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Abstract

Suppose we are given a theory of system be-
havior and a set of candidate hypotheses.
Our concern is with generating tests which
will discriminate these hypotheses in some
fashion. We logically characterize test gen-
eration as abductive reasoning. Aside from
defining the theoretical principles underly-
ing test generation, we are able to bring to
bear the abundant research on abduction to
show how test generation can be embodied
in working systems. Furthermore, we address
the issue of computational complexity. It has
long been known that test generation is NP-
complete. This is consistent with complexity
results on the generation of abductive expla-
nations. By syntactically restricting the de-
scription of our theory of system behavior or
by limiting the completeness of our abduc-
tive reasoning, we are able to gain insight into
tractable test generation problems.

1 INTRODUCTION

Diagnostic reasoning is often viewed as an iterative
generate-and-test process. Given a description of a
system together with observations of system behavior,
a set of candidate diagnoses is produced which account
for the observed behavior. From the set of candidate
diagnoses, one or more tests is generated, executed
and the observed behavior fed back into the diagnostic
problem solver to determine a new set of candidate
diagnoses. In this paper we specifically examine the
task of test generation as it applies to hypothetical
reasoning, and in particular to diagnosis.

Consider a set of hypotheses HY P which we entertain
about some state of affairs represented by a first-order
sentence Y. We are concerned with generating tests
to discriminate these hypotheses relative to some hy-
pothetical reasoning goal. In a diagnosis setting, the
hypotheses could represent potential diseases, the di-

agnostic goal, to eliminate a particular disease can-
didate from consideration and the tests, observations
of symptoms or medical test results. In an active vi-
sion setting, the hypotheses could represent candidate
interpretations for an object in a scene, the goal, to
uniquely identify the object by candidate elimination
and the tests, observation of new visual features result-
ing from a camera movement. Hypothetical reasoning
covers a range of Al applications, all characterized by
the objective of generating hypotheses and then dis-
tinguishing these hypotheses relative to some theory
through the use of testing. Diagnosis, plan recogni-
tion, image understanding and aspects of natural lan-
guage understanding are all instances of hypothetical
reasoning problems.

Hardware designers have examined the problem of test
generation for years. It is acknowledged to be com-
putationally costly; even the problem of generating
tests for simple combinational Boolean circuits is NP-
complete (Ibarra and Sahni, 1975). Much of what is
found in the traditional design literature is test gener-
ation algorithms for specific classes of digital circuits.
These algorithms are not directly applicable to the di-
versity of test generation problems in hypothetical rea-
soning domains. In the Al test generation literature,
the emphasis has also been on diagnosis of digital cir-
cuits. DART (Genesereth, 1984) and GDE (de Kleer
and Williams, 1987) for example, both provide mech-
anisms for rudimentary test generation within their
diagnostic frameworks. Much of the Al literature fo-
cuses on strategies to deal with complexity, such as the
use of hierarchical designs (Shirley and Davis, 1983),
(Genesereth, 1984), probabilities (de Kleer, 1991) and
look-up tables (Meerwijk and Preist, 1992). Computa-
tional architectures have been proposed for generating
tests for circuits (Shirley, 1986). Interestingly, there
has been little to no formal analysis of the problem of
test generation in the Al literature. Our objective is
to move beyond the specific problem of testing digi-
tal circuits and to examine the general problem of test
generation for hypothetical reasoning, including diag-
nosis.



In an earlier paper, Mcllraith and Reiter (Mcllraith
and Reiter, 1992) provided a logical characterization
of testing for hypothetical reasoning. They character-
ized tests in terms of the prime implicates PI(X) of
Y. Since the ATMS computes (many) PI(X) in gener-
ating diagnoses, it was shown that some propositional
tests could simply be “read off” from PI(X) with no
further computation necessary. Many tests are thus
generated for free. While a nice result for ATMS-based
problem solvers, it is of limited use for hypothetical
reasoning problem solvers that do not compute the
prime implicates of X.

In this paper we take the logical characterization of
tests introduced in (MclIlraith and Reiter, 1992) and
use it as a basis for examining the task of test gen-
eration. We augment and extend the framework to a
first-order characterization. Then we recast test gen-
eration as abduction. In so doing, we are able to ap-
ply the abundant research on abduction to gain in-
sight into the generation of tests. Specifically, we show
how the theoretical characterization can be embodied
in a variety of a different computational mechanisms.
Finally, we examine the issue of complexity, gaining
insight into tractable and intractable test generation
problems.

2 PRELIMINARIES

We review and expand upon the testing framework
provided in (Mcllraith and Reiter, 1992). A fixed first-
order language is assumed throughout. X will be a
fixed sentence of the language, and will serve as the
relevant background knowledge describing the system
under analysis. For example, in the case of circuits,
Y. might describe the individual circuit components,
their normal input/output behavior, their fault mod-
els, the topology of their interconnections, and the le-
gal combinations of circuit inputs (e.g. (de Kleer and
Williams, 1987), (Reiter, 1987)). We also assume a
fixed set HY P of hypotheses. In the case where X
describes a circuit, HY P might be the set of diag-
noses which we currently hold for this device. How
we arrived at the set HY P will be largely irrelevant
for our purposes. HY P could be a set of abductive
hypotheses (Poole, 1989), the result of a consistency-
based diagnostic procedure (de Kleer et al.; 1992), or
any other conceivable form of hypothesis generation.
We make two assumptions about H € HY P. The
first assumption is that H be a conjunction of distin-
guished ground literals of the language. The second
assumption is that the truth status of the hypotheses
is unknown, i.e., VH € HYP, X | H and X }£ —H.

A test specifies certain initial conditions which may be
established by the tester, together with an observation
whose outcome in the physical world determines the
test conclusions. The initial conditions must be con-
sistent with the theory and with the current hypothe-

ses being entertained. For example, in circuit diagnosis
the initial conditions of a test might be the provision of
certain fixed circuit inputs, and the observation might
be the resulting value of a circuit output, or the value
of an internal probe. In the medical setting, the initial
conditions might involve performing a laboratory pro-
cedure like a blood test, and the observation might be
the white cell count. In an active vision setting, the
initial conditions might involve changing the camera
angle or moving objects in the scene, and the observa-
tion might be some aspect of the corresponding image.
Some tests do not dictate initial conditions. Such is
the case when the test involves simply reading a sensor
value or querying a user.

To provide a formal definition of a test, we distinguish
a subset of ground literals of our language, called the
achievable literals. These will specify the initial condi-
tions for a test. In addition, we define a distinguished
subset of the literals of our language called the observ-
ables. Thus, a test specifies some initial condition A
which the tester establishes, and an observable o whose
truth or instantiated value the tester is to determine
from the physical world.

Definition 1 (Test) A test is a pair (A, o) where A
15 a conjunction of achievable literals and o is an 0b-
servable.

We distinguish between two types of tests, truth
tests, which tell us whether the observable is true in
the physical world, and value tests, which tell us what
instance of the observable is true in the physical world.

Definition 2 (Truth Test) Let the observable o be
a ground literal. A truth test is a test (A, o), whose
outcome « is one of o, —o.

(blood_test, hepatitis_A_virus) is an example of a
truth test. As a result of performing (blood test,
hepatitis_A_virus) in the physical world, the truth
value of hepatitis_A_virus is established; the out-
come of the test is either hepatitis_A_virus, otherwise
—hepatitis_A_virus.

In contrast, a value test establishes the existence and
truth status of an instance of the observable in the
physical world.

Definition 3 (Value Test) Let the observable o con-
tain at least one uninstantiated variable. A value test
is a test (A,0) whose outcome o is a ground literal o,
the instantiation of the observable o, or its negation.

An example of a value test would be ({},
colour(object, X)), where X is an uninstantiated vari-
able. As aresult of performing ({}, colour(object, X))
in the physical world, the outcome might be
colour(object, red), establishing the existence and
truth value of a particular instance of the observable.



Definition 4 (Confirmation, Refutation) The

outcome o of the test (A,0) confirms H € HY P iff
Y AAAH is satisfiable, and CANA |E H D a. « refutes
H iff EANANH is satisfiable, and SN A= H D —a.

Not all conjunctions A of achievable literals will be le-
gal initial conditions, for example simultaneously mak-
ing a digital circuit input 0 and 1. Since ¥ will encode
constraints determining the legal initial conditions, we
require that X A A be satisfiable. Moreover, hypothe-
sis H could conceivably further constrain the possible
initial conditions A permitted in a test. For exam-
ple, the hypothesis that a patient is pregnant would
prevent a test in which an x-ray is performed. In
such a case, & would include a formula of the form
pregnant D —z_ray so that XApregnantAz_ray would
be unsatisfiable, in which case the very idea of a con-
firming or refuting outcome of such a test would be
meaningless.

(McIlraith and Reiter, 1992) show that a refuting test
outcome allows us to reject H as a possible hypothesis,
regardless of how we arrived at our space of hypothe-
ses, HY P. A confirming test outcome is generally of
no deterministic value except in the case where our
space of hypotheses is defined abductively and HY P
is comprised of all and only the hypotheses being con-
sidered. In such a case, it was shown that there is a
duality between confirming and refuting tests and that
a confirming test outcome has discriminatory power,
eliminating hypotheses which do not explain it, by
virtue of the definition of abductive hypothesis.

Discriminating tests are characterized as those tests
(A, 0) which are guaranteed to discriminate an hypoth-
esis space HY P, i.e., which will refute at least one
hypothesis in HY P, regardless of the test outcome.

Definition 5 (Discriminating Tests) A test (A,0)
1s a discriminating test for the hypothesis space HY P
iff XA AN H s satisfiable for all H € HY P and there
exvists H;, H; € HY P such that the outcome o of test
(A, o) refutes either H; or H;, no matter what that
outcome might be.

By definition, a discriminating test must refute at least
one hypothesis in the hypothesis space.

Definition 6 (Minimal Discriminating Tests)

A discriminating test (A, o) for the hypothesis space
HY P is minimal iff for no proper subconjunct A’ of
A is (A, 0) a discriminating test for HY P.

Minimal discriminating tests preclude unnecessary ini-
tial conditions, for example unnecessary medical tests,
camera movement, etc. Only those conditions neces-
sary for producing the test outcome are invoked.

In many instances our theory will not provide us with
discriminating tests. Relevant tests are those tests

(A, 0) which have the potential to discriminate an hy-
pothesis space HY P, but which cannot be guaranteed
to do so. Given a particular outcome «, a relevant test
may refute a subset of the hypotheses in the hypothe-
sis space HY P, but may not refute any hypotheses if
- is observed. Since there is no guarantee a priori of
the outcome of a test, these tests are not guaranteed
to discriminate an hypothesis space.

Definition 7 (Relevant Tests) A test (A,0) is «
relevant test for the hypothesis space HY P {ff EAANH
1s satisfiable for all H € HY P and the outcome « of
test (A, o) either confirms a subset of the hypotheses
i HY P or refutes a subset.

By definition, a relevant test confirms or refutes at
least one hypothesis in HY P.

Definition 8 (Minimal Relevant Tests)

A relevant test (A, o) for the hypothesis space HY P
is minimal iff for no proper subconjunct A’ of A is
(A’,0) a relevant test for HY P.

Example 1. To illustrate, consider a simple medical
diagnosis problem where we suspect that a patient is
suffering from either mumps, measles, chicken pox or

flu.

HY P = {mumps, measles, chicken_poz, flu}

Y =

(measles D red_spots) A (chicken_poxr D red_spots)
A (mumps D swollen_glands) A (flu D fever)

Both the hypothesis that the patient has measles and
the hypothesis that the patient has chicken pox, in-
fer the observation of red spots. However, neither the
hypothesis that the patient has mumps or the hypoth-
esis that the patient has the flu infer anything about
the existence or lack of existence of red spots. As a
result, the outcome of a test to observe red spots will
only provide discriminatory information if we observe
red_spots to be false. In such a case we can refute
both chicken_poxr and measles. However, if we ob-
serve red_spots to be true, we are unable to reject any
of the four hypotheses. Thus, the test ({}, red_spots) is
an example of a minimal relevant test. No discriminat-
ing test exists for our theory ¥ and hypothesis space
HYP.

(MclIlraith and Reiter, 1992) further showed that if
HY P contains all and only the hypotheses to be con-
sidered, and if the space of hypotheses is defined ab-
ductively, then every relevant test acts as a discrim-
inating test. In our example above, if these con-
ditions are met, then the outcome red_spots of the
relevant test ({},red_spots) would eliminate flu and
mumps since neither hypothesis abductively explains
red_spots.

Example 2. Consider a bin-picking problem where a
smart computer vision system is trying to identify fruit



coming down a conveyor belt. The fruit is limited to
apples, lemons, limes and bananas. Hypotheses are
defined abductively.

HYP =

{is(object, apple),
is(object, banana)}

is(object,lemon), is(object,lime),

(7 s(object apple) D colour(object, red)) A
(is(object,lemon) D colour(object, yellow)) A
(is(object,lime) D colour(object, green)) A
(is(object,banana) D colour(object, yellow)) A
(is(object, apple) @t is(object,lemon) &
is(object, lime) @& is(object, banana))

By performing the value test colour(object, X) with
outcome colour(object,red), that one test would allow
us to uniquely identify the object on the conveyor belt
as an apple. In contrast, we might have had to perform
a number of truth tests before arriving at the same
hypothesis space.

Finally, there is an even weaker notion of a test which
has the potential to provide further information about
the hypothesis space, but which generally does not
uniquely discriminate hypotheses.

Definition 9 (Constraining Test) A test (A4,0) is
a constraining test for the hypothesis space HY P iff
X ANAANH is satisfiable for all H € HY P and the
outcome o of test (A, o) either confirms or refutes a
conjunction of hypotheses drawn from HY P.

A constraining test has the potential to further con-
strain or limit the hypothesis space, but not in itself
eliminate any hypotheses, except in the limiting case.
The limiting case occurs when the conjunction of hy-
potheses contains only one hypothesis. In such a case,
a constraining test becomes a relevant test.

To illustrate the notion of a constraining test, con-
sider ¥ | Hy A Hy D b, and consider the test (A,b).
If the outcome « of test (A,b) is —b, then ¥ A A A
—b = —H; V = Hj. The outcome of the test constrains
the hypothesis space and refutes the conjunction of
hypotheses Hi1 A Hy. Although the test did not re-
fute an individual hypothesis, it has provided further
discriminatory information. Given this test outcome,
if another test results in the refutation of = H; (i.e.,
the entailment of H), then the additional information
from the constraining test (A, ) enables refutation of
H; (i.e., the entailment of = Hs).

Proposition 1 (Test Relationships) Every
discriminating test is a relevant test. Every relevant
test is a constraining test.

'The connective @ is used for notational brevity to in-
dicate exclusive-or

3 TEST GENERATION AS
ABDUCTION

Suppose we are given a theory of system behavior, a
set of hypotheses, a set of achievables and a set of
observables. The task is to generate a test, drawn from
the set of achievables and observables which will meet
some hypothetical reasoning objective. The objective
could be to refute a particular hypothesis, to confirm
a particular hypothesis, or simply to discriminate the
space.

Intuitively, the generation of tests, particularly the
generation of observable outcomes seems to be de-
ductive in nature. Given a theory ¥ and achievable
A, conjoin the hypothesis H and predict observations.
Test whether those observations are indeed true, and
if they are false, refute H.

There are several problems with using deduction to
generate tests. Theorem provers generally use resolu-
tion refutation to deduce whether or not a particular
proposition is true, not to deduce what is true (i.e., all
logical consequences of a theory). Furthermore, deduc-
tion alone does not resolve the problem of identifying
both the achievables and the observables of a test.

A better formulation of test generation is as theory
formation. Given ¥ and the objective of generating
a test to attempt to eliminate H € HY P, what test
could be conjoined to ¥ to potentially refute H? (i.e.,
Find atest (A, o) with outcome « such that EAAAa =
-H.)

The pattern of inference is easily recognized as
abduction.

It is logically equivalent to finding a test (A, o) with

outcome « such that A AA H E —a.

In this section, we characterize test generation as ab-
duction (Cox and Pietrzykowski, 1986), (Poole et al.,
1987). We limit ourselves to the examination of truth
tests, but the generation of value tests are a simple ex-
tension of these results. The sections to follow examine
some practical benefits of this theoretical characteri-
zation.

Definition 10 (Abductive Explanation) Given «
first-order theory X and a ground literal obs, E, a con-
junction of literals is an abductive explanation for obs

WX AL |Eobs and X AN E s satisfiable.

Definition 11 (Min. Abductive Explanation)
E is a minimal abductive explanation for obs iff no
proper subconjunct of F s an abductive explanation

for obs.

Testing is performed to meet some hypothetical rea-
soning objective. Often the objective is simply to per-
form tests which will eliminate the maximum num-
ber of hypotheses. In other instances, it may be de-



sirable to confirm a particular hypothesis, to refute
a particular hypothesis or to discriminate (and thus
eliminate) some subset of hypotheses in the hypoth-
esis space HY P. The strategy for selecting the type
of test to generate may depend on the user’s or sys-
tem’s goals and objectives. It may be influenced by
decision theoretic measures of utility such as the cost
(in dollars, time or human terms) of computing or ex-
ecuting a test, the criticality of a particular hypothesis
being true or false, information gain etc. Strategies for
generating tests may also depend on probabilities re-
lating to the expected outcome of a particular test or
the probability that a particular hypothesis is true or
false. We do not address these issues in this paper, but
rather focus on the underlying task of test generation.
We characterize the notion of confirmation and refuta-
tion in terms of abductive explanations. Further, we
demonstrate how a variety of tests may be character-
ized and hence generated abductively. The following
proposition is a direct result of Definition 4.

Proposition 2 (Confirmation, Refutation) The
outcome o of the test (A,0) confirms H € HY P iff
YXNANH s satisfiable, and AN -« is an abductive
explanation for —H. « refutes H ff X N AN H 1s
satisfiable, and A A « is an abductive explanation for
-H.

Example 3. Returning to the axioms provided
in Example 1, the outcome red_spots of the test
({}, red_spots) confirms measles and chicken_pox
since —red_spots is an abductive explanation for both
—measles and —chicken_poxr. Similarly, the out-
come —swollen_glands of the test ({}, swollen_glands)
would refute mumps since —swollen_glands is an ab-

ductive explanation for =mumps.

If our objective is to establish the truth or falsity of
a particular hypothesis H; € HY P, we ideally want
to generate and perform a minimal individual discrim-
inating tests. As a result of this test, we will know
either H; or —H;. For example, we may want to es-
tablish whether or not a patient is suffering from the
particularly virulent hepatitis A. In a vision applica-
tion, we may want to pick out all the apples from a
bowl of fruit. Both examples may be addressed by
performing individual discriminating tests.

Theorem 1 (Individual Discriminating Tests)
(A,0) is an individual discriminating test for H; €
HYP iff

1. XANAANH s satisfiable VH € HY P;

2. AAo is an abductive explanation for —H;;

YANA¥E-H;

3. AN -0 is an abductive explanation for H;;
YANA l# H;.

The condition that ¥ A A £ —H; and X A A [£ H;

ensure that it is the observable and not the achiev-
able which is refuting the hypotheses. Note that this
condition is addressed through the use of minimal ab-
ductive explanations in every minimal test defined in
this section.

Corollary 1 (Min. Ind. Discriminating Tests)
(A,0) is a minimal individual discriminating test for
H; € HY P &f

1. XANAANH s satisfiable VH € HY P;
2. A' Ao is a minimal abductive explanation for —H;;

3. A" A =0 is a minimal abductive explanation for
Hi;

4. A=A ANA".

The following corollary also pertains to minimal indi-
vidual discriminating tests.

Corollary 2 (Min. Ind. Discriminating Tests)
(A, 0) s a minimal individual discriminating test for
H; € HY P iff

1. XANANH s satisfiable VH € HY P;

2. ANoA—o is a minimal abductive explanation for
H;Vv—-H;.

Condition 2 of Corollary 2 is trivial in the sense that
o A —o is vacuously false, H; V = H; is vacuously true
and false D true. However, this corollary will still
be of assistance in computing minimal individual dis-
criminating tests in the sections to follow.

Example 4. To illustrate the concepts in this section,
we take liberties with our domain and extend the X de-
scribed in Example 1 by conjoining the following three
axioms:

(hepatitis_A A blood_test D hepatitis_A_virus) A
(—hepatitis_A A blood_test D —hepatitis_A_virus) A
(mumps D —red_spots) A (hepatitis_A D jaundice)

HYP =
hepatitis_A}

{mumps, measles, chicken_pox, flu,

(blood_test hepatitis_A_virus) is a minimal individual
discriminating test for hepatitis_A since blood_test A
hepatitis_A_virus is a minimal abductive explanation
for hepatitis_A, and blood_test N —hepatitis_A_virus
is a minimal abductive explanation for —hepatitis_A.

As noted previously, many domains do not provide
discriminating tests. In such cases, we must settle for
a relevant test in order to attempt to eliminate hy-
potheses. Relevant tests are those tests which have
the potential to discriminate an hypothesis space, but
which cannot be guaranteed to do so since they only
discriminate if « is observed, but not if -« is observed.
In this instance we want to generate and perform an
individual relevant test.



Theorem 2 (Individual Relevant Tests)
(A,0) is an individual relevant test for the hypothesis
space HY P iff

1. XANAANH s satisfiable VH € HY P;

2. ANAo is an abductive explanation for —H;;

E/\Al}é—'Hi.

Corollary 3 (Min. Ind. Relevant Tests)
(A,0) is a minimal individual relevant test for the hy-
pothesis space HY P iff

1. XANAANH s satisfiable VH € HY P;

2. AAo s a minimal abductive explanation for —H;.

Further to Example 4., ({}, jaundice) is a minimal in-
dividual relevant test for the hypothesis hepatitis_A,
since —jaundice is a minimal abductive explanation
for —hepatitis_A. A test outcome of jaundice pro-
vides no discriminatory information. Recall again that
when the space of hypotheses i1s defined abductively
and when HY P represents all the hypotheses to be
considered, then the observation of jaundice would
result in the elimination of all hypotheses in HY P ex-
cept hepatitis_A, since it is the only hypothesis which
explains the observation of jaundice.

Unless we are interested in focusing on a particular hy-
pothesis, our testing objective will likely be to perform
tests which refute a maximum number of hypotheses
in the hypothesis space. Ideally we want to generate
minimal discriminating tests because they guarantee
that the outcome, when conjoined to ¥ will refute at
least one hypothesis in HY P.

Theorem 3 (Discriminating Tests)
(A,0) is a discriminating test for the hypothesis space
HY P iff

1. XANAANH s satisfiable VH € HY P;

2. dH; € HY P such that A A o is an abductive ez-
planation for —H;; TN A = —~H;;

3. 3H; € HY P such that A A —o is an abductive
explanation for —H;; © AN A £ —Hj.

Corollary 4 (Minimal Discriminating Tests)
(A, 0) is a minimal discriminating test for the hypoth-
esis space HY P iff

1. XANAANH s satisfiable VH € HY P;

2. dH; € HY P such that A' Ao is a minimal abduc-
twe explanation for = H;;

3. 3H; € HY P such that A" A—o is a minimal ab-
ductive explanation for —H;;

4. A=A ANA".

Again, when discriminating tests do not exist or are
not achievable, relevant tests are the next best alter-
native.

Theorem 4 (Relevant Tests)
(A, 0) is a relevant test for the hypothesis space HY P

uf
1. ¥ANANH s satisfiable VH € HY P,

2. dH; € HY P such that A Ao is an abductive ez-
planation for =H;; T AN Al —H;.

The definition of minimal relevant test follows from
the theorem above, as per Corollary 2.

Finally, if no relevant test exists or is unachievable, a
constraining test may be desirable.

Theorem 5 (Constraining Tests)
(A, 0) is a constraining test for the hypothesis space

HYP iff

1. ¥ ANANH s satisfiable VH € HY P,

2.A AN o is an abductive

\/H,eHYP —H;;
3. TANAE \/H,eHYP -H;.

We add the third condition to eliminate both the case
where the test achievable alone causes the conjunc-
tion of hypotheses to be refuted and the case where
the conjunction of hypotheses is already refuted by X.
For example, if our theory states that [; and H; are
mutually exclusive (i.e., =(H; A Hj)) then no test is
needed to discriminate them. If condition 3 is vio-

lated, then a constraining test must be designed using
a subset of HY P for which condition 3 holds.

explanation  for

Corollary 5 (Minimal Constraining Tests)
(A, 0) is a minimal constraining test for the hypothesis
space HY P iff

1. XANAANH s satisfiable VH € HY P;

2. AN o is a minimal abductive explanation for
\/H,eHYP ;.

4 PRACTICAL BENEFITS

There are many benefits to formal specification of a
reasoning task. Primarily, it provides a non-procedural
specification of the task from which meta-theoretic
properties may be proven. From it, we are able to
assess the impact of assumptions, of syntactic restric-
tions etc. Furthermore, it enables us to realize the
task relative to the specification and to establish cor-
rectness proofs for our algorithms. In this particular
instance, we are fortunate that we have characterized



test generation in terms of abduction, an inference pro-
cedure that boasts a large body of research. As a re-
sult, we are able to immediately exploit research in
abduction to gain valuable insight into test generation.

Here, we examine two issues: the mechanization of test
generation and tractable abductive test generation.

4.1 MECHANIZING TEST GENERATION

By characterizing test generation as abduction we may
employ existing abductive reasoning mechanisms to
generate tests. In this section we propose several dif-
ferent approaches for generating tests abductively us-
ing theorem proving techniques. Some of the mech-
anisms are propositional, while others are first order.
Recall that a first-order theory of finite domain can be
transformed into a propositional theory; thus enabling
the use of propositional machinery.

The general problem of abductive test generation is
to find a test (A, o) satisfying a logical formula of the
form X A AAOF X, where O represents o or —o and
X represents an individual (negated) hypothesis or a
disjunction of negated hypotheses. O and X are de-
termined by the type of test and are specified in The-
orems 1-5 and Corollaries 1-5 of the previous section.
For example, when generating an individual relevant
test, as specified in Theorem 2, O would be 0 and X
would be —H;.

By Proposition 1, we know that every discriminating
test is a relevant test and that every relevant test is a
constraining test. Thus, the various tests can be gener-
ated from a basic core. If we are interested in individ-
ual tests to refute H;, then we can try to find a minimal
individual relevant test which provides an abductive
explanation for —=H;, as per Corollary 3. The result-
ing test (A, o) may then be examined to see whether
it can satisfy the further requirements of a minimal
individual discriminating test. Alternatively, we can
use Corollary 2 to attempt to generate an individual
discriminating test which provides an abductive expla-
nation for H; V —H;, but unlike the previous strategy,
if this attempt fails we have no test to fall back on.

To eliminate random hypotheses drawn from HY P, a
strategy which minimizes the possibility of producing
no test is to employ the criteria of Corollary 5 to gen-
erate a minimal constraining test and then examine
whether it fulfills the more stringent requirements of a
minimal relevant test or a minimal discriminating test

(Corollary 4).

In order to compute tests, we must perform both con-
sistency testing and actual generation of the abduc-
tive explanations. For formula F'; ¥ U F' is consistent
iff © I/ =F. First-order logic is semi-decidable. (i.e.,
Given first-order proof theory and a closed formula,
a proof will be found if the formula is valid, but the
proof procedure may not terminate if the formula is

not valid.) Consequently, there is no decision pro-
cedure for determining the consistency of first-order
formulae in general. Fortunately, there are decidable
first-order theories. In particular, first-order Horn the-
ories without function symbols are decidable. Simi-
larly, some applications with finite domains may be
rewritten as propositional theories, which are decid-
able. If all else fails, consistency checking can be ap-
proximated. For example, if after a certain outlay of
resources the formulae have not been proven to be in-
consistent, then assume that they are consistent. It
is up to the developer of an individual application to
ensure that consistency checking is decidable either by
syntactic restrictions on X or by using some reasonable
approximation of consistency checking.

The problem of finding an abductive explanation AAO
for X may be computed in several different ways. By
recasting the problem X A A A O F X using the de-
duction theorem, we can categorize the different ap-
proaches to generating abductive explanations.

e Proof-tree completion
- YXAANOA-XF L,
e Direct-proof method

~YFAAODX,
~ YA-XF-AV-0,

e Model Generation?
~STAXF VO

Recall that X and O are defined as per Theorems 1-5
and Corollaries 1-5, and are limited by the restrictions
of the specific computational machinery.

4.1.1 Proof-tree Completion

YAAANOF X is equivalent to EAAAOA-XF L.
As such, the problem of generating an abductive ex-
planation for X may be recast as finding a refutation
proof for X which employs literals drawn from a dis-
tinguished set of achievables and observables. Cur-
rently the most popular mechanism for computing ab-
ductive explanations, this technique is often referred
to as proof-tree completion.

To generate tests, ¥ and =X may be conjoined and
converted to clausal form. Linear resolution may be
used to attempt to derive L. The proof will fail, but
will result in so-called dead ends. If these dead ends
can resolve with achievables and observables to de-
rive L then the minimal achievables and observables
required for the proof constitute an abductive expla-
nation for X and may constitute a test if they adhere
to the specific test criteria defined in Theorems 1-5 or
Corollaries 1-5.

Example 5. Returning to Example 4, in or-
der to find at least a minimal constraining test

2Severe restricitons apply. See Section 4.1.3.



for HY P given Y, we must convert ¥ to clausal
form and conjoin —|\/H16HYP —H;. Thus, we con-
join =(—mumps V —measles V —chicken_pox V = flu vV
—hepatitis_A) (which is equivalent to mumps A
measles A chicken_pox A flu A hepatitis_A) to X. The
proof will terminate at several dead ends including
red_spots, —red_spots, swollen_glands etc. The ad-
dition of any of these observables would complete the
proof, but only the observable red_spots will fulfill the
criteria for a minimal discriminating test defined in
Corollary 4. Thus, ({},red_spots) is a minimal dis-
criminating test for ¥ and HY P.

There are several proof-tree-completion-style abduc-
tive inference engines (e.g., (Pople, 1973), (Cox and
Pietrzykowski, 1986), (Cox and Pietrzykowski, 1987),
(Poole, 1988), (Poole et al., 1987)). The Theo-
rist framework (Poole, 1989) is one such engine, but
the implementation differs slightly in that the distin-
guished explanation literals (achievables and observ-
ables, in our case) are added to ¥ a priori and rather
than deriving dead ends, Theorist merely notes the dis-
tinguished explanation literals which were employed in
the refutation proof.

The available implementation of Theorist provides a
more sophisticated development environment for users
to perform both abductive explanation and prediction.
The prediction facilities, like our deductive theorem
provers tell us whether or not a particular formula is
true, not what formulae are true. Theorist classifies
user-provided formulae as Facts, Defaults, Conjectures
and Observations. Both Defaults and Conjectures are
used to generate abductive Ezplanations for Observa-
tions. Defaults are also used for prediction.

There are several ways in which the Theorist develop-
ment environment may be employed to generate tests.
The simplest way is to define achievables and observ-
ables as Conjectures and to use them to generate ab-
ductive explanations for a user-supplied X as per The-
orems 1-5 and Corollaries 1-5. Alternatively, the The-
orist environment could be modified to enable test gen-
eration to occur in conjunction with hypothesis gen-
eration. It would require the creation of a new set
of user-provided formulae called Conjecturable-tests,
which would contain either achievables and observ-
ables, or predefined tests. Taking advantage of the
abductive explanation generation machinery already
in place, Theorist could take the set of Fzplanations
(hypotheses equivalent to HY P) and generate abduc-
tive explanations drawn from Conjecturable-tests as
per Theorems 1-5 and Corollaries 1-5. This would
provide the tests to discriminate the original hypoth-
esis space Frplanations and enable hypothesis gener-
ation and test generation to be performed simultane-
ously.

Finally, off related interest, Sattar and Goebel (Sat-
tar and Goebel, 1991) provided a mechanism within

the Theorist system for recognizing so-called crucial
literals which provides a basis for identifying discrim-
inating tests of the form ({},0). They compute the
crucial literals using consistency trees.

4.1.2 Direct-proof Method

Aside from proof-tree completion, there are several
ways of generating tests using a direct proof method.
The term direct proof method is often used to refer to
the task of consequence finding — finding the conse-
quences of a theory. X A AA O F X may be recast
as both ¥ F AAO D X and ¥A-X F -AV -0
(assuming ¥ A =X is consistent). In both cases, tests
may be found from the logical consequences of ¥ and
3 A =X, respectively. Unfortunately, while resolution
is refutation complete (complete for proof-finding), it
is not deductively complete and so does not find all
the logical consequences of a theory.

Fortunately, in the case of test generation, we are only
interested in a subset of the logical consequences of our
theories. Specifically, we want the minimal® clauses of
the form =AV -0V X and =A V =0 respectively, and
we don’t need them all, unless we want to select the
best tests. Recent advances have been made in devel-
oping complete consequence-finding theorem provers
for first-order and propositional theories. In partic-
ular, Inoue (Inoue, 1991) has developed a complete
resolution procedure for consequence-finding, general-
ized to finding only interesting clauses having certain
properties. A set of so-called characteristic clauses
can be defined to specify both a set of distinguished
literals from which the characteristic clauses must be
drawn and any other conditions to be satisfied. In
our case, the characteristic clauses would be of the
form =AV =0 V X and —A V =0 respectively. The
augmentation of the theorem prover with a skip rule
allows it to focus on generating only the characteristic
clauses, rather than generating all minimal logical con-
sequences and further pruning to retrieve the desired
subset of clauses. Following Theorems 1-5 and Corol-
laries 1-5, we can then use such a consequence-finding
system to generate tests.

The RESIDUE system (Finger and Genesereth, 1985)
used in the implementation of Genesereth’s well-
known Design Automated Reasoning Tool (DART) is
also a first-order consequence-finding procedure; how-
ever, RESIDUE does not focus search as extensively
as Inoue’s system (Inoue, 1991). RESIDUE was em-
ployed in DART to generate potential diagnosis candi-
dates by direct proof, and was also used for rudimen-
tary test generation.

When dealing with propositional theories, the task of
finding the minimal logical consequences of a theory
is by definition equivalent to computing the prime im-
plicates of that theory.

®We use the term minimal as per Definition 11.



Definition 12 (Prime implicates) C' is a prime
implicate for ¥ iff ¥ |= C, and for no proper subset c'
of C does © = C'.

At the core of the well-known assumption-based truth
maintenance system (ATMS) (de Kleer, 1986) is
the computation of certain prime implicates of a
propositional Horn theory, ¥ (Reiter and de Kleer,
1987). Thus, the ATMS contains a propositional
consequence-finding procedure for ¥. In this discus-
sion, we refer to the ATMS in the broadest context,
to include its extensions beyond Horn theories, to in-
clude probabilistic focusing and to include those sys-
tems which compute prime implicates incrementally

(Kean and Tsiknis, 1990).
The ATMS identifies a distinguished set of literals

called assumptions which act as the primitive ab-
ducible literals for production of abductive explana-
tions. (Mcllraith and Reiter, 1992) identified one way
of acquiring certain tests from the side effects of the
ATMS’s computations for generating diagnoses, H;.
Since the ATMS calculates prime implicates of ¥ of
the form H; D o, some tests of the form ({}, o) would
be generated for free through the normal operation
of the ATMS. In order to actually generate tests us-
ing the ATMS, we take advantage of the fact that the
ATMS is an abduction engine and make the achiev-
ables and observables assumptions. This is almost like
operating the ATMS backwards. Rather than diag-
nostic candidates being the abductive explanations for
observations, the tests are the abductive explanations
for refutable hypotheses. Tests are those (A,o) for
which AAO D X is a prime implicate of ¥ and (4, o)
satisfies all other criteria specified for the test.

Depending upon the application, there may be many
achievables and observables and this may not be the
most efficient mode of test generation. On a positive
note, tests are generally composed of one observable
and a minimal number of achievables, so the potential
for an exponential number of environments is limited.
This, along with probabilistic focusing of the ATMS
may make the ATMS or one its generalizations a viable
mechanism for test generation.

4.1.3 Model Generation

We mention this last approach to abductive test gen-
eration only to be thorough, because it is of very
limited use in practical test generation applications.
Model generation (e.g., Satchmo (Manthey and Bry,
1988),(Denecker and de Schreye, 1992)) and model
finding techniques (e.g., GSAT (Selman et al., 1992)
may be used to generate abductive hypotheses in lim-
ited cases. Console et al. (Console et al., 1991) showed
that abductive explanations could be generated deduc-
tively from the Clark’s completion ¥* of a causal Horn
theory ¥. By augmenting a causal Horn theory with
completion axioms, we explicitly provide that a partic-

ular effect, e entails a disjunction of possible causes, ¢;,
ie, ¥ Aelk V,c;. The causes, ¢; can be determined
by generating the minimal models of 3* A e.

These results may be applied to a very restricted class
of test generation problems. In particular, those prob-
lems for which tests are restricted to ({},0) and for
which completion of the theory can be computed with
respect to the refutation of causes, not with respect
to the potential effects. Specifically, the completion
axioms would state that a particular refuted hypothe-
sis (not_H;) implied a disjunction of possible test out-
comes 01 V not_oy V...0,. In order to compute a test
to refute the hypothesis H;, the set of minimal mod-
els for ¥* A not_H; would be computed using a model
generator. The tests ({}, o) would be the distinguished
literals o; retrieved from the minimal models.

This approach seems both awkward and impractical.
A better proposal for producing tests via model gener-
ation is to generate the model for Horn theory Y A—-X.
Tests of the form ({},0) could then be retrieved as
the distinguished observables of the minimal Herbrand
model.

4.2 TRACTABLE TEST GENERATION

From the computer hardware literature, we know that
the general problem of test generation, even for simple
combinational Boolean circuits is NP-complete (Ibarra
and Sahni, 1975). Similarly, we know that finding an
abductive explanation in the general case is NP-hard
(Selman, 1990). The challenge with computationally
hard problems is either to attempt to deal with the
worst-case complexity by employing problem-specific
strategies such as probabilistic focusing of algorithms
or alternatively to define tractable classes of the prob-
lem. Tractable classes may often be achieved by limit-
ing the expressive power of a theory, or by limiting the
completeness of reasoning. In the abduction research,
there are a few simple classes of tractable abduction
problems. In this section, we examine the complexity
results on abduction to attempt to provide insight into
classes of tractable tests generation problems.

In defining tractable abductive test generation prob-
lems, we may avail ourselves of certain properties of
test generation that occur generally or in certain hy-
pothetical reasoning domains. They are as follows:

1. There is no need to generate all tests

In generating tests, there is always a trade-off be-
tween the cost of computing tests and the cost of
performing tests. In many instances, the cost of
performing a test is cheap while the generation of
tests is expensive. Consequently, we need not cal-
culate all tests or even the best test. Computing
any relevant test is generally of value.

2. Some application tests are limited to ({},0)
There are many application domains for which



tests require no achievable literals. This issue was
discussed in (Mcllraith and Reiter, 1992). For
example, some applications have a great deal of
sensor data available. It is the job of test genera-
tion to select which sensor data to “observe”; no
achievable preconditions are required. In other
domains, tests of the form ({},0) may be per-
formed by simply querying the user as to the
truth value of the test proposition o. This may be
the case for certain medical diagnosis problems or
when performing certain natural language under-
standing tasks.

3. An exponential number of tests is unlikely
Many tests are composed of one observable literal
and few if any achievable literals. As such, the
number of minimal tests generated as abductive
explanations is unlikely to be exponential in the
number of observables and achievables.

Selman (Selman, 1990), Levesque (Levesque, 1989)
and Bylander et al. (Bylander et al., 1991) have all
defined classes of tractable abductive reasoning prob-
lems. There are some gaps in the complexity results
that need to be filled in to deal fully with test gen-
eration, however from the existing results we can gain
some insight into what makes test generation problems
tractable, or for that matter, intractable. We focus
here on test generation from propositional theories.

Complexity results for abduction are often based on
the ATMS. Consequently, the term assumption refers
to the distinguished set of literals from which expla-
nations are composed. It is equivalent to our set of
observable and achievable literals when abduction is
applied to test generation.

It has long been known that there may be exponen-
tially many abductive explanations for a given literal
((McAllester, 1985), (de Kleer, 1986)) and so listing
them all would take exponential time. For test gen-
eration, we are often uninterested in listing all tests
as explained by Property 1 above. Even if we were,
by Property 3, we would be unlikely to have an ex-
ponential number of tests. Assuming, there are not
an exponential number of tests, we proceed to define
certain complexity results for test generation, viewed
as an abductive task.

Selman (Selman, 1990) states that the problem of gen-
erating abductive explanations for theories composed
of arbitrary clauses is NP-hard, because of the con-

sistency check on X. Consequently it follows directly
from (Selman, 1990) that:

Proposition 3 If ¥ is a conjunction of arbitrary
clauses, the problem of generating a test s NP-hard.

We would hope that the story would be better for Horn
clause theories. Selman further shows that even when
¥ is composed of Horn clauses, that finding an abduc-
tive explanation for a letter ¢, where the explanation

must be derived from a set of assumptions, is NP-
hard. This seems discouraging, but upon analysis of
the complexity proof, we see some hope. The proof
is based upon a reduction from the NP-complete de-
cision problem “path with forbidden pairs.” In this
instance, the forbidden pairs are mutually incompat-
ible assumptions drawn from our assumption set. It
would appear that if we got rid of the problem of for-
bidden pairs, that the complexity problem would be
resolved. This indeed appears to be the case.

Bylander et al. (Bylander et al., 1991) define the class
of independent abduction problems. This class of prob-
lems has a polynomial time algorithm for finding an
explanation, if one exists. The trick is to get rid of Sel-
man’s forbidden pairs — to ensure that no assumptions
are mutually incompatible in the one instance and to
then additionally ensure that there are no cancellation
interactions among the assumptions.

If our tests are composed of single literals, then we
don’t have to concern ourselves with the compatibility
of achievables/observables. Property 2 shows that this
is a reasonable assumption for tests in certain appli-
cation domains. Following (Bylander et al., 1991), we
show that:

Proposition 4 If ¥ is a conjunction of Horn clauses
and tests are of the form ({},0), then a test may be
generated in polynomial time, if such a test exists

This follows directly from the results in (Bylander et
al., 1991).

For the general case, the question remains as to
whether it seems reasonable to assume that no achiev-
ables/observables are mutually incompatible. Note
that achievables/observables S; and S2 are defined to
be mutually incompatible iff & = —=(S1 A Sq).

To be able to assume no mutually incompatible achiev-
ables/observables, we would have to assume that for
every achievable A; and observable o; that ¥ [ = (A1 A
A2), X [E = (01A 02) and T £ = (A1A 01). While it
may be possible to make this assumption in specific
instances, it is unlikely to be true in the general case.
In circuit diagnosis for example, let A; be input = 1,
Az be input = 0, obviously ¥ |= —(A; AAz). Similarly,
since observations can generally be positive and nega-
tive literals, if we let 07 = =02 then ¥ = —(01 A 03).
We state the following proposition for those situa-
tions where there are no mutually incompatible achiev-
ables/observables.

Proposition 5 If X is a conjunction of Horn clauses
and no two literals drawn from the set of achievable
and observable literals are mutually incompatible with
respect to Y., then a test may be generated in polyno-
maual time, if such a test exists.

Finally, Levesque (Levesque, 1989) and Selman (Sel-



man, 1990) define a linear time algorithm for finding
certain explanations of a literal from Horn clause the-
ories. Although motivated by different concerns, their
algorithm and results are virtually the same. The ex-
planations produced are those that are explicitly rep-
resented (Levesque, 1989) in X. Further, it is not re-
quired that they be drawn from a set of distinguished
literals.

The algorithm searches through the clauses of X to
find clauses containing the literal ¢, the literal to be
explained. The negation of the other literals in the
clause form the explanations. For example, if —=H is
to be explained and z V y vV —H is a clause in X, then
the abductive explanation =z A =y would be found in
linear time. Levesque proposes using this algorithm to
define a form of limited abductive reasoning in which
explicit explanations are determined first, followed by
a chaining process to find implicit explanations.

These results tell us that if we have tests (A, o) explic-
itly represented in ¥ as = AV —oV —H;, then they can
be found in linear time, (along with other extraneous
explanations that do not contain the desired distin-
guished literals and thus are not tests per se). Sim-
ple causal theories where clauses in ¥ are of the form
hypothesis D observable (e.g., disease D symptom)
would contain such explicit tests. This is an argument
in favor of encoding or even caching tests explicitly in a
theory to make them computationally easy to generate
(Meerwijk and Preist, 1992).

Definition 13 (Explicit test) (A,o0) is an explicit
test to potentially refute H € HY P if AV —oV —-H
s a clause in Y.

Proposition 6 IfY is a conjunction of Horn clauses,
an explicit test may be generated in linear time, if such
a test exists.

This follows from results in (Levesque, 1989) and (Sel-
man, 1990).

5 SUMMARY

We provide three main contributions towards research
in test generation. First, we characterize test gener-
ation as abductive reasoning. As a consequence, we
are able to define the notions of discriminating tests,
relevant tests, individual discriminating and relevant
tests, and constraining tests all in terms of abductive
explanation. We then outline a variety of approaches
to abductive reasoning which can be modified and em-
ployed to perform test generation. Finally, we examine
the research on tractable abductive reasoning to gain
insight into tractable and intractable test generation
problems.

This paper provides both a theoretical and computa-
tional framework for test generation, which is lacking

in the test generation literature. From this framework
and some of the proposed procedures for test gener-
ation, there is opportunity for experimental work to
analyze the efficacy in practice of some of these alter-
native approaches to test generation.
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