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Abstract

Motivated by the problem of automatically
composing network accessible services, such
as those on the World Wide Web, this pa-
per proposes an approach to building agent
technology based on the the notion of generic
procedures and customizing user constraint.
We argue that an augmented version of the
logic programming language Golog provides
a natural formalism for composing Semantic
Web services. To this end, we adapt and ex-
tend the Golog language to enable programs
that are generic, customizable and usable in
the context of the Web. Further, we de-
fine logical criteria for these generic proce-
dures that define when they are knowledge
self-sufficient and physically self-sufficient.
To support information-gathering combined
with search, we propose a middle-ground
Golog interpreter that operates under an as-
sumption of reasonable persistence of certain
information. These contributions are real-
ized in our augmentation of a ConGolog in-
terpreter that combines online execution of
information-providing Web services with of-
fline simulation of world-altering Web ser-
vices, to determine a sequence of Web Ser-
vices for subsequent execution. Our imple-
mented system is currently interacting with
services on the Web.

1 INTRODUCTION

Two important trends are emerging in the World Wide
Web (WWW). The first is the proliferation of so-called
Web Services — self-contained, Web-accessible software
applications. Familiar examples of Web services in-
clude information-gathering services such as the map
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service at yahoo.com, and world-altering services such
as the book-buying service at amazon.com. Today’s
web was designed primarily for human interpretation
and use. The second WWW trend is the emergence
of the so-called Semantic Web — a vision for a fu-
ture Web that is computer-interpretable through de-
scription in an unambiguous, semantically well-defined
markup language [3]. The semantic Web vision is to
mark-up Web content, their properties and relations,
in a reasonably expressive semantic Web markup lan-
guage such the description-logic based DAML+OIL
[5, 11, 12].

Our interest is in the confluence of these two trends,
and we have been developing a semantic markup of
the content and capabilities of Web services in an on-
tology of DAML+OIL [11, 12], called DAML-S [4, 19].
Several metaphors have been exploited in the develop-
ment of this markup, including the conception of Web
services as primitive and complex actions with inputs,
outputs, preconditions and effects. In the full paper
we will discuss this markup further and tie it in to the
technical contributions in this abstract.

The provision of, effectively, a knowledge representa-
tion of the properties and capabilities of Web services
enables the automation of many tasks. One task of
particular interest is automated Web service selection,
composition and interoperation (e.g., “Make the travel
arrangements for my KR’02 conference trip.”). Other
tasks will be described in the full paper. Disregarding
network issues, automated Web service composition
(WSC) is an instance of a planning and plan execution
problem. However, this application domain has many
distinctive features that require and support tailoring.
We briefly outline some of these characteristics in the
abstract and discuss further in the full paper.

WSC is inherently a task of planning and execution
with very incomplete information. Several sequenced
information gathering services may be required, that



culminate in the execution of only a few world-altering
services. (Imagine making your travel plans on the
Web.) Since our actions are the execution of software
programs, preconditions are almost always limited to
knowledge preconditions — the input parameters of the
program. Information gathering services (aka sensors)
don’t fail (network issues aside). Exogenous events
affect the things being sensed. Persistence of knowl-
edge has a temporal extent associated with it (con-
trast stock prices to the price of a shirt at the Gap),
which affects the sequencing of services. Many services
perform similar functions. Generally, many plans ex-
ist to realize a user goal, and plans are usually short;
The search space is short and broad. User input and
constraints are a key element of WSC. They serve to
prune this space (e.g., choosing from the multitude of
airlines and flights available) and to distinguish desir-
able plan(s).

The unique features of WSC serve to drive the work
presented in this paper. Rather than realizing WSC
simply as planning, we argue that a number of the ac-
tivities a user may wish to perform on the (semantic)
WWW or within some networked service environment,
can be viewed as customizations of reusable, high-
level generic procedures. To wit, we all use approxi-
mately the same generic procedure to make our travel
plans. This helps dictate what Web services we select,
but the devil is in the customization to our personal
preferences. Our vision is to construct such reusable,
high-level generic procedures, and to archive them in
sharable generic procedures ontologies so that multi-
ple users can access them. A user could then select a
task-specific generic procedure from the ontology and
submit it to their agent for execution. The agent would
automatically customize the procedure with respect to
the user’s personal or group-inherited constraints, the
current state of the world, and available services, to
generate and execute a sequence of requests to Web
services to perform the task.

We realize this vision by adapting and extending the
logic programming language Golog (e.g., [15, 26, 7]).
The adaptations and extensions described in the sec-
tions to follow are designed to address the following
desiderata of our WSC task. Generic: We want to
build a class of programs that are sufficiently generic
to meet the needs of a variety of different users. Thus
programs will often have a high degree of nondeter-
minism to embody the variability desired by different
users. Customizable: We want our programs to be
easily customizable by individual users. Usable: We
want our programs to be usable by different agents
with different a priori knowledge. As a consequence,
we need to ensure that the program accesses all the

knowledge it needs, or that certain knowledge is stipu-
lated as a prerequisite to executing the program. Sim-
ilarly, the program ensures the actions it might use are
Poss-ible. The programs must be self-sufficient.

2 PRELIMINARIES: GOLOG

Golog (e.g., [15, 26, 7]) is a high-level logic program-
ming language, developed at the University of Toronto,
for the specification and execution of complex actions
in dynamical domains. It is built on top of the situ-
ation calculus (e.g.,[26]), a first-order logical language
for reasoning about action and change. Originally,
Golog programs operate under the completeness as-
sumption, i.e., in any state of the world fluents are
either true or false. Since our intention is to develop
agents operating on the Web, it would be unrealis-
tic for us to assume that our agents have complete
information about the world in which they are oper-
ating. Consequently, we will rely on the situation cal-
culus with knowledge (or with sensing actions) e.g.,
[28, 26] which we will refer to as situation calculus for
short. This also means that our agents will not only
have knowledge about world-altering actions but also
information-gathering actions that they can perform.
In the situation calculus, the state of the world is ex-
pressed in terms of functions and relations (fluents)
relativized to a particular situation s, e.g., f(,s). To
deal with sensing actions in the situation calculus [22],
a special fluent K whose first argument is also a sit-
uation is introduced. Informally, K(s',s) holds if the
agent is in the situation s but thinks that she/he might
be in s’. A situation s is a history of the primitive ac-
tions (e.g., a) performed from an initial, distinguished
situation Sp. The function do(a,s) maps a situation
and action into a new situation. A situation calculus
theory D comprises the following sets of axioms (See
[26)):

e domain independent foundational axioms of the
situation calculus, X,

e successor state axioms, Dgg, one for K and for
every domain fluent, F!.

e action precondition axioms, D,,, one for every
action a in the domain, that serve to define
Poss(a, s).

e axioms describing the initial situation, Dg, (in-
cluding axioms about K).

e unique names axioms for actions, Dyna,

¢ domain closure axioms for actions, Dg.,2

Tn this paper, we do not impose any conditions on K.
For example, one might require that K is reflexive and
transitive. See [22, 28].

*Not always necessary, but we will require it in 2.1.



We follow the work of Levesque and others (e.g., [14]),
and represent the effects of sensing actions by includ-
ing a sensed fluent axiom for each primitive action a
in our domain, SF(a,s) = ¢.(s).

Golog (alGOl in LOGic) [15] builds on top of the sit-
uation calculus by providing a set of extralogical con-
structs for assembling primitive actions, defined in the
situation calculus, into complex actions that collec-
tively comprise a program, §. Constructs include the
following (see [15, 26, 7] for details).

a — primitive actions

01; 02 — sequences

@7 — tests

01]02 — nondeterministic choice of actions
m(x)d — nondeterministic choice of parameters
if ¢ then §; else J» — conditionals

while ¢ do § — while loops

proc P(¥) § endProc — procedure

These constructs can be used to write programs in the
language of a domain theory, e.g.,

book AirTicket(Z);
if far then bookCar(y) else bookTazi(y).

Given a domain theory, D and Golog program
4, program execution must find a sequence of
actions @ such that: D & Do(d,So,do(d, So)).
Do(8, So,do(@, Sp)) denotes that the Golog program
J, starting execution in S; will legally terminate
in situation do(@,So), where do(d,So) abbreviates
do(an,do(an—1,...,do(a1,So))). More details in the full
paper. (See [26].)

From DAML-S to Situation Calculus & Golog
In the full paper, we describe how to translate Web
service represented in DAML-S [4] into our situa-
tion calculus-Golog representation. Primitive services
are analogous to primitive actions but with inputs
and outputs, in addition to preconditions and ef-
fects. Preconditions and effects are translated in an
obvious manner. Inputs and outputs are translated
to knowledge-preconditions and knowledge-effects re-
spectively. Composite Web services are translated into
a subset of Golog.

2.1 CUSTOMIZING GOLOG PROGRAMS

In this section we extend Golog to enable individu-
als to customize a Golog program by specifying per-
sonal constraints. To this end, we introduce a new
distinguished fluent in the situation calculus called
Desirable(a, s), i.e., action a is desirable in situation
s. We contrast this with Poss(a,s), i.e. action a is

physically possible is situation s. We further restrict
the cases in which an action is executable by requiring
not only that an action a is Poss(a,s) but further that
it is Desirable(a, s). This further constrains the search
space for actions when realizing a Golog program. The
set of Desirable fluents, one for each action, is referred
to as Dp. Desirable(a, s) = true unless otherwise noted.

An individual specifies her personal constraints in our
semantic Web markup language. The constraints are
expressed in the situation calculus as necessary con-
ditions for an action a to be desirable, Dnecp of the
form: Desirable(a,s) D wi, and personal constraints
Dpc which are formulae, C in the situation calculus.

For example, Marielle’s personal constraint is that
she would like to book an airline ticket from
origin, o to destination, d if the driving time
between these two locations is greater than 3
hours.  Thus Desirable(bookAirTicket(o,d,dt,s)) D
gt(DriveTime(o,d),3,s) 1is included in Dpecp. Sim-
ilarly, Marielle has specified dates she must be at
home and her constraint is not to be away on
those dates. Thus, Dpc includes: -(Away(dt,s) A
MustbeHome(dt,s)) Using Drecp and Dpe, and ex-
ploiting our successor state axioms and domain clo-
sure axioms for actions, Dss and Dgc,, we define
Desirable(a, s) for every action a as follows:
Desirable(A(Z),s) = Qa A /\ Qpc,
CeDpe

st. Qa4 = w1 V...V w,, for each w; of (2.1). E.g.,
QbookAirTicket = gt(DriveTime(o,d),3,s) and Qpc =
R*[C(do(A(F),s))] where R* is repeated regression
rewriting (e.g., [26]) of C(do(A(&), s)), the constraints
relativized to do(a, s), using the successor state axioms,
Dss from D. Eg,

Qpc = R*[-(Away(dt, do(book AirTicket (o, d, dt, s)))
A Mustbe Home(dt,do(book AirTicket(o,d,dt, s))))]

We rewrite this expression using the successor state
axioms for fluents Away(dt,s) and Mustbe Home(dt, s).
E.g.,
Away(dt,do(a, s)) =
[(a = bookAirTicket(o,d,dt) N d # Home)
V (Away(dt, s) A
—(a = book AirTicket(o,d,dt) A d = Home))]

Mustbe Home(dt,do(a, s)) = Mustbe Home(dt, s)

From this we determine:
Desirable(bookAirTicket(o,d,dt,s)) =
gt(DriveTime(o,d), 3, s)
A(d = Home V = Mustbe Home(dt, s))



Having computed Dp, we include it in D. In addi-
tion to computing Dp, the set of Desirable fluents, we
also modify the computational semantics of our dialect
of Golog. In particular, we adopt the computational
semantics for Golog. (See [7] for details.) Two predi-
cates are used to define the semantics. Trans(d,s,d’,s")
is intended to say that the program ¢ in situation s
may legally execute one step, ending in situation s’
with the program §' remaining. Final(d,s) is intended
to say that the program § may legally terminate in sit-
uation s. We require one change in the definition to
incorporate Desirable. In particular, (1) is replaced by

(2).

Trans(a,s,d’,s") Poss(a[s], s) A

8 =nil A s’ = do(a[s],s) (1)
Poss(als], s) A
Desirable(als], s) A

8 =nil As' = do(als],s) (2)

Trans(a,s,d’,s")

This approach has many advantages. In the full paper
we provide an extended discussion of the merits and
limitations of this approach, comparing it to solutions
for dealing with other constraints, e.g., [16]. To sum-
marize, this approach is elaboration tolerant [18], in-
dividual’s customized Dp are easily added to an exist-
ing action theory and easily updated through modular
rewriting. Desirable has advantages over many other
approaches to determining preferred sequences of ac-
tions since it prunes the search space for terminating
situations, rather than pruning situations after they
have been found. Desirable is easily implemented as
an augmentation of most existing Golog interpreters,
and the general approach lends itself to similar speci-
fication of other deontic constraints.

2.2 ADDING THE ORDER CONSTRUCT

In the previous subsection we described a way to cus-
tomize Golog programs by incorporating user con-
straints. In order for Golog programs to be customiz-
able and generic, they must have some nondetermin-
ism to enable a variety of different choice points to
incorporate user’s constraints. Golog’s nondeterminis-
tic choice of actions construct (|) and nondeterminis-
tic choice of arguments construct (7) both provide for
nondeterminism in Golog programs.

In contrast,
the sequence construct (;) provides no such flexibility,
and can be overly constraining. Consider the program:
book AirTicket(Z); bookCar(y). The ; construct dictates
that bookCar(y) must be performed in the situation
resulting from performing bookAirTicket(£) and that

Poss(bookCar(y), do(book AirTicket(Z), s) must be true,
otherwise the program will fail. Imagine that the pre-
condition Poss(bookCar(y),s) dictates that the user’s
credit card not be over its limit. If Poss is not true,
we would like for the agent executing the program to
have the flexibility to perform a sequence of actions
to reduce the credit card balance, in order to achieve
this precondition, rather than having the program fail.
The sequence construct ; does not provide for this flex-
ibility.

To enable the insertion of actions in between a
dictated sequence of actions for the purposes of
achieving preconditions, we define a new construct
called order, designated by the : connective® In-
formally, a1 : a» will perform the sequence of ac-
tion ai;a; whenever Poss(az,do(a1,s)) is true. How-
ever, when it is false, the : construct dictates that
Golog search for a sequence of actions @ that achieves
Poss(az,do(@,do(a1, s))). This can be achieved by a
planner that searches for a sequence of actions @ to
achieve the goal Poss(a2,do(@, do(a1,s))). For the pur-
pose of this paper, we simplify the definition, re-
stricting a2 to be a primitive action. The defini-
tion is easily extended to an order of complex actions
41 : 82. Thus, a1 : a2 is equivalent to the program
a1; (while (nPoss(a2)) do (wa)[Poss(a)?;al);as.

It is easy to see that while (—Poss(az)) do
(ma)[Poss(a)?;a] will eventually achieve the precon-
dition for a, if they can be achieved.

We extend the computational semantics as follows to
include :.
Trans(é : a,s,8',s') =
Trans((8; achieve(Poss(als])); a, s,8’,s") (3)
Final(é : a,s) = 4)
Final(8; achieve(Poss(als]));a, s)
where achieve(G) = while (=G) do (wa)[Poss(a)?;al.
Since achieve is defined in terms of existing Golog con-
structs, the definitions of Trans and Final follow from
previous definitions.

Note that the order construct, ‘’ introduces undi-
rected search into the instantiation process of Golog
programs and though well-motivated for many pro-
grams, should be used with some discretion because of
the potential computational overhead. In the full pa-
per we provide a more extensive discussion of the order
construct including improvements upon the simplistic
action selection mechanism used by achieve, the simple
extension to : to incorporate Desirable, and the utility
of : and variants as a tool for specifying narrative, as
first proposed in [24].

3Strictly speaking, this is shorthand for a combination
of existing constructs.



2.3 SELF-SUFFICIENT PROGRAMS

Now that our Golog programs are customizable and
can be encoded generically, we wish them to be us-
able. Sensing actions are used when the agent has
incomplete knowledge of the initial state (almost al-
ways for nontrivial WSC), or when exogenous actions
exist that change the world in ways the agent’s the-
ory of the world does not predict. Web service com-
positions often have the characteristic of sequences
of information-gathering services, performed to distin-
guish subsequent world-altering services. In our work,
we need to define Golog programs that can be used by
a variety of different agents without making assump-
tions about what the agent knows. As such, we want
to ensure that our Golog programs are self-sufficient
with respect to obtaining the knowledge that they re-
quire to execute the program. Further, we wish our
programs to ensure that all preconditions for an ac-
tion are realized if in question.

To make this concrete, we define the notion of a Golog
program § being self-sufficient with respect to an ac-
tion theory D and kernel initial state, Inits. Inits is
a formula relativized to (suppressed) situation s, de-
noting the necessary preconditions for executing §. To
characterize self-sufficiency, we introduce the predicate
ssf(d,s). ssf(d,s) is defined inductively over the struc-
ture of 4.

ssf(nil,s) = true (5)

ssf(¢?,5) = KWhether* (¢, s) (6)

ssf(a,s) = KWhether(Poss(als], s)) A
KWhether(Desirable(als], s)) (7

ssf(if ¢ then 61 else d2,8) =
KWhether(¢, s) A
(¢[s] D ssf(d1,8)) A

(—¢ls] D ssf(d2,5)) (8)
88f(01;02,8) = ssf(d1,8) A

Vs'.[Trans(61,s,nil,s") D ssf(d2,5")] (9)

ssf(81|02,8) = ssf(d1,8) A ssf(d2,s) (10)

ssf(while ¢ do a,s) =
KWhether(¢, s) A
(¢ls] 2
Vs' [Trans(o,s,nil,s’) D
ssf(while ¢ do a,5")]

) (11)
ssf(Il.z[¢(x), 0], 8) =

Jz.[KWhether(¢(z), s) A ssf(a, s)] (12)
ssf(d1 : 82,8) follows from (5) — (12) (13)

‘KWhether(¢,s) abbreviates a formula indicating
that the truth value of ¢ is known [28].

Definition 1 (KSSF: Knowledge Self-Sufficient
Program) KSSF (8, Inits), Golog program § is knowl-
edge self-sufficient relative to action theory D and ker-
nel initial state Inits iff DU Inits(So) is satisfiable and
D U Inits(So) = ssf(d,S0) = true.

KSSF(4, Inits) ensures that given Inits, execution of
the Golog program ¢§ will not fail for lack of knowl-
edge. However, the program may fail because it may
be im-Poss-ible to perform an action. KSSF ensures
that the agent knows whether Poss is true, but not
that it actually is true. To further ensure that our
generic procedures are physically self-sufficient, we de-
fine PSSF (4, Inits).

Definition 2 (PSSF: Physically Self-Sufficient
Program) PSSF(8,Inits), Golog program § is phys-
ically self-sufficient relative to a action theory D and
kernel initial state Inits iff KSSF(d,Inits) and D U
Inits(So) | 3s'.[Trans(d, So,0,5") A Final(a, s')].

We wish to highlight the work of Ernie Davis [6], which
we became aware of when we first presented ssf [21].
There are many similarities to our work. We discuss
this in more detail in the full paper. One significant
difference is that there is no distinction between (what
we distinguish as) knowledge sufficiency and physically
sufficiency in his framework, i.e., for a plan to be exe-
cutable, he requires that the agent has the knowledge
to execute it and that it must be physically possible.
Further, we construct the ssf condition from the sit-
uation calculus theory for primitive actions that can
be regressed over situations and verified in the initial
situation. He develops a set of rules that can be used
to check for plan executability. The set of rules, is
sufficient but not necessary.

3 MIDDLE-GROUND EXECUTION

In building a Golog interpreter that incorporates sens-
ing actions, the interplay between sensing and execu-
tion of world-altering actions can be complex and a
number of different approaches have been discussed
(e.g., [8, 13, 25]). While [8] and [25] advocate the use
of an online interpreter to reason with sensing actions,
[13] suggests the use of an offline interpreter with con-
ditional plans. The trade-off is clear. An online inter-
preter is incomplete because no backtracking is allowed
while an offline interpreter is computationally expen-
sive due to the much larger search space, and the need
to generate conditional plans, if sensing actions are
involved. The choice between an online or offline in-
terpreter depends on properties of the domain, and in
particular, since exogenous actions can affect the value



of fluents, on the temporal extent of the persistence of
the information being sensed. In a mobile robotics do-
main, an online interpreter is often more appropriate,
whereas an offline interpreter is more appropriate for
contingency planning.

We define a middle ground between offline and on-
line execution, which we argue is appropriate for a
large class of semantic Web WSC applications. Our
middle-ground interpreter (MG) senses online to col-
lect the relevant information needed in the Golog
program, while only simulating the effects of world-
altering actions. By executing sensing actions rather
than branching and creating a conditional plan, MG
reduces search space size, while maintaining the abil-
ity to backtrack by merely simulating world-altering
actions, initially. The outcome is a sequence of world-
altering actions that are subsequently executed®. Hu-
mans often follow this approach, collecting information
on the Web (e.g., flight schedules) while only simulat-
ing the world-altering actions (buying tickets, etc.) in
their head until they have a completed plan to execute.

Of course, the veracity of MG is predicated on an im-
portant assumption — that the information being gath-
ered, and upon which world-altering actions are being
selected, persists. We assume that the fluents MG is
sensing persist for a reasonable period of time, and
that none of the actions in the program cause this as-
sumption to be violated. This assumption is generally
true of much of the information we access on the Web
(e.g., flight schedules, store merchandise), but not all
(e.g., stock prices). This assumption is much less per-
vasive in mobile robotic applications where we may as-
sume persistence for milliseconds, rather than minutes
or hours. We formalize this assumption as follows.

Definition 3 (Conditioned-on Fluent) Fluent C
is a conditioned-on fluent in Golog program ¢ iff for
some conditional action A with condition ¢ of the
form: if ¢ then ¢, else §,; while ¢ do §; ¢?; IL.z[¢, d].
C appears in the formula ¢.

Definition 4 (Invocation and Reasonable Per-
sistence (IRP) Assumption) Golog program and
kernel initial state (3,Inits) adhere to the invocation
and reasonable persistence assumption if

1. Non-knowledge preconditions for sensing actions
are true in Ds, U Inits(So).

2.  Knowledge of preconditions for actions and
conditioned-on fluents C in §, doesn’t change exoge-

5 At this stage they can alternately be shown to a human
for approval before execution. Our interpreter can also
generate and present multiple alternate courses of action.

nously. persistsS.

Condition 1 ensures that all sensing actions can be exe-
cuted by the MG interpreter. Condition 2 ensures that
decisions are predicated on correct information. Con-
dition 1 may seem extreme, but, as we argued earlier
in this paper, by their nature, Web services generally
only have knowledge preconditions. The persistence
of knowledge in Condition 2, trivially holds from the
frame assumption for knowledge. This condition ad-
dresses change by subsequent or exogenous actions.

In the full paper we establish the veracity of MG under
the IRP Assumption. Space precludes introducing all
the notation necessary to state this result formally. It
is in the full paper. The following is only intended to
be descriptive.

Informal Theorem Description 1 (Veracity of MG)

Given an action theory D and Golog program § such
that PSSF (3, Inits), and (8, Inits) adheres to IRP, let
a be the sequence of world-altering actions selected
by the middle-ground interpreter for subsequent exe-
cution, then assuming no sensor errors’, the middle-
ground interpreter yields the same states for all fluents
F € F as an online interpreter with an oracle that
chooses @ at the appropriate branch points.

In cases where the IRP Assumption is at risk of being
violated, the sequence of world-altering actions gen-
erated by MG could be executed with an online exe-
cution monitoring system that re-performs sensing ac-
tions to verify, immediately prior to execution, that
critical persistence assumptions have not been vio-
lated. In the case where the IRP Assumption does not
hold for some or all conditioned-on fluents in a Golog
program, MG could be integrated with an interpreter
that builds conditional plans for branch points that do
not adhere to IRP, following the approach proposed in
[13]. The explicit encoding of search areas in a pro-
gram, as proposed by [8] through the addition of their
¥ search construct, can achieve some of the same func-
tionality as our middle-ground interpreter. Indeed, the
principle defined above, together with an annotation
of the temporal extent of conditioned-on fluents within
the action theory provides a means of automatically
generating programs with embedded search operators
%, as proposed in [8]. This will be detailed in the full

paper.

61.e., no subsequent actions in the program change the
value of sensed fluents.

"Trivially true of virtually all current-day information-
gathering Web services.



3.1 MIDDLE-GROUND INTERPRETER

We have modified the ConGolog offline interpreter in
[8, 7] to account for user constraints and the order
construct. We have also provided a means of encoding
the sensed fluent axioms that realizes the strategy for
our middle-ground interpreter, described above. We
discuss each of the modifications in further detail.

User customizing constraints: We have modified
the ConGolog interpreter in [8, 7] to take into consider-
ation personal constraints in a rather straightforward
and elegant way. We replaced the following code:

trans(A,S,R,S1) - (poss(A,S),

S1=do(A,S)); fail.

primAct(A), R=nil,

of the ConGolog interpreter with

trans(A,S,R,S1) :- primAct(A),(poss(A,S), desirable(A,S),
R=nil, S1=do(A,S)); fail.

This ensures that every action selected by the inter-
preter is also Desirable.

Order Construct: To include the order construct :,
we added the following rules to our interpreter:

final(P:A, S):- action(A), final([P;achieve(poss(A),0);A].S).
trans(P:A,S,R,S1):- action(A),
trans([P;achieve(poss(A),0);A],S,R,S1).

where achieve(Goal,0) is an A*-planner, adapted from
the "World Simplest Breath First Planner’ (wsbfp) de-
veloped by Reiter [26]. We appeal to its simplicity and
the soundness and completeness of the A* algorithm.
We include the code in the full paper, but leave it out
here to save space. Obviously any planner can be used
to accomplish this task. We are currently investigat-
ing the effectiveness of other planners (e.g., regression
planners).

Sensing Actions: A common approach to incorpo-
rating sensing actions into a situation calculus theory
is through the use of the distinguished sensed-fluent
predicate, SF. SF(a,s) states that action a returns the
binary sensing result {rue when the fluent sensed by
a, F is true in the situation s. Assuming each sensing
action senses one fluent, we would include one sensed-
fluent axiom for each action, SF(a,s) = F.(s) [26].

To accommodate both backtracking and sensing, we
assume that the truth value of SF(a,s) can be deter-
mined by executing an external function call, denoted
by ezec(a, s). Under this assumption, the truth value of
F, in s can be determined by making the external func-
tion call exec(a,s). Whenever the execution succeeds,
F, is true; otherwise, it is false. This, together with

the invocation and reasonable persistence assumption,
allows us to write the successor state axiom of F, in
the following form:

F,(do(a, s)) = exec(a,s) (14)

Observe that guarded action theories [9] are similar
to action theories encoded in this way in that they
no longer contain the fluent SF. This allows a treat-
ment of sensed fluents as ordinary fluents if the exter-
nal function call exec(a,s) can be made and its ter-
mination code can be incorporated. This is simple to
implement in a PROLOG interpreter. Equation (14)
is translated into PROLOG as follows

holds(F, do(A,S)):- exec(A,S).

where F' denotes F,. Thus, we only need to provide the
set of rules that call the action A, i.e., for each sensing
action A, the theory contains a rule of the form

exec(A,S):- execute A ...

Notice that the execution of action A is domain de-
pendent, and hence, the above rule will be a part of
the situation calculus action theory rather than a part
of the Golog interpreter®.

Theorem 1 Given an action theory D and Golog pro-
gram & such that PSSF (8, Inits), and (d,Inits) adheres
to IRP, if Prolog(D,Inits) Fr Do(d,So, S) then there
ezists a model M of DU Inits(So) such that M =
Do(8, S0, S), where Prolog(D, Inits) is the set of Pro-
log rules representing D and Inits(So) and Fr is proof
by our Golog interpreter®.

We note that action theories in this paper are defini-
tional theories in the sense of [26] if the initial situ-
ation axioms Dg, is complete, i.e., for each fluent, it
contains a definition. This can be achieved by making
the closed-world assumption (CWA), which, since our
programs are self-sufficient, is less egregious. Thus,
the next proposition follows immediately from the Im-
plementation Theorem of [26].

Proposition 1 Given an action theory D and Golog
program & such that PSSF (4, Inits), and (8, Inits) ad-
heres to IRP. Then, for all situations S,

Prolog(D, Icw a(sy))FrDo(d, So, S) iff
D UCW A(So) U Inits(So) = Do(d, So, S),

where Fr is proof by our Golog interpreter, CW A(So)
is defined as {F(So) = false | there exists no definition

8The offline interpreter with the search operator in [8]
can also be modified and used here.

In the full version of the paper, we detail the process
of translating an action theory into a Prolog program for
use with our interpreter.



of F in Ds, U Init;(So)}, and Prolog(D, Icw a(s,)) 5
the set of Prolog rules representing D and Icw a(sy) =
Im't5 (So) U CWA(S())

4 IMPLEMENTATION

A significant aspect of our contribution is that the re-
search described to this point is also implemented in a
running system. In the full paper we describe the com-
plete architecture for our system. A partial description
of the architecture can be found at [19]. We also put
it all together by presenting our full generic procedure
for the travel booking example discussed throughout
the paper. We show how the same procedure has gen-
erated numerous instantiations based on different user
customization constraints, highlighting the versatility
of our approach to programming the semantic Web. In
this abstract we have not fully connected this work to
the semantic Web. This will be addressed in the full
paper. Indeed this work is predicated on the existence
of semantic markup of Web services. Integration with
the semantic markup language DAML-S is ongoing as
the language develops and stabilizes [4, 20]. We re-
port on this. This extended abstract, simply provides
an overview of the salient features of our implementa-
tion.

To realize our agent technology, we started with a
simple implementation of an offline ConGolog inter-
preter in Quintus Prolog 3.2. We have modified and
extended this interpreter as described in the previous
section. The interpreter was also modified to commu-
nicate with the Open Agent Architecture (OAA) agent
brokering system [17], to send requests for services,
and to relay responses to Golog. Since commercial
Web services currently do not utilize semantic markup
in order to provide a computer-interpretable API, and
computer-interpretable output, we use an information
extraction program, World Wide Web Wrapper Fac-
tory (W4), to extract the information we need from
the HTML output of Web services. All information-
gathering actions are performed this way. For obvious
practical (and financial!) reasons, world-altering ser-
vices are not actually executed.

5 SUMMARY & RELATED WORK

In this paper we addressed the problem of automated
Web service composition and execution for the se-
mantic Web. We developed and extended theoreti-
cal research in reasoning about action and cognitive
robotics, implemented it and experimented with it.
We addressed the WSC problem through the provision
of high-level generic procedures and customizing con-

straints. We proposed Golog as a natural formalism for
this task. As an alternative to planning, our approach
does not change the computational complexity of the
task of generating a composition. Nevertheless, most
Web service compositions are short, and the search
space is broad. Consequently, our approach has the
potential to drastically reduce the search space, mak-
ing it computationally advantageous, in addition to
being compelling, and easy for the average Web user
to use and customize. Our goal was to develop Golog
generic procedures that were easy to use, generic, cus-
tomizable, and that were usable by a variety of users
under varying conditions. We augmented Golog with
the ability to include customizing user constraints. We
also added a new programming construct called order
that relaxes the notion of sequence, enabling the in-
sertion of actions to achieve the precondition for the
next action to be performed by the program. This
construct facilitates customization as well as enabling
more generic procedures. Finally, we defined the no-
tion of knowledge and physically self-sufficient pro-
grams that are executable with minimal assumptions
about the agent’s initial state of knowledge, or the
state of the world. Adherence to these criteria makes
our generic procedures amenable to wide-spread use.
These contributions were implemented as modifica-
tions to an existing ConGolog interpreter, along with
an implementation of sensing actions (for information-
gathering services). We have tested our results with a
generic procedure for travel and a variety of different
customizing constraints that showcase the effectiveness
of our approach. The ConGolog interpreter commu-
nicates with Web services through an agent brokering
systems and an HTML information extractor. Though
our work was focused on Web service composition, the
work presented in this paper has broad relevance to a
variety of cognitive robotic tasks.

Related Golog work was identified in the body of this
paper, with the work in [8] being most closely related.
Other important related work which we wish to ac-
knowledge and which we will further discuss in the
full paper includes [10], [30], [27], [29], [2], the recent
knowledge interpreter in [26], [1] and in particular to
[6] and [23].
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