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Abstract. In this paper we present a declarative approach to adding
domain-dependent control knowledge for Answer Set Planning (ASP).
Our approach allows different types of domain-dependent control knowl-
edge such as hierarchical, temporal, or procedural knowledge to be rep-
resented and exploited in parallel, thus combining the ideas of control
knowledge in HTN-planning, GOLOG-programming, and planning with
temporal knowledge into ASP. To do so, we view domain-dependent con-
trol knowledge as sets of independent constraints. An advantage of this
approach is that domain-dependent control knowledge can be modularly
formalized and added to the planning problem as desired. We define a set
of constructs for constraint representation and provide a set of domain-
independent logic programming rules for checking constraint satisfaction.

1 Introduction

Planning is hard. The complexity of classical planning is known to be PSPACE-
complete for finite domains and undecidable in the general case [8,12]. By fixing
the length of plans, the planning problem reduces to NP-complete or worse.
Planning systems such as FF [16], HSP [6], Graphplan [5], and Blackbox [18]
have greatly improved the performance of their systems on benchmark planning
problems by exploiting domain-independent search heuristics, clever encodings
of knowledge, and efficient data structures [30]. Nevertheless, despite impres-
sive improvements in performance, there is a growing belief that planners that
exploit domain-dependent control knowledge may provide the key to future per-
formance gains [30]. This conjecture is supported by the impressive performance
of planners such as TLPlan [1], TALplan [11] and SHOP [26], all of which exploit
domain-dependent control knowledge.
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A central issue in incorporating domain-dependent control knowledge into
a planner is to identify the classes of knowledge to incorporate and to devise
a means of representing and reasoning with this knowledge. In the past, plan-
ners such as TLPlan and TALplan have exploited domain-dependent tempo-
ral knowledge; SHOP and various hierarchical task network (HTN) planners
have exploited domain-dependent hierarchical and partial-order knowledge; and
satisfiability-based planners such as Blackbox have experimented with a variety
of domain-dependent control knowledge encoded as propositional formulae. In
this paper, we propose to exploit temporal knowledge and hierarchical knowl-
edge as well as, what we refer to as, procedural knowledge within the paradigm
of answer set planning. We show how these classes of domain-dependent control
knowledge can be represented using a normal logic program and how they can
be exploited by a basic answer set planner. We demonstrate the improvement in
the efficiency of our answer set planner.

The set of programming language constructs provided by the logic program-
ming language GOLOG (e.g., sequence (;), if-then-else, while, etc.) [20] provides
an example of the class of procedural knowledge we incorporate into our plan-
ner. For example, a procedural constraint written as a1; a2; (a3|a4|a5); f? tells
the planner that it should make a plan where a1 is the first action, a2 is the
second action and then it should choose one of a3, a4 or a5 such that after their
execution f will be true. This type of domain-dependent control knowledge is
different from temporal knowledge where plans are restricted to action sequences
that agree with a given set of temporal formulas. Procedural knowledge is also
different from hierarchical and partial-order constraints where tasks are divided
into smaller tasks, with some partial ordering and other constraints between
them. These three classes of domain-dependent control knowledge differ in their
structure and while there may be transformations available between one form
and another, it is often natural for a user to express knowledge in a particular
form.

To exploit the above classes of domain-dependent planning constraints we
use the declarative problem-solving paradigm exemplified by satisfiability-based
planners. We refer to such an approach to planning as model-based planning, to
indicate that plans are models of the logical theory describing the planning prob-
lem. One advantage of this approach is that planner development is divided into
two parts: development of model generators for logical languages, and planner
encoding as a logical theory. This enables those developing logical encodings of
model-based planning problems to exploit the diversity of domain-independent
model generators being developed for different tasks.

In this paper, we use an answer set programming appraoch to model-based
planning. We use logic programming as the logical language to encode our model-
based planning problem. From a knowledge representation perspective, there are
many advantages to a logic programming encoding, as compared to a simple
propositional logic encoding. These include: parsimonious encoding of solutions
to the frame problem in the presence of qualification and ramification constraints;
the presence of the non-classical ‘←’ operator that not only helps in encoding
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causality but also can be exploited when searching for models; and many fun-
damental theoretical results [3] that help construct proofs of the correctness of
encodings. In contrast, few of the encodings of satisfiability-based planners have
proofs of correctness, while most logic programming encodings are accompanied
by a proof of correctness. From the perspective of computation, planners based
on propositional encodings still fare better. There are currently more implemen-
tations of propositional solvers than of logic programming answer set generators,
and the best propositional solvers tend to be faster than the best answer set gen-
erators.

The rest of this paper is organized as follows: we will review the basics of
action language and answer set planning in the next section. We then introduce
different constructs for domain-dependent control knowledge representation. For
each construct, we provide a set of logic programming rules as its implementation
(Subsections 3.1-3.3). We use Smodels, an implemented system for computing
stable models of logic programs [27], in our experiments. As such, the rules
developed in this paper are written in Smodels syntax and can be used as input
to Smodels program1. In Subsection 3.4, we describe some experimental results
and conclude in Section 4.

2 Preliminaries

2.1 Action Theories

We use the high-level action description language B of [15] to represent action
theories. In such a language, an action theory consists of two finite, disjoint sets
of names called actions and fluents. Actions transition the system from one state
to another. Fluents are propositions whose truth value can change as the result
of actions. Unless otherwise stated, a is used to denote an action. f and p are
used to denote fluents. The action theory also comprises a set of propositions of
the following form:

caused({p1, . . . , pn}, f) (1)

causes(a, f, {p1, . . . , pn}) (2)

executable(a, {p1, . . . , pn}) (3)

initially(f) (4)

where f and pi’s are fluent literals (a fluent literal is either a fluent g or its
negation ¬g, written as neg(g)) and a is an action. (1) represents a static causal
law, i.e., a ramification constraint. It conveys that whenever the fluent liter-
als p1, . . . , pn hold, so does f . (2), referred to as a dynamic causal law, repre-
sents the (conditional) effect of a. Intuitively, a proposition of the form (2) states
that f is guaranteed to be true after the execution of a in any state of the world
where p1, . . . , pn are true. (3) captures an executability condition of a. It says
that a is executable in a state in which p1, . . . , pn hold. Finally, propositions of
1 Although we use Smodels, we believe that the code presented here could easily be
used with DLV [9], following simple modifications to reflect differences in syntax.
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the form (4) are used to describe the initial state. (4) states that f holds in the
initial state.

An action theory is a pair (D,Γ ) where D consists of propositions of the
form (1)-(3) and Γ consists of propositions of the form (4). For the purpose
of this paper, it suffices to note that the semantics of such an action theory is
given by a transition graph, represented by a relation t, whose nodes are the
alternative (complete) states of the action theory and whose links (labeled with
actions) represent the transition between its states (see details in [15]). That is,
if 〈s, a, s′〉 ∈ t, then there exists a link with label a from state s to state s′.

A trajectory of the system is denoted by a sequence s0a1s1 . . . ansn where si’s
are states and ai’s are actions and 〈si, ai+1, si+1〉 ∈ t for i ∈ {0, . . . , n −
1}. s0a1s1 . . . ansn is a trajectory of a fluent formula ∆ if ∆ holds in sn.

In this paper, we will assume that Γ is complete, i.e., for every fluent f , either
initially(f) or initially(neg(f)) belongs to Γ . We will also assume that (D,Γ )
is consistent in the sense that there exists a non-empty relation t representing
the transition graph of (D,Γ ).

2.2 Answer Set Planning

A planning problem is specified by a triple 〈D,Γ,∆〉 where (D,Γ ) is an ac-
tion theory and ∆ is a fluent formula (or goal), representing the goal state. A
sequence of actions a1, . . . , am is a possible plan for ∆ if there exists a trajec-
tory s0a1s1 . . . amsm such that s0 and sm satisfy Γ and ∆, respectively2.

Given a planning problem 〈D,Γ,∆〉, answer set planning solves it by trans-
lating it into a logic program Π(D,Γ,∆) (or Π , for short) consisting of domain-
dependent rules that describe D, Γ , and ∆ respectively, and domain-independent
rules that generate action occurrences and represent the transitions between
states.

• Goal representation. To encode ∆, we define formulas and provide a set
of rules for formula evaluation. We consider formulas that are bounded classical
formulas with each bound variable associated with a sort. They are formally
defined as follows.

– A literal is a formula.
– The negation of a formula is a formula.
– A finite conjunction of formulas is a formula.
– A finite disjunction of formulas is a formula.
– If X1, . . . , Xn are variables that can have values from the sorts s1, . . . , sn,
and f1(X1, . . . , Xn) is a formula then ∀X1, . . . , Xn.f1(X1, . . . , Xn) is a for-
mula.

2 Note that the notion of plan employed here is weaker than the conventional one
where the goal must be achieved on every possible trajectory. This is because an
action theory with causal laws can be non-deterministic. Note however, that if D
is deterministic, i.e., for every pair (s,a) there exists at most one state s′ such that
〈s, a, s′〉 ∈ t, then every possible plan for ∆ is also a plan for ∆.



230 Tran Cao Son et al.

– If X1, . . . , Xn are variables that can have values from the sorts s1, . . . , sn,
and f1(X1, . . . , Xn) is a formula then ∃X1, . . . , Xn.f1(X1, . . . , Xn) is a for-
mula.

A sort called formula is introduced and each non-atomic formula is associated
with a unique name and defined by (possibly) a set of rules. For example, the con-
junction f ∧g∧h is represented by the set of atoms {conj(f ′), in(f, f ′), in(g, f ′),
in(h, f ′)} where f ′ is the name assigned to f∧g∧h; ∀X1, . . . , Xn.f1(X1, . . . , Xn)
can be represented by the rule

formula(forall(f, f1(X1, . . . , Xn)))← in(X1, s1), . . . , in(Xn, sn)

where f is the name assigned to the formula. In keeping with previous notation,
negation is denoted by the function symbol neg. For example, if f is the name of
a formula then neg(f) is a formula denoting its negation. Rules to check when a
formula holds or does not hold can be written in a straightforward manner and
are omitted here to save space. (Details can be downloaded from the Web3.)

• Action theory representation. Since each set of literals {p1, . . . , pn} in
(1)-(3) can be represented by a conjunction of literals, D can be encoded as a
set of facts of Π as follows. First, we assign to each set of fluent literals that
occurs in a proposition of D a distinguished name. The constant nil denotes the
set {}. A set of literals {p1, . . . , pn} will be replaced by the set of atoms Y =
{conj(s), in(p1, s),. . . ,in(pn, s)} where s is the name assigned to {p1, . . . , pn}.
With this representation, propositions in D can be easily translated into a set
of facts of Π . For example, a proposition causes(a, f, {p1, . . . , pn}) with n> 0 is
encoded as a set of atoms consisting of causes(a, f, s) and the set Y (s is the
name assigned to {p1, . . . , pn}).
•Domain independent rules.The domain independent rules ofΠ are adapted
mainly from [14,10,21,22]. The main predicates in these rules are:

– holds(L, T ): L holds at time T ,
– possible(A, T ): action A is executable at time T ,
– occ(A, T ): action A occurs at time T , and
– hf(ϕ, T ): formula ϕ holds at time T .

The main rules are given next. In these rules, T is a variable of the sort time, L,G
are variables denoting fluent literals (written as F or neg(F ) for some fluent F ), S
is a variable set of the sort conj (conjunction), and A,B are variables of the sort
action.

holds(L, T+1) ← occ(A, T ), causes(A,L, S), hf(S, T ). (5)

holds(L, T )← caused(S,L), hf(S, T ). (6)

holds(L, T+1) ← contrary(L,G), holds(L, T ), not holds(G,T+1). (7)

possible(A,T )← executable(A,S), hf(S, T ). (8)

holds(L, 0) ← literal(L), initially(L). (9)

nocc(A, T )← A �= B, occ(B, T ), T<length. (10)

occ(A, T )← T < length, possible(A,T ), not nocc(A, T ). (11)

3 http://www.cs.nmsu.edu/∼tson/asp planner
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Here, (5) encodes the effects of actions, (6) encodes the effects of static causal
laws, and (7) is the inertial rule. (8) defines a predicate that determines when an
action can occur and (9) encodes the initial situation. (10)-(11) generate action
occurrences, one at a time. We omit most of the auxiliary rules such as rules
for defining contradictory literals etc. The source code and examples can be
retrieved from our Web site.

Let Πn(D,Γ,∆) (or Πn when it is clear from the context what D, Γ , and ∆
are) be the logic program consisting of

– the set of domain-independent rules in which the domain of T is {0, . . . , n},
– the set of atoms encoding D and Γ , and
– the rule ← not hf(∆,n) that encodes the requirement that ∆ holds at n.

The following result (adapted from [22]) shows the equivalence between trajec-
tories of ∆ and stable models of Πn. Let S be a stable model of Πn, define
s(i) = {f | holds(f, i) ∈ S} and A[i, j] = ai, . . . , aj where i or j are integers, f
is a fluent, at’s are actions, and for every t, i ≤ t ≤ j, occ(at, t) ∈ S.
Theorem 1. For a planning problem 〈D,Γ,∆〉,
– if s0a0 . . . an−1sn is a trajectory of ∆, then there exists a stable model S of
Πn such that A[0, n−1] = [a0, . . . , an−1] and si = s(i) for i ∈ {0, . . . , n},
and

– if S is a stable model of Πn with A[0, n−1] = [a0, . . . , an−1] then s(0)a0 . . .
an−1s(n) is a trajectory of ∆.

3 Control Knowledge as Constraints

In this section, we add domain-dependent control knowledge to ASP by viewing
it as constraints on the stable models of the programΠ . For each type of control
knowledge4, we introduce new constructs for its encoding and present a set of
rules that check when a constraint is satisfied.

3.1 Temporal Knowledge

In [1], temporal knowledge is used to prune the search space. Temporal con-
straints are specified using a linear temporal logic with a precisely defined se-
mantics. It is easy to add them to (or remove them from) a planning problem
since their representation is separate from the action and goal representation.
Planners exploiting temporal knowledge to control search have proven to be
highly efficient and to scale up well [2]. In this paper, we represent temporal
knowledge using temporal formulas. In our notation, a temporal formula is ei-
ther

4 We henceforth abbreviate domain-dependent control knowledge as control knowl-
edge.



232 Tran Cao Son et al.

– a formula (as defined in previous section), or
– a formula of the form until(φ, ψ), always(φ), eventually(φ), or next(φ)
where φ and ψ are temporal formulas.

For example, in a logistics domain, let P and L denote a package and its
location, respectively. The following formula:

always((goal(P,L) ∧ at(P,L))⇒ next(¬holding(P ))) (12)

can be used to express that if the goal is to have a package at a particular
location and if the package is indeed at that location then it’s always the case
that the agent will not be holding the package in the next state. This has the
effect of preventing the agent from picking up the package once it’s at its goal
location.

Like non-atomic formulas, temporal formulas can be encoded in ASP using
constants, atoms, and rules. For example, the formula until(f, next(g)) is repre-
sented by the set of atoms {tf(n1, next(g)), tf(n2, until(f, n1))} where tf stands
for “temporal formula” and n1 and n2 are the new constants assigned to next(g)
and until(f, neg(g)), respectively. The semantics of these temporal operators is
the standard one.

To complete the encoding of temporal constraints, we provide the rules for
temporal formula evaluation. The key rules, which define the satisfiability of a
temporal formula N at time T (htf(N,T )) and between T and T ′ (hd(N,T, T ′)),
are given below.

htf(N,T ) ← formula(N), hf(N, T ) (13)

hf(N,T ) ← tf(N,N1), htf(N1, T ) (14)

htf(N,T ) ← tf(N,until(N1, N2)), hd(N1, T, T
′), htf(N2, T

′). (15)

htf(N,T ) ← tf(N, always(N1)), hd(N1, T, length+1). (16)

htf(N,T ) ← tf(N, eventually(N1)), htf(N1, T
′), T ≤ T ′. (17)

htf(N,T ) ← tf(N,next(N1)), htf(N1, T + 1). (18)

not hd(N, T, T ′) ← not htf(N,T ′′), T≤T ′′<T ′. (19)

hd(N, T, T ′) ← htf(N, T ), not not hd(N, T, T ′) (20)

Having defined temporal constraints and specified when they are satisfied,
adding temporal knowledge to a planning problem in ASP is easy. We must: (i)
encode the knowledge as a temporal formula, say φ; (ii) add the rules (13)-(20) to
Π ; and (iii) add the constraint← not htf(φ, 0) to Π . Step (iii) eliminates models
of Π in which φ does not hold. For example, if Π is the program for planning
in the logistics domain, adding the constraint (12) to Π will eliminate all mod-
els whose corresponding trajectory admits an action occurrence that causes the
holding(P ) to be true after P is delivered at its destination. As a concrete exam-
ple, given the goal formula at(p, l2), there exists no model of Π that corresponds
to the sequence of actions pick up(p, l1),move(l1, l2), drop(p, l2), pick up(p, l2).
(We appeal to the users for the intuitive meaning of the effects of actions, the
initial setting, and the goal of the problem.)



Planning with Different Forms of Domain-Dependent Control Knowledge 233

3.2 Procedural Knowledge

Procedural knowledge can be thought of as an (under-specified) sketch of the
plans to be generated. This type of control knowledge has been used in GOLOG,
an Algol-like logic programming language for agent programming, control and
execution, based on a situation calculus theory of actions [20]. GOLOG has
been primarily used as a programming language for high-level agent control in
dynamical environments (see e.g. [7]). More recently, Golog has been used for
general planning [13]. In the planning context, a GOLOG program specifies an
arbitrarily incomplete plan that includes non-deterministic choice points that
are filled in by the planner (the deductive machinery of a GOLOG-interpreter).
For example, a simple GOLOG program a1; a2; (a3|a4|a5); f? represents plans
which have a1 followed by a2, followed by one of a3, a4, or a5 such that f is true
upon termination of the plan. The interpreter, when asked for a solution to this
program, needs only to decide which one of a3, a4, or a5 it should choose. To
encode procedural knowledge, we introduce a set of Algol-like constructs such as
sequence, loop, conditional, and nondeterministic choice of arguments/actions.
These constructs are used to encode partial procedural control knowledge in the
form of programs which are defined inductively as follows. For an action theory
(D,Γ ) we define a program syntactically as follows.

– an action a is a program,
– a formula φ is a program5,
– if pi’s are programs then p1; . . . ; pn is a program,
– if pi’s are programs then p1| . . . |pn is a program,
– if p1 and p2 are programs and φ is a formula then “if φ then p1 else p2”
is a program,

– if p is a program and φ is a formula then “while φ do p” is a program,
and

– if X is a variable of sort s, p(X) is a program, and f(X) is a formula, then
pick(X, f(X), p(X)) is a program.

As is common practice with Smodels, we will assign to each program a name
(with the exception of actions and formulas), provide rules for the construc-
tion of programs, and use prefix notation. A sequence α = p1; . . . ; pn will be
represented by the atoms proc(p), head(p, n1), tail(p, n2) and the set of atoms
representing p2; . . . ; pn, where p, n1, and n2 are the names assigned to α, p1 (if
it is not a primitive action or a formula), and p2; . . . ; pn, respectively.

The operational semantics of programs specifies when a trajectory s0a0s1 . . .
an−1sn, denoted by α, is a trace of a program p and is defined as follows.

– for p = a and a is an action, n = 1 and a0 = a,
– for p = φ, n = 0 and φ holds in s0,
– for p = p1; p2, there exists an i such that s0a0 . . . si is a trace of p1 and
siai . . . sn is a trace of p2,

5 This is analogous to the GOLOG test action f? which tests the truth value of a
fluent.
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– for p = p1| . . . |pn, α is a trace of pi for some i ∈ {1, . . . , n},
– for p = if φ then p1 else p2, α is a trace of p1 if φ holds in s0 or α is a
trace of p2 if neg(φ) holds in s0,

– for p = while φ do p1, n = 0 and neg(φ) holds in s0 or φ holds in s0 and
there exists some i such that s0a0 . . . si is a trace of p1 and siai . . . sn is a
trace of p, and

– for p = pick(X, f(X), q(X)), then there exists a constant x of the sort of X
such that f(x) holds in s0 and α is a trace of q(x).

The logic programming rules that realize this semantics follow. We define a
predicate trans(p, t1, t2) which holds in a stable model S iff s(t1)at1 . . . s(t2) is
a trace of p6.

trans(P,T1, T2) ← proc(P ), head(P,P1), tail(P, P2), (21)

trans(P1, T1, T3), trans(P2, T3, T2).

trans(A,T, T + 1) ← action(A), A �=null, occ(A, T ). (22)

trans(null, T, T )← (23)

trans(N,T1, T2) ← choiceAction(N), (24)

in(P1, N), trans(P1, T1, T2).

trans(F,T1, T1) ← formula(F ), hf(F, T1). (25)

trans(I,T1, T2) ← if(I, F, P1, P2), (26)

hf(F, T1), trans(P1, T1, T2).

trans(I,T1, T2) ← if(I, F, P1, P2), (27)

not hf(F, T1), trans(P2, T1, T2).

trans(W,T1, T2) ← while(W,F, P ), hf(F, T1), T1 ≤ T3 ≤ T2, (28)

trans(P, T1, T3), trans(W,T3, T2).

trans(W,T, T )← while(W,F, P ), not hf(F, T ). (29)

trans(S,T1, T2) ← choiceArgs(S, F, P ), (30)

hf(F, T1), trans(P,T1, T2).

Finding a valid instantiation of a program P can be viewed as a planning
problem 〈D,Γ,∆〉 where∆ is the constraint← not trans(P, 0, n). Let ΠT

n be the
program obtained from Πn by (i) adding the rules (21)-(30), and (ii) replacing
the goal constraint with ← not trans(P, 0, n). The following theorem is similar
to Theorem 1.

Theorem 2. Let (D,Γ ) be an action theory and P be a program. Then, (i)
for every stable model S of ΠT

n , s(0)a0 . . . an−1s(n) is a trace of P ; and (ii) if
s0a0 . . . an−1sn is a trace of P then there exists a stable model S of ΠT

n such
that sj = s(j) and occ(ai, i) ∈ S for j ∈ {0, . . . , n} and i ∈ {0, . . . , n− 1}.
6 Recall that we define s(i) = {holds(f, i) ∈ S | f is a fluent} and assume
occ(ai, i) ∈ S.
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3.3 HTN Knowledge

GOLOG programs are good for representing procedural knowledge but prove
cumbersome for encoding partial orderings between programs and do not allow
temporal constraints. For example, to represent that any sequence containing
the n programs p1, . . . , pn, in which p1 occurs before p2, is a valid plan for
a goal ∆, one would need to list all the possible sequences and then use the
non-deterministic construct7. This can be easily represented by an HTN con-
sisting of the set {p1, . . . , pn} and a constraint expressing that p1 must occur
before p2. HTNs also allows maintenance constraints of the form always(φ) to
be represented. However, HTNs do not have complex constructs such as proce-
dures, conditionals, or loops. Attempts to combine hierarchical constraints and
GOLOG-like programs (e.g., [4]) have fallen short since they do not allow com-
plex programs to occur within these HTN programs. We will show next that,
under the ASP framework, this restriction can be eliminated by adding the fol-
lowing item to the definition of programs in the previous section.

– If p1, . . . , pn are programs then a pair (S,C) is a program where S =
{p1, . . . , pn} and C is a set of ordering or truth constraints (defined below).

Let S = {p1, . . . , pk} be a set of programs. Assume that ni, 1 ≤ i ≤ k, is
the name assigned to the program pi. An ordering constraint over S has the
form ni ≺ nj where ni �= nj and a truth constraint is of the form (ni, φ), (φ, ni),
or (ni, φ, nt) where φ is a formula. In our encoding, we will represent a program
(S,C) by an atom htn(p, Sn,Cn) where p, Sn, and Cn are the names assigned
to (S,C), S, and C respectively. To complete our extension, we need to define
when a trajectory is a trace of a program with the new construct and provide
logic program rules for checking its satisfaction. A trajectory s0a0 . . . an−1sn is a
trace of a program (S,C) if there exists a sequence j0=0 ≤ j1 ≤ . . . ≤ jk=n and
a permutation (i1, . . . , ik) of (1, . . . , k) such that the sequence of trajectories
α1 = s0a0 . . . sj1 , α2 = sj1aj1 . . . sj2 , . . ., αk = sjk−1ajk−1 . . . sn satisfies the
following conditions:

– for each l, 1 ≤ l ≤ k, αl is a trace of pil
,

– if nt < nl ∈ C then it < il,
– if (φ, nl) ∈ C (or (nl, φ) ∈ C) then φ holds in the state sjl−1 (or sjl

), and
– if (nt, φ, nl) ∈ C then φ holds in sjt , . . . , sjl−1 .

We will extend the predicate trans to allow the new type of programs to be
considered. Rules for checking the satisfaction of a program htn(N,S,C) are
given next.

trans(N,T1, T2) ← htn(N,S, C), (31)

not nok(N,T1, T2).

1{begin(N, I, T3, T1, T2) : between(T3, T1, T2)}1 ← htn(N,S, C), in(I, S), (32)

7 For n = 3, the three possibilities are p1; p2; p3, p1; p3; p2, and p3; p1; p2. Using a con-
current construct ‖, these three programs can be packed into two programs p1; p2‖p3
and p1; p3; p2.
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trans(N,T1, T2).

1{end(N, I, T3, T1, T2) : between(T3, T1, T2)}1 ← htn(N,S, C), (33)

in(I, S),

trans(N,T1, T2).

nok(N, T1, T2) ← htn(N,S, C), (34)

in(I, S), T3 > T4,

begin(N, I, T3, T1, T2),

end(N, I, T4, T1, T2).

nok(N, T1, T2) ← htn(N,S, C), (35)

in(I, S), T3 ≤ T4,

begin(N, I, T3, T1, T2),

end(N, I, T4, T1, T2),

not trans(I,T3, T4).

nok(N, T1, T2) ← htn(N,S, C), (36)

not trans(N,T1, T2).

In the above rules, the predicates begin(N, I, T3, T1, T2) and end(N, I, T4,
T1, T2) are used to record the beginning and the end of the program I, a member
of N . Rules (32)-(33) make sure that each program will have start and times.
These two rules are not logic programming rules but are unique to Smodels
encodings. They were introduced to simplify the encoding of choice rules [28],
and can be translated into a set of normal logic program rules. The predicate
nok(N,T1, T2) states that the assignments for programs are not acceptable. (We
omit the rules that check for the satisfiability of constraints in C of a program
htn(N,S,C). They can be downloaded from our Web site.) Theorem 2 will still
hold.

3.4 Demonstration Experiments

We tested our implementation with some domains from the general planning
literature and from the AIPS planning competition [2]. We chose problems for
which procedural control knowledge appeared to be easier to exploit than other
types of control knowledge. Our motivation was: (i) it has already been estab-
lished that well-chosen temporal and hierarchical constraints will improve a plan-
ner’s efficiency; (ii) we have previously experimented with the use of temporal
knowledge in the ASP framework [29]; and (iii) we are not aware of any empiri-
cal results indicating the utility of procedural knowledge in planning, especially
in ASP. ([13] concentrates on using GOLOG to do planning in domains with
incomplete information, not on exploiting procedural knowledge in planning.)

We selected the elevator example from [20] (elp1-elp3) and the Miconic-10
elevator domain (s1-0,. . . ,s5-0s2), proposed by Schindler Lifts Ltd. for the AIPS
2000 competition [2]. Note that some of the planners, that competed in AIPS
2000, were unable to solve this problem. Due to the space limitation we cannot
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present the action theories and the Smodels encoding of the programs here. They
can be found at the URL mentioned previously. The time taken to compute one
model with and without control knowledge are given in column 5 and 6 of the
table below, respectively.

Problem Plan # Person # Floors With Control Without Control
Length Knowledge Knowledge

elp1 10 2 6 0.600 0.560
elp2 14 3 6 1.411 6.729
elp3 18 4 6 3.224 120.693
s1-0 4 1 2 0.100 0.020
s2-0 8 2 4 1.802 0.921
s3-0 12 3 6 22.682 34.519
s4-0 15 4 8 164.055 314.101
s5-0s1 19 5 4 57.952 > 2 hours
s5-0s2 19 5 5 105.040 > 2 hours

As can be seen, the encoding with control knowledge yields substantially
better performance in situations where the minimal plan length is great. For large
instances (the last two rows), Smodels can find a plan using control knowledge
in a short time and cannot find a plan in 2 hours without control knowledge.
In some small instances (the time in column 6 is in boldface), the speed up
cannot make up for the overhead needed in grounding the control knowledge.
The output of Smodels for each run is given in the file result at the above URL.
For larger instances of the elevator domain [2] (5 persons or more and 10 floors or
more), our implementation terminated prematurely with either a stack overflow
error or a segmentation fault error8.

4 Discussions and Future Work

In this paper we presented a declarative approach to adding domain-dependent
control knowledge to ASP. Our approach enables different types of control knowl-
edge such as hierarchical, temporal, or procedural knowledge to be represented
and exploited in parallel; thus combining the ideas of HTN-planning, GOLOG-
programming, and planning with temporal knowledge into ASP. For exam-
ple, one can find a valid instantiation of a GOLOG program that satisfies
some temporal constraints. This distinguishes our work from other related work
[17,19,4,25] where only one or two types of constraints were considered or com-
bined. Moreover, in a propositional environment, ASP with procedural knowl-
edge can be viewed as an off-line interpreter for a GOLOG program. Because of
the declarative nature of logic programming the correctness of this interpreter is
easier to prove than an interpreter written in Prolog. We view domain-dependent
8 Experiments were run on a an HP OmniBook 6000 laptop with 130,544 Kb Ram
and an Intel Pentium III 600 MHz processor).
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control knowledge as independent sets of constraints. An advantage of this ap-
proach is that domain-dependent control knowledge can be modularly formalized
and added to planning problems as desired.

Our experimental result demonstrates that ASP can scale up better with
domain-dependent control knowledge. In keeping with the experience of re-
searchers who have incorporated control knowledge into SATplan (e.g., [19]),
we do not expect ASP with only one type of domain-dependent knowledge to
do better than TLPLAN [1], as Smodels is a general purpose system. But in
the presence of near deterministic procedural constraints, our approach may do
better. More rigorous experimentation with a variety of domains including those
used in the AIPS planning competition will be a significant focus of our future
work.
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