problefl = (F, O, I, G) a sequential plan
problems. A planning problem is a tuplé = (F, 0,1, G) isvalid iff the plan is executable ih andG holds in the result-
whereF is afinite set of facts) is the set of operatorg,C F’ ing state. We extend this definition to say that the sequentia
is the initial state, and? C F is the goal state. Aomplete planremains valid with respect toiff there is a suffix of the
state (or just state)s is a subset off’. Facts not ins are  plan that is executable inandG holds in the state resulting
interpreted as being false in the state. An operaterO is  from executing the suffix ir3. It is the validity with respect
defined by three setd? RE (o), the facts that must be true in to the current state that is at the core of monitoring sedgailent
order foro to be executabled D D(o), the facts that operator plan execution.
o adds to the state; anBEL(o0), the facts that operatar We define the validity of a POP analogously: given a plan-
deletes from the state. Aactionrefers to a specific instance ning problemII, a POPP is valid with respect to statd
of an operator, and we say that an actiors executablén iff every linearization ofP is valid. We could similarly de-
states iff PRE(a) C s. Similarly, a sequence of actioass  fine the notion of a POP remaining valid relative to a state
executable, if the preconditions of each action in the secgie s of the world, but validity is clearly too strong a condition.
are true in the corresponding state. We say that a statdsentaRather, given that a POP compactly represents multiple lin-
a formula,s = ¢, if the conjunction of facts is with the  earizations, an appropriate analogue is to ensure thaasit le
negation of the facts not inlogically entails the formula).  one of these linearizations remains valid.

If ¢ is a conjunction of positive facts then |= ¢ iff the  pefinition 1 (POP viability) Given a planning problenl

conjuncts ofy form a subset of. A sequential plan foil  and associated POP, P is viable with respect to state iff
is a sequence of actiorissuch thatd is executable froml  there exists a linearization @t that remains valid fos.

and achievegsy. We refer to thesuffixof a sequential plan
(or sequence of actions) = [ay,...,a,] to be the empty
sequence or the sequence of actipns. . . , a,,| wherei > 1.
We define theprefix of a sequential plan analogously.

An EM system typically monitors the execution of a plan
with the objective of ensuring that the plan is executing a
intended. When something goes awry, the system takes
ameliorative action such as repairing the plan or replannin
from scratch. Here we address the problem of monitoring{h
the execution of a POP, with a view to exploiting its inherent
flexibility and robustness.

We define a POP with respect to a planning probléms
a tuple(A, O) where A is the set of actions in the plan and
O is a set of orderings between the actions4n(e.g., for

Whereas the objective of EM for sequential plans is to de-
termine whether a plan remains valid, we claim that the ebjec
tive of POP EM is to determine if the POP\v&ble with re-
spect to the current state. Following the methodology aetbpt
for EM of sequential plans, we can address this question ef-
5 ctively by identifying the relevant conditions that letl

P viability and ensure that one of these conditions holds.
Fritz et al. formalized such conditions by characterizing
em in terms ofegressionWaldinger, 1977. For our pur-
poses, we exploit a simple form of regression, restricted to
STRIPS, and limit our exposition accordingly. Regress®n i
a form of syntactic rewriting that allows us to compute the
weakest condition that must hold prior to the execution of an
a1, € A, (a1 < az) € O) [Weld, 1994. A total ordering action in order for a formula to hold after the action occurs.

of the actions inA4 that respect® is alinearization A POP we _fo_r_mally define re_gre_ssmn as follgws. _

provides a compact representation for multiple lineaiarst ~ Definition 2 (Regression in STRIPS)iven a planning prob-
Depending on how the POP was constructed, it may ini®m IT and a conjunction of factsy, expressed as a set of

clude a set of causal links. Each causal link contains a paifra_CtSv we define theegressionof a conjunctive formulay

of ordered actions and a fact that the first action achieve¥ith respect to an action, denotedR[¢),a], as follows:

for the second. Causal links often serve as justifications fo’*[¥>al = (¢ \ ADD(a)) U PRE(a), if ADD(a) C ¢ and

the ordering constraints. We do not exploit them in our ap-PEL(a) N = 0 (otherwiseR[1), a] is undefined). The re-

proach to EM, but previous systems for POP EM, such ag€ated regression over a sequence of actiprienoted as

SIPE[Wilkins, 1989 and Prodigy[Velosoet al, 1994, typ- X", dl, is simply the repeated application of the regres-

ically monitor and exploit causal links. If a causal link be- SIon operator through each action In the sequence (assum-

comes violated, these systems attempt to repair the plan §#9 it is defined at each step): e.g..dif= [ai, a2, a3] then

replan from what is known of the current state. The Prodigy’®"[¢» @ = R[R[R[¢; as], az], a1].

system extended this approach to interleave planning and ex Exploiting the notion of regression, Friet al. identified



the conditions that ensure the validity of a plan: given a se- Proof sketch. Any linearization of the PORP must end

quential plan = [a4, ..., a,], @ remains valid with respect with an action found ifast(P), otherwise it would violate
to aworld state, iff s entails one of the following conditions: an ordering constraint. From this, we can see that every set
RIG, ayn], R*|G,[an-1,ax]], ..., R*[G,d]. These condi- of actions that make up a linearization suffix will be enumer-

tions were integrated into an EM algorithm that checked theated, and a POP corresponding to the actions not in the suffix
condition associated with each suffix, from the shortedtéo t will appear in a tuple. Theorem 1 holds feg, and induc-
longest suffix (i.e., the original plan) and resumed executi tively we find that for every level, ~; will contain tuples for
of the first suffix whose associated condition was entailed byevery set of actions that make up a suffix of siaed their as-
the state (Def. JFritz and Mcllraith, 2007). If no such con-  sociated conditions, establishing an equivalence between
dition was found, the EM system would decide to replan. Weconditions ofl'; » and the conditions of the linearizations of
refer to this approach as tisequential Method. P. Thus, following Proposition 1, Theorem 1 holdg]
Returning to EM of POPs, since we have defined POP With a method for computing the required conditions for
viability in terms of the remaining validity of a POP lin- POP viability, we turn our attention to how we exploit these
earization, it follows that we can define analogous conadtio conditions for the overall EM strategy.
for each POP linearization and the union of these conditions . ) )
comprise the conditions for POP viability. 2.1 Condition-Action List
To put the conditions for POP viability to use, we must de-
termine what the agent’s behavior will be when a condition
is met. Below we deal with the case when the current state
satisfies more than one condition, but assuming that a condi-
As there may be an extremely large number of linearization is met, we ultimately want to return an appropriate ac-
tions, computing the conditions for each one is inefficient.tion. In the construction of thE-conditions, we are contin-
However, there is often structure in a POP that we can exploitiously choosing the next action througist(P). To build a
to compute the conditions for POP viability more efficiently mapping of conditions to actions, we record the action that
To this end, we provide a method for constructing conditionsyas used to construct a condition in an ordered list called
that avoids enumerating all of the linearizations. Inteily,  the Condition-Action ListOur final condition-action list will
we regress the goal back through the POP, exploiting the cormap a regressed formula to a single action. Using the con-
ditions and actions shared amongst the linearizationsssffi  struction ofT'y; », we present a procedure for computing the
During the process, we gradually reduce the POP until wgondition-action list in Algorithm 1.
have enumerated every condition.
To construct the conditions we use the following notation:

Proposition 1. Given a planning probledl = (F, O, I, G),
a POPP is viable with respect to stateiff at least one lin-
earization ofP has a suffixi such that = R*[G, d.

Algorithm 1: Condition-Action List Generator

o last({A,O)) d:ef{a la € AN (a < d) € O}: The Input: POP(A, ©). Planning problenil = (F, O, I, G).
set of actions that appear in a POP such that there is no Output: List of (1, a) pairs.

ordering constraint originating from the action. \L=[]; /I Listhelistof(,a) pairs to be returned

e prefiz({A,O),a) oef (A\a, 0 —{(a’ < a) | d € A}) 2T = {{G,(A,0)}; IITis aset of tuples of the forrfy, P)

is the POP that remains after we remove actioand sfori=1---|Al do
all of the associated ordering constraints from the POP., folr(;';lch (4, P) € T do
prefiz((A,0),a) is undefined ifa ¢ last((A, O)). 5 Lforeachcl € last(P) do

Definition 3 (I-conditions) A I-condition is a tuple con- ¢ | | [L-append((R[¢,a],a) );

taining a formula and a POP. Given a planning problem | x ypdate tov,,, */
II = (F,0,1,G) and POPP = (A,0), we define the set 7 | 1 =, . . {(R[¢, ), prefic(P,a)) | a € last(P)}:
of I'-conditions forP andIl asI'yp = Uﬁ‘o vi, where sreturnL:
v = {(G, P)} and we definey; inductively as follows:

, The algorithm begins by initializin§j to contain the entire
vier=|J {(RI¥,a],prefiz(P,a)) | a € last(P)} POP, and the goal as the associated formula. In each iteratio
(. P)ei we updatd” and add thé«, a) pairs to the list. Note the order
of the (v, a) pairs inL: if one pair appears after another, we
Intuitively, every tuple iny; contains a condition for a lin-  know it must be from a suffix of equal or larger size. The
earization suffix of sizé to be a valid plan from the current ordering of L is crucial for the next step of our approach,
state, as well as a POP that contains the actions not in thgince we prefer to execute actions closer to the goal.
f#f?x.FWe ;ﬁlrate tl’??hcofn (Ijlltlv?/?ns f(t)r: P?meab"'ty and the-for Theorem 2 (Correctness of Algorithm 1)Given a planning
vial,p through the following theorem. problemII and associated POP, the tuples returned by Al-
Theorem 1 (Condition Correspondencefsiven a planning gorithm 1, with inputP andll, are precisely those i p
problemII, the POPP is viable with respect to stateiff 3 and the associated actions correspond to the first actidmein t
(¥, P"y € 'y, p such thats = . linearization suffix associated with the condition.



Proof sketch. The conditions computed by Algorithm 1 @
correspond precisely to thoseli; p since line 7 performs \
the update for successivg steps and line 6 adds the con- \
ditions for each step. Since the actions chosen in line 5 are \
from last(P), the actions in the tuples correspond to the first )
action in the suffix associated with the conditian. °
We now have a specification of our objective (POP viabil-
ity), and an algorithm to compute the conditions under which Figure 1: Simple OADD for the paif{p2, ps},a1)

a POP remains viable (the condition-action list). Next, we
look at how to put this information to use.

Algorithm 2: POP Policy Generator

3 POP Policy Input : Condition-Action ListZ in sorted order.
Output: Structured policy mapping state to action.

Il 7 is the current overall policy.

Our approach for execution monitoring of a POP is to gen- . ]
erate astructured policythat maps states to actions. Given '™ = policy(L.pop());
a state, the policy returns the action that gets us as close t@while || > 0 do
the goal as possible. We refer to this procedure aP@e 2 | ext = policy(L.pop()); .
Method. By using the POP Method, we avoid the need to * L™ = 'TE (OBDD(next), next, ),
check numerous conditions for the current state. We also5 returnm;

benefit from having an action returned that gets us as close
to the goal as any linearization with the Sequential Method.

Our contribution includes how we build, represent, and usgyith the following semantics when evaluating on statef
the structured policy for execution monitoring. obdd(s) holds then returtPol, (s), otherwise returiPols (s).

A structured policy is a function that maps any state to a Two key aspects for building the policy are how we choose
single actior{Boutilier et al, 1995. We have elected to use the individual policies to begin with, and subsequently how
an Ordered Algebraic Decision Diagram (OAD[Baharet  we combine them into one overall policy. We do the former
al., 1997 to represent our structured policy. An OADD is by creating an individual policy for eachy), a) pair in our
a rooted directed acyclic graph where every node is either gondition-action listL, and we achieve the latter by repeated
leaf node or an inner node. We associate an actiod Jdo  uyse of the ITE operation.
every leaf node and a fact to every inner node. Inner nodes To create a policy for eachy, a) pair, we need only to fol-
have precisely two outgoing edges — a True and False edgew the pre-defined ordering that respegtsintil it is fully
corresponding to the truth of the fact. implied in the OADD, and then addas a leaf node. For ex-

OADDs have one further restriction: the order of facts fromample, assume our ordering was . . . , ps, and we want to
any root to leaf path must follow a predefined order. The orcreate the policy for the pai{{p2,p4},a1). The correspond-
der ensures that if we check two facts on a path from the roohg OADD is shown in Figure 1. Notice the ordering of inner
to a leaf node, we will always check them in the same ordernodes from the root to the leaf follows the fixed ordering.

An Ordered Binary Decision Diagram (OBDD) is similar to  For every pair in the condition-action list we associate an
an OADD, with the main difference being that we associateDBDD to the corresponding simple policy by converting ac-
either True or False to a leaf node and not an action. tions at the leaves to True. From this perspective, Algorith

Once we have our condition-action list, we embody the fol-2 computes the overall policy, using the following notation

lowing high-level behavior in our policy: o OBDD(pol): Convert the OADDpol to an OBDD.
Property 1 (Opportunistic Property)For a states, define a

valid linear suffixas a linearization suffix of our POP thatis ~® POlICY(V» @): Return the pairs OADD policy. _

valid with respect ta. If at least one valid linear suffix exists, @ ITE (obdd, poly, pol>): Return the OADD policy corre-
then return the first action of the shortest valid linear guffi sponding to the ITE operation.

If more than one qualifies as the shortest, pick one arbiifrari ¢ 1, 0p(): Pop and return the last elementiof

We achieve this property as long as the condition-action . .
list is in the correct order. To build the policy, we generate | €orem 3. The structured policy constructed by Algorithm
an OADD where the inner nodes correspond to the truth of £ Saisfies the opportunistic property.
fact and the leaf nodes correspond to actionsl(avhen we Proof sketchConsider the case where there exists a state
do not have a matching condition). We found through experisuch thats = R*[G, a1] ands = R*[G, a3], wherea; (resp.
mentation that ordering the facts based on where they appeas) is a valid linear suffix witha; (resp. as) as the first ac-
in the condition-action list is highly effective at prodogia  tion (and the one chosen in the construction of the condition
smaller policy. action list). Assume that; is shorterthana;, and no shorter
To build our policy, we apply the ITE method for OADD’s valid linear suffix exists for the state
[Baharet al, 1997 in successive steps. The ITE method Since Algorithm 1 adds &), a) pair to L for every unique
takes in two OADD policies Rol;, Pols), and an OBDD condition of a suffix at a particular size, bdtR*[G, a1], a;)
(obdd) that all follow the same order. It returns the OADD and (R*[G, d3],az2) will appear in L. Since the size of



d5 is shorter thamii, (R*[G,d3],az) must appear before 16 B ‘ ‘ ‘ ‘ ‘ i

(R*[G,ai],a1) in L. The semantics of ITE used on line 4

allows us to conclude that ¥ = R*[G, a3], thena, would « 4r ]

be returned, nat;. O =12+ .
Without loss of generality, the proof assumes # a;. M 10k |

Note that an action may appear in multiple paird.in kS g

4  Evaluation s 6F y

We evaluate the claim that employing a POP and monitoring 4r i

it using our POP Method can provide enhanced flexibility at 2, . . . . . h

execution time compared to the EM of a sequential plan using Probl
a standard EM method. To do so, we provide both an analyt- robiem

ical and experimental analysis of our approach compared tgigyre 2: Efficiency of querying the structured policy. The
a standard approach for monitoring sequential plans; the Sg._ayis indicates the total time for the Sequential Methaul (o
quential Method (cf. Section 2). We use five domains fromsg random states) divided by the total time for the Seqakenti
advantage of using our approach: Depots, Driverlog, TPRg sorted based on the y-axis value.

Rovers, and Zenotravel. We also investigate the relevant fe

tures of a POP through three expository domains: Parallel,

Dependent, and Tail.

Experiments were conducted on a Linux desktop with aacting quickly. While the absolute gains are small (on the or-
two-core 3.0GHz processor. Each run was limited to 30 minder of milliseconds at times), the relative speedup mayerov
utes and 1GB of memory. Plans for the Sequential Methodo be crucial for real-time applications such as RoboCup. In
were generated by FFHoffmann and Nebel, 2001and a  such domains, the agent must evaluate the state and decide on
corresponding POP for the POP Method was generated by r@n action several times a second.
laxing unnecessary ordering constraints in the sequemisial
to produce a so-called deorderihBackstom, 1998. We .
found that the deordering algorithm we used (originally due#-2 Analytical Results
to [Kambhampati and Kedar, 1994tended to produce the
minimum deordering of the plan. While this approach mayln Section 1, we argued that a POP provides flexibility and
generate a POP that is fundamentally different from thoseobustness at run time. In this analysis we try to quantiéy th
generated by a traditional POP algorithm, we found that deadded flexibility afforded by the POP in concert with the POP
ordering is generally far more practical than computing theMethod, relative to the Sequential Method. We refer to the

POP from scratch. number of complete states for which an approach is capable
) o of returning an action as ttstate coverageWe can measure
4.1 Policy Efficiency the state coverage by using model counting procedures on the

To measure impact that using a policy can have for EM, weeonstructed OADD. In t_he case of_the SeqL_JentlaI Method, we
consider a POP that represents only one linearization.dn su 9enerate the OADD as in the previous section. The number of
a case, the POP Method and Sequential Method will returfodels for either OADD corresponds to the number of states
the same action for any given state. Since we canamse for wh|ch the approach can return an action. Figure 3 shows
valid POP for Algorithm 1, we can feed in the sequential plan the relative state coverage for the five IPC domains (the POP
and then pass the resulting condition-action list to Altjori Method coverage divided by the Sequential Policy coverage)
2 for the construction of th8equential PolicySince the Se- The y-axis indicates the ratio of states covered for a given
quential Policy is able to query all conditions in the sedian problem: state coverage of the POP Method divided by the
plan with a single traversal of an OADD, the time required tostate coverage of the Sequential Method. For example, a
return an action should be faster than the Sequential Methodalue of 1.5 indicates that the POP Method returns an ac-
We refer to theratio of effortas the total time for the Se- tion in 50% more states than the Sequential Method. We sort
guential Method to return a result for every state in a predeproblems from each domain based on their y-axis value. The
fined set of 500 states, divided by the total time for the Setelative state coverage (ooverage ratip ranges from 1 (i.e.,
guential Policy to return the same actions. Figure 2 gives athe same number of states are handled) to 2.5. Larger plans do
indication of the time savings of our approach. Sorted basedot necessarily have a higher coverage ratio, and we conjec-
on the ratio of effort, the x-axis includes every problenmiro ture that the ratio has more to do with the structure of a POP,
the five IPC domains. The y-axis indicates the ratio of effortthan its size. The state coverage is an approximation direce t
for a given problem. For each problem, the same 500 randorset of states used in the model count include states that will
states were used for both approaches. The Sequential Polioygver occur in practice, either because they are inconsiste
is 2to 17 times faster, and the gains become more pronouncext unreachable. Nonetheless, the coverage ratio gives us an
with larger plans. With a mean ratio of 6, the use of a struc-approximate measure of the relative gain the flexibility of a
tured policy can have substantial gains when it comes to rePOP has to offer when realized with our proposed approach.
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4.3 Expository Domains

The evaluation above was performed on IPC domains which
were designed to be challenging domains for sequentiat plan
ning algorithms. As such, there tends to be significant depe
dencies between actions and the number of action orderin
is large. The high level of dependency is not present in
variety of real-world planning applications (e.g., distried
plans for multiple agents). To evaluate our EM approach for An excerpt from a solution to a problem in the Dependent
POP, we designed three expository domains that emphasiziwmain is shown in Figure 6. The initial state satisfies the
features we expect to find in real-world planning problems. preconditionp3: of actionas. The precondition can also be
satisfied by, in any linearization that has, ordered before

Parallelism : . . . as. If the dynamics of the world caugs}i to become False
TheParallel domain demonstrates the impact of multiple lin- during execution prior to executing,, then we must execute
earizations. We construct the Parallel domain so that a so- '

X . . a4 in order foras to be executable.
lution hask actions that can be performed in parallel. Each . .
action has a single precondition satisfied by the initialesta ~ The achiever of a fact needed for extra support will depend
and a single add effect required by the goal. There are nén the Imean;aﬂon. Monitoring multlp!e linearizatiqrthe
ordering constraints among the actions, and an example witROP Method is a more robust EM solution. Here we measure
k = 3 is shown in Figure 5. robustness by how likely an approach is to achieve the goal
As a consequence of the having no ordering constraints, & @ dynamic world. At every time step, we set a randomly
solution to a problem in the Parallel domain has a large numselected fact to False or do nothing if it is already False. We
ber of linearizations; with parallel actions, there aée lin-  then query the approach and execute the action returned. The
earizations. If the actions mostly have different prectads ~ Simulation repeats these two steps, and ends when either the
and effects, the POP Method will be applicable in many morecurrent state satisfies the goal or the approach cannotretur
states than the Sequential Method. There are many states tf#{) action. We measure the likelihood of reaching the goal as
the Sequential Method fails to capture because of the limite the percentage of trials that end in the goal state.
number of Unique conditions present in any single lineariza For a prob|em in the Dependent domain with a g|\}en
tion. Every linear solution to a Parallel problem has thipr  there are2* linearizations of the POP. Only one of these will
erty. In contrast, the POP Method captures the condition fohave a 100% success rate when using the Sequential Method:
every linearization suffix. Consequently, we find an expenenthe linearization that correctly orders every pair of atsiso
tially increasing gap in state coverage. ) thatar comes before. Using the default linearization gen-
The coverage ratio was computed for problems in the Parerated by FF (which orders- after a—), we ran 1000 trials
allel domain withk ranging from 2 to 10. We present the for both approaches. Figure 4b shows the result.

results in Figure 4a. A clear exponential trend in the insee - .
esuts gure 4a. A clear exponential trend € a Informally, we can see that the likelihood of reaching the

of state coverage occurs as we increlase goal approaches zero for the Sequential Method. As the plans
Extra Support become longer, there is more opportunity for something to go
An action hasextra supporif, for a preconditiorp, there are  wrong due to the dynamics of the world. Since there is always
multiple actions in the POP that act as the achieveriofat  at least one linearization that will get us to the goal, the?PO
least one linearization. A POP is said to have extra support iMethod always succeeds.

ne of its actions has extra support. We construct problams i
Qe Dependentiomain to requiré: successive pairs of actions
uch that one actioru() has an extra precondition satisfied
oth by the initial state and the other action in the pair)(
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Figure 4: Expository domain results. The x-axis indicatespgarametet used to construct the problem. (a) Coverage ratio of
the POP Method and the Sequential Method in the Parallel ohorfid) Likelihood of the Sequential Method to reach the goal
in the Dependent domain. (¢) Mean number of actions neededdly approach to reach the goal in the Tail domain.

Method is able to skip large portions of the plan when a fact
changes from False to True. The Sequential Method, on the
other hand, must continue executing almost the entire plan.

4.4 Discussion

The state coverage for the IPC domains was not as great as the
Figure 7: Example of the Tail domain with= 2. An edge  coverage for the expository domains because they impose sig
with no endpoint indicates an unused action effect. nificant constraints on action orderings and thus do not-high
light the flexibility afforded by POPs and exploited in our EM
approach. In general it is beneficial to use our approacim eve
for a single linearization. However, we have identified two

Critical Orderings . I ; . . :
A critical orderingi ir of dered acti in a POP scenarios in which our approach fails. First, in the Paralle
critical orderingis any pair of unordered actions In a omain withk actions, there are* — 1 unique conditions.

that must be ordered in a particular way for the Sequentiafyije this number is far less than the: k! possible suffixes
Method to work well. If two linearizations differ only in the is large enough to become unwieldy for> 15. Second’
ordering of the critical pair of actions, then the Sequéntia g, e, ifthe POP is a single linearization, interactions leefw
Method for one linearization will outperform the Sequehtia yhe ordering of the add effects and preconditions, alonb wit
Method for the other. Since the POP Method S|multane0usl¥he fact ordering in the construction of the OAD,D can re-

handles aII_Iineariz.ations, the ordering 'is irre!evant. we-  oitin an exponential blow up of the policy size. We have
struct theTail domain such that sequential actions each pro- 1, spserved this behavior in our experiments. Both scenar-
vide asingle precondition to the “tail” action. Howeverta  jqq suggest that in a richer domain, it would be interesting t

is also a *head” action that follows theinitial actions and i, estigate a trade-off between the size of the policy repre
can produce all of the required preconditions for tail. Thesentation and its robustness.

only two actions left unordered are the head and tail actions
An example withk = 2 is shown in Figure 7. .

Unlike the Dependent domain, it may be beneficial to have'5 Concluding Remarks
a given ordering even when the agent will always reach then this paper we examined the problem of monitoring the
goal. We investigate the performance of the two approachesxecution of a POP. Due to its structure, a POP compactly
in a simulation where at every time step we set a randomlyepresents a family of plans that share actions but allows fo
selected fact to True or do nothing if it is already True. Thenumerous (at the extreme, an exponential number of) differ-
POPs have the property that any linearization will reach thent linearizations. Our objective was to develop a means of
goal eventually when using the Sequential Method. What iOP EM that would seamlessly switch between these differ-
of interest is howquicklythe goal is achieved. ent plans based on the current state of the world, and thus

When using the Sequential Method for the linearizationmaximally exploit the flexibility of the POP. EM of sequen-
that has head ordered after tail, positive fact flips hate lit tial plans typically attempts to determine whether a plan re
impact on the number of steps to reach the goal. The other linmains valid with respect to the state of the world. We defined
earization has the advantage of being ablsexendipitously the objective of POP EM as determining P@Rbility and
jumpinto a future part of the plan. We show the mean numbetharacterized the conditions under which a POP was viable
of steps for each approach on eight instances in Figure 4c. by relating them to goal regression over all linearizatiof: s

We see a clear trend for the Sequential Method that sudfixes of the POP. Acknowledging the inefficiency of such a
gests it requires roughly actions to reach the goal. In con- computation, we developed a more efficient algorithm that
trast, the number of actions required on average for the POBmployed goal regression but exploited shared POP substruc
Method grows very slowly — the final problem taking only a ture to do so efficiently. We proved the correctness of this
guarter of the actions to reach the goal on average. The POd?gorithm with respect to POP viability. Then, rather than
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