
Monitoring Plan Optimality During Execution

Christian Fritz and Sheila A. McIlraith
Department of Computer Science, University of Toronto, Toronto, Ontario. Canada.

{fritz,sheila}@cs.toronto.edu

Abstract

A great deal of research has addressed the problem of gen-
erating optimal plans, but these plans are of limited use in
circumstances where noisy sensors, unanticipated exogenous
actions, or imperfect models result in discrepancies between
predicted and observed states of the world during plan ex-
ecution. Such discrepancies bring into question the contin-
ued optimality of the plan being executed and, according to
current-day practice, are resolved by aborting the plan and
replanning, often unnecessarily. In this paper we address the
problem of monitoring the continued optimality of a given
plan at execution time, in the face of such discrepancies.
While replanning cannot be avoided when critical aspects of
the environment change, our objective is to avoid replanning
unnecessarily. We address the problem by building on prac-
tical approaches to monitoring planvalidity. We begin by
formalizing plan validity in the situation calculus and char-
acterizing common approaches to monitoring plan validity.
We then generalize this characterization to the notion of plan
optimality and propose an algorithm that verifies continued
plan optimality. We have implemented our algorithm and
tested it on simulated execution failures in well-known plan-
ning domains. Experimental results yield a significant speed-
up in performance over the alternative of replanning, clearly
demonstrating the merit of our approach.

1 Introduction
When executing plans, the world may evolve differently than
predicted resulting in discrepancies between predicted and
observed states of the world. These discrepancies can be
caused by noisy sensors, unanticipated exogenous actions,
or by inaccuracies in the predictive model used to generate
the plan in the first place. Regardless of the cause, when a
discrepancy is detected, it brings into question whether the
plan being executed remainsvalid (i.e., projected to reach
the goal) and where relevant,optimal with respect to some
prescribed metric. The task of execution monitoring is to
monitor the execution of a plan, identify relevant discrep-
ancies, and to take ameliorative action. In many cases the
ameliorative action is to replan starting in the current state.

Effective execution monitoring requires a system to
quickly discern between cases where a detected discrepancy
is relevant to the successful execution of a plan and those

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cases where it is not. Algorithms dating back as far as
1972 (e.g., PLANEX (Fikes, Hart, & Nilsson 1972)) have
exploited the idea of annotating plans with conditions that
can be checked at execution time to confirm the continued
validity of a sequential plan.

Here, we are interested in the more difficult and unsolved
problem of monitoring planoptimality. Our work is moti-
vated in part by our practical experience with the fast-paced
RoboCup domain where teams of robots play soccer against
each other. In RoboCup, the state of the world is typically
observed 10 times per second, each time raising the ques-
tion of whether to continue with the current plan or to re-
plan. Verifying plan validity and optimality must be done
quickly because of the rapidly changing environment. Cur-
rently, there are no techniques to distinguish between rele-
vant and irrelevant discrepancies (w.r.t. optimality), and so
replanning is frequently done unnecessarily or discrepancies
are ignored altogether, ultimately resulting in plan failure or
sub-optimal performance.

In this paper, we study the problem of monitoring the con-
tinued optimality of a plan. Our approach builds on ideas
exploited in algorithms for monitoring plan validity. To this
end, we begin by formalizing plan validity in the situation
calculus, characterizing common approaches to monitoring
plan validity found in the literature. We then generalize this
characterization to the notion of plan optimality and propose
an algorithm to monitor plan optimality at execution. Prior
to execution time we annotate each step of our optimal plan
by sufficient conditions for the optimality of the plan. These
conditions correspond to the regression (Reiter 2001) of the
evaluation function (cost + heuristic) used in planning over
each alternative to the currently optimal plan. At execution
time, when a discrepancy occurs, these conditions can be
reevaluated much faster than replanning from scratch by ex-
ploiting knowledge about the specific discrepancy. We have
implemented our algorithm and tested it on simulated ex-
ecution failures in well-known planning domains. Exper-
imental results yield an average speed-up in performance
of two orders of magnitude over the alternative of replan-
ning, clearly demonstrating the feasibility and benefit of the
approach. Further, while our approach is described in the
situation calculus, it is amenable to use with any action de-
scription language for which regression can be defined (e.g.,
STRIPS and ADL).

2 Preliminaries
The situation calculus is a logical language for specifying
and reasoning about dynamical systems (Reiter 2001). In
the situation calculus, thestateof the world is expressed in
terms of functions and relations (fluents,F) relativized to a
particularsituations, e.g.,F (~x, s). A situations is ahistory
of the primitive actionsa, a ∈ A the set of all actions, per-
formed from a distinguished initial situationS0. The func-
tion do(a, s) maps an action and a situation into a new sit-
uation thus inducing a tree of situations rooted inS0. For
readability, action and fluent arguments are generally sup-
pressed. Also,do(an, do(an−1, . . . do(a1, s))) is abbreviated
to do([a1, . . . , an], s) or do(~a, s). In this paper we only con-
sider finite sets of actions,A.

A basic action theory in the situation calculus,D, com-
prises fourdomain-independent foundational axioms, and
a set ofdomain-dependent axioms. Details of the form of
these axioms can be found in (Reiter 2001). We writes ⊏ s′

to say that situations precedess′ in the tree of situations.
This is axiomatized in the foundational axioms. Included in
the domain-dependent axioms are the following sets:
Initial State , S0: a set of first-order sentences relativized to
situationS0, specifying what is true in the initial state.
Successor state axioms:provide a parsimonious represen-
tation of frame and effect axioms under an assumption of the
completeness of the axiomatization. There is one successor
state axiom for each fluent,F , of the formF (~x, do(a, s)) ≡
ΦF (~x, a, s), whereΦF (~x, a, s) is a formula with free vari-
ables amonga, s, ~x. ΦF (~x, a, s) characterizes the truth value
of the fluentF in the situationdo(a, s) in terms of what is
true in the current situations.
Action precondition axioms: specify the condi-
tions under which an action is possible to execute.
There is one axiom for each actionA, of the form
Poss(A(~x), s) ≡ ΠA(~x, s) where ΠA(~x, s) is a formula
with free variables among~x, s. We use the abbreviation
Poss([a1, a2, . . . , am], s)

def
= Poss(a1, s) ∧ Poss(a2, do(a1, s)) ∧

. . . ∧ Poss(am, do([a1, . . . , am−1], s)).
Regression
The regressionof a formulaψ through an actiona is a for-
mulaψ′ that holds prior toa being performed if and only ifψ
holds aftera is performed. In the situation calculus, regres-
sion is defined inductively using the successor state axiom
for F as above:

R[F (~x, do(a, s))] = ΦF (~x, a, s)

R[¬ψ] = ¬R[ψ]

R[ψ1 ∧ ψ2] = R[ψ1] ∧R[ψ2]

R[(∃x)ψ] = (∃x)R[ψ]

We denote the repeated regression of a formula
ψ(do(~a, s)) back to a particular situations by Rs, e.g.
Rs[ψ(do([a1, a2], s))] = R[R[ψ(do([a1, a2], s))]]. Intuitively,
the regression of a formulaψ over an action sequence~a is
the condition that has to hold forψ to hold after executing~a.
It is predominantly comprised of the fluents that play a role
in the conditional effects of the actions in the sequence.

Regression is a purely syntactic operation. Nevertheless,
it is often beneficial to simplify the resulting formula for

later evaluation. Regression can be defined in many action
specification languages. In STRIPS, regression of a literall
over an actiona is defined based on the add and delete lists
of a: RSTRIPS[l] = FALSE if l ∈ DEL(a) and{l} \ ADD(a) oth-
erwise. Regression in ADL was defined in (Pednault 1989).
Notation: Lower case letters denote variables in the the-
ory of the situation calculus, upper case letters denote con-
stants. We useα andβ to denote arbitrary but explicit ac-
tions. However, we use capitalS to denote arbitrary but
explicit situation terms, that isS = do(~α, S0) for some ex-
plicit action sequence~α. For instance,Si for i > 0 denotes
the situation expected during planning, andS∗ the actual
situation that arises during execution. Variables that appear
free are implicitly universally quantified unless stated other-
wise andϕ[x/y] denotes the substitution of all occurrences
of x in formulaϕ with y.

3 Monitoring Plan Validity
In this section we formalize the notion of plan validity and
provide an algorithm for monitoring plan validity. This pro-
vides the formal foundation for our approach to monitoring
plan optimality described in Section 4.

Recall that a situation is simply a history of actions exe-
cuted starting inS0, e.g.,do([α1, . . . , αm], S0).

Definition 1 (Plan Validity). Given a basic action theoryD
and a goal formulaG(s), a plan~α = [α1, . . . , αm] is valid in
situationS if D |= G(do(~α, S)) ∧ Poss(~α, S).

As such, a plan continues to be valid if, according to the
action theory and the current situation, the precondition of
every action in the plan will be satisfied, and at the end of
plan execution, the goal is achieved.

A number of systems have been developed for monitoring
plan validity (cf. Section 6) which all implicitly take the fol-
lowing similar approach. The planner annotates each step of
the plan with a sufficient and necessary condition that con-
firms the validity of the plan. During plan execution these
conditions are checked to determine whether plan execution
should continue. We formally characterize the annotation
and its semantics as goal regression. The provision of such a
characterization enables its exploitation with other planners,
such as very effective heuristic forward search planners.

Definition 2 (Annotated Plan). Given initial situationS0, a
sequential plan~α = [α1, . . . , αm], and a goal formulaG(s),
the corresponding annotated plan for~α is a sequence of tu-
plesπ(~α) = (G1(s), α1), (G2(s), α2), . . . (Gm(s), αm) with

Gi(s) = Rs [G(do([αi, . . . , αm], s) ∧ Poss([αi, . . . , αm], s)]

I.e., each step is annotated with the regression of the goal
and the preconditions over the remainder of the plan.

Proposition 1. A sequence of actions~α is a valid plan in
situationS iff D |= RS [G(do(~α, S)) ∧ Poss(~α, S)].
Proof: The proof is by induction using the Regression The-
orem (Reiter 2001, pp.65–66).

We can now provide an algorithm that characterizes the
approach to monitoring plan validity described above. It
is a generalization of the algorithm defined in (Fikes, Hart,

& Nilsson 1972). For the purposes of this paper, we as-
sume that the “actual” situation of the world,S∗, is pro-
vided, having perhaps been generated using state estima-
tion techniques or the like. The action theoryD remains
unchanged. For instance,S∗ may differ from the expected
situationSi = do([α1, . . . , αi−1], S0) by containing unantic-
ipated exogenous actions, or variations of actions executed
by the agent. It need not provide acompletedescription of
the state of the world. The approach is applicable and even
particularly interesting in cases of incomplete knowledge.1

Definition 3 (Algorithm for Monitoring Plan Validity).
With action theoryD and annotated planπ(~α) of lengthm

obtainS∗

while (D 6|= G(S∗)) {
i = m; obtainS∗

while (D 6|= Gi(S
∗)) { i = i − 1}

if (i > 0) then execute αi elsereplan }

The realization of the entailment of conditions (D |= ϕ(s))
depends on the implemented action language. E.g., in
STRIPS this is simple set inclusion of literals in the set de-
scribing the current state (roughly,ϕ ∈ s). For the situation
calculus efficient Prolog implementations exist.

The correctness of this approach – only valid plans are
continued and whenever a plan is still valid it is continued –
is provided by the following theorem.

Theorem 1. The algorithm executes actionαi in situation
S∗ iff the remaining plan[αi, . . . , αm] is valid in situationS∗

andi is the greatest index in[1,m] with that property.
Proof: If αi is executed,D |= Gi(S

∗) holds and plan validity
follows by Propositions 1. If there is a maximal indexi such
thatD |= Gi(S

∗) (plan valid by Prop. 1),αi is executed.

4 Monitoring Plan Optimality
Now that we have a formal understanding of what is required
to monitor plan validity, we exploit this to address the chal-
lenging problem of monitoring the continued optimality of
a plan. Optimality appears in cases where the user not only
specifies a goal to define valid plans, but also wishes to dis-
criminate between all possible valid plans, by designatinga
measure of utility or preference over plans.

Given an optimal plan, our objective is to monitor its
continued optimality, electing to replan only in those cases
where continued execution of the plan will either not achieve
the goal, or will do so sub-optimally. To this end, we extend
the plan-annotation approach of Section 3 to monitor plan
optimality. This is a critical problem for many real-world
planning systems, and one that has been largely ignored.

We begin by defining plan optimality within our frame-
work. Recall thatdo(~α, S) denotes the situation reached af-
ter performing the action sequence~α in situationS. The
relation Pref(s, s′) is an abbreviation for a sentence in the
situation calculus defining criteria under whichs is more or
equally preferred tos′.

1To better distinguish variables of the theory and meta-
variables, used e.g. in pseudo code, we print the latter using bold
face.

Definition 4 (Plan Optimality). Given a basic action theory
D, a goal formulaG(s), and extra-logical relationPref(s, s′),
a plan ~α is optimal in situationS if D |= G(do(~α, S)) ∧

Poss(~α, S) and there is no action sequence~β such thatD |=

Pref(do(~β, S), do(~α, S)) ∧G(do(~β, S)) ∧ Poss(~β, S).

As such, a plan remains optimal in a new situationS∗

when it remains valid and there exists no other valid plan
that is preferred. Hence, to monitor plan optimality, we re-
quire two changes to our plan annotations: i) in addition to
regressing the goal, we must regress the preference criteria
to identify conditions that are necessary to enforce optimal-
ity and ii) since optimality is relative rather than absolute,
we must annotate each plan step with the regression of the
preferences over alternative plans as well.

This approach can be applied to a wide range of prefer-
ence representation languages and planners. In this paper,
we restrict our attention to preferences described by positive
numeric action costs, and anA∗ search based forward plan-
ner with an admissible evaluation function. To provide a for-
mal characterization, we assume that the planning domain is
encoded in a basic action theoryD. To keep the presentation
simple, we also assume that the goal is a fluentG(s) and can
only be established by a particular actionfinish, contained
in the action theory. Any planning problem can naturally be
translated to conform to this by defining the preconditions
of thefinish action corresponding to the goal of the original
planning problem.

Recall that inA∗ search, the evaluation function is the
sum of the heuristic function and the accumulated action
costs. We denote functions in relational form. In situa-
tion s the accumulated costc of actions performed since
S0 is denoted by the relational fluentCost(c, s). It is speci-
fied incrementally in the successor state axioms of the fluent
Cost(c, s). For instance,Cost(c, do(a, s)) ≡ Cost(c′, s) ∧ (a =
driveTo(paris) ∧ c = c′ + driveCostToParis) ∨ ((6 ∃x).a =
driveTo(x) ∧ c = c′). The search heuristic yielding value
h in s is denoted byHeu(h, s). We understand this to de-
note a formula provided by the user, for instance of the form
Heu(h, s)

def
= (φ1(s)∧h = h1)∨(φ2(s)∧h = h2)∨(φn(s)∧h =

hn), where theφi partition state space. Correspondingly our
A∗ evaluation relation is specified as follows:

Value(v, s)
def
= (∃h, c).Heu(h, s) ∧ Cost(c, s) ∧ v = h+ c.

The preference relation for ourA∗ search is defined as:

PrefA∗(s1, s2)
def
=

(∃v1, v2).Value(v1, s1) ∧ Value(v2, s2) ∧ v1 < v2.

By the definition of admissibility we know that it is non-
decreasing, that is ifs1 is preferred tos2, then no successor
of s2 is preferred tos1:

D |= PrefA∗(s1, s2) ⊃ (6 ∃s′2).s2 ⊏ s′2 ∧ PrefA∗(s
′

2, s1). (1)

In A∗ search, nodes that have been seen but not explored
are kept in the so-calledopen list. In planning, the open list
is initialized to the initial situation. Planning proceedsby
repeatedly removing the most preferred situation in the open
list and inserting its feasible successor situations. Search
terminates successfully when this first element,do(~α, S0),
satisfies the goal,D |= G(do(~α, S0)). The plan described by

this,~α, is always optimal because any alternative plan would
be a continuation of one of the partial plans in the open list,
but by Equation (1) and the fact thatdo(~α, S0) is preferred
to any other element in the open list, no such plan could be
preferred to~α.

It follows that to determine the continued optimality of
plan~α in a new situationS∗ (replacingS0), it is sufficientto
check thatdo(~α, S∗) is still most preferred with respect to the
open list when search terminated. We may, however, need
to extend this list first because action sequences previously
predicted to be impossible (inSi) may now be possible (in
S∗) and the current plan,~α, must also be preferred to these
plans. But even then this is not anecessarycondition. It may
be the case that another elementdo(~β, S∗) in the (revised)
open list is preferred todo(~α, S∗), but if do(~β, S∗) doesn’t
satisfy the goal,do(~α, S∗) may still turn out to be optimal.
This could be the case if (i) no successor ofdo(~β, S∗) satis-
fies the goal, or (ii) there are successors that satisfy the goal
but they are less preferred thando(~α, S∗). This can occur
because the heuristic can, and generally does, increase. For-
mally, D |= PrefA∗(s1, s2) 6⊃ (6 ∃s′1).s1 ⊏ s′1 ∧ PrefA∗(s2, s

′

1).
Neither of these issues, can be resolved without further, time
consuming, planning. For this reason, we limit ourselves to
a tight sufficient condition, defined in terms of the fringe.

Definition 5 (Fringe). Given an action theoryD and a goal
formulaG(s), a fringe of situationS is a set of situations
L = {S1, . . . , Sn}, such that for eachSj ∈ L: (i) Sj is a
descendant ofS, (i.e., S ⊏ Sj), (ii) there is noS′ ∈ L s.t.
Sj ⊏ S′, (iii) for any S′′ if do(α, S′′) ∈ L for someα ∈ A
then alsodo(α′, S′′) ∈ L for every otherα′ ∈ A, whereA
is the set of actions in the theory, and (iv) there is noS′′′,
S′′′

⊏ Sj such thatD |= G(S′′′).

Note the similarity between fringe and open list. The main
difference is that a fringe can include infeasible situations.
An important property of fringes is that any plan has exactly
one prefix in any given fringe. This exhaustive character of
fringes allows us to make optimality guarantees in conjunc-
tion with a heuristic function.

Theorem 2 (Sufficiency). Let D be an action theory,G(s)
a goal, S a situation, and~α a valid plan forG(s) in S.
If there is a fringeL of S such that for everydo(~β, S) ∈

L, D |= (∃va, vb).RS [Poss(~β, S) ∧ Value(va, do(~α, S)) ∧

Value(vb, do(~β, S))] ⊃ vb ≥ va, then~α is optimal inS.2

Proof: Assume to the contrary that~α is not opti-
mal in S, then there is asb = do(~β, S) s.t. D |=
(∃va, vb).Value(va, do(~α, S)) ∧ Value(vb, sb) ∧ vb < va and
D |= G(sb)∧Poss(~β, S). By definition of a fringe,sb is either
in L or is a predecessor or a descendant of some element in
L. Since no element inL is preferred to~α and no predecessor
of any element inL satisfies the goal,sb has to be a descen-
dant of some element inL. But by definition of admissibility
(Equation (1)), no such descendant can be preferred to~α. �

This theorem establishes sufficient conditions for deter-
mining continued plan optimality. We must now translate

2Since~β is a particular, known action sequence, regressing over
it is not a problem and our abbreviationPoss(~β, S) is well defined.

α

α

α

α

β

β

β

βS0

do(α, S0)

do(β, S0))

do([α, α], S0)

do([α, β], S0))

do([β, α], S0))

do([β, β], S0))

do([β, α, α], S0)

do([β, α, β], S0))

1

2

3

4

5

6

7

8

9

Figure 1:An example search tree. Dashed lines denote impossible
actions, and[α, α] is the optimal plan.

these conditions into plan annotations that can be quickly
checked during plan execution.

4.1 Annotation
Plan annotations can be computed at planning time by our
A∗ search forward planner. We assume our planner will
output an optimal plan~α, the open listO that remained
when planning terminated (e.g. nodes 5, 7, and 8 in Fig-
ure 1), and a listO− containing those situation terms found
to be infeasible during planning. This is a list of situations
do(α−, S) such thatα− is not possible in situationS, i.e.
D |= ¬Poss(α−, S) (cf. node 9 in the figure). The union
{do(~α, S0)}∪O∪O− is a fringe ofS0. Since monitoring op-
timality must be done relative to alternatives, each step ofthe
optimal plan is annotated with the conditions that confirm its
continued validity, as well as a list of alternative plans and
their corresponding predicted evaluation function valuesrel-
ativized to that plan step. Note that in the text that follows
it is the description of the annotation, and not the annotation
itself, that is defined in the situation calculus.

Definition 6 (Annotated Plan (Optimality)). Given
the initial situation S0, the goal formula G(s), the
evaluation relation Value(v, s), an optimal sequen-
tial plan ~α = [α1, . . . , αm], the open listO, and
the list of infeasible situationsO−, the correspond-
ing annotated plan for~α is a sequence of tuples
π(~α) = (G1(s), V1, Alt1, α1), . . . , (Gm(s), Vm, Altm, αm)

whereGi(s) is as defined in Definition 2 andVi andAlti are
defined as follows, with~αi = [αi, . . . , αm] the remaining
plan, andSi = do([α1, . . . , αi−1], S0):
Vi = (Rs[Value(v, do(~αi, s))],vi),

with vi ∈ IR such thatD |= Value(vi, do(~αi, Si))

Alti = {Alti1 , Alti2 , . . . , Altin} containing all tuples
Altij

= (~βij
, φPoss

ij
,pij

, φValue
ij

,vij
)

such thatdo(~βij
, Si) ∈ O ∪O− and where:

φPoss
ij

= Rs[Poss(~βij
, s)], variable ins,

pij
= 1 if do(~βij

, Si) ∈ O andpij
= 0 if do(~βij

, Si) ∈ O−,
φValue

ij
= Rs[Value(v, do(~βij

, s))], variable inv, s, and
vij

∈ IR such thatD |= Value(vij
, do(~βij

, Si)).

For plan stepi, Vi contains the regression of the evalua-
tion relation over the remaining plan~αi and its value w.r.t.
the expected situationSi. Alti represents the list of alter-
native action sequences~βij

to ~αi, together with their re-
spective regression of the evaluation relation and particular
value inSi (vij

), and regressed preconditions and their truth
value (pij

, represented as0 or 1) in Si. For example, in

the search tree of Figure 1,~α = [α, α] is the optimal plan,
Alt1 (cf. node 1) contains tuples for the action sequences
[α, β], [β, α, α], [β, α, β], [β, β], andAlt2 (cf. node 2) contains
only one tuple for[β]. Intuitively, the regression of the evalu-
ation relation over a sequence of actions~α describes in terms
of the current situation, the value the evaluation relationwill
take after performing~α. As an example, consider the task of
delivering a package to a location using a truck. Assume the
heuristic yields a valuev = 0 when the truck has the pack-
age loaded and is at the right location, andv = 1 otherwise.
Then, regressing the heuristic through the action of driving
the truck to the right location would yield a formula stating
“v = 0 if the package is on the truck, andv = 1 otherwise”
(ignoring action costs for now).

The key benefit of our approach comes from regressing
conditions to the situations where they are relevant. Conse-
quently when a discrepancy is detected during plan execu-
tion and the world is in situationS∗ rather than predicted
situationSi, the monitor can determine the difference be-
tween these situations and limit computation to reevaluating
those conditions that are affected by the discrepancy. This
is only possible because regression has enabled definition of
relevant conditions with respect to the situation before exe-
cuting the remainder of the plan or any alternative.

4.2 Execution Monitoring
Assume we have an optimal plan~α = [α1, . . . , αm], and that
we have executed[α1, . . . , αi−1] for somei ≤ m and thus ex-
pect to be in situationSi = do([α1, . . . , αi−1], S0). Given the
situation estimateS∗ and the annotated plan as described in
Definition 6, our task is to decide whether execution of the
remainder of the plan,~αi = [αi, . . . , αm], is still optimal. We
will do this by reevaluating all relevant conditions inS∗ to
verify that the current plan is still valid and achieves maxi-
mal value among all alternatives.

Recall the representation of alternative plans~β in Alti,
containing the regressed preconditions, evaluation relation,
and their respective ‘values’ during planning (i.e. w.r.t.Si).
Also recall thatVi = (φValue ,vi) whereφValue is a formula
over variablesv ands, denoting the regression of the evalua-
tion relation over~αi. A naive algorithm for monitoring plan
optimality at execution would be as follows:

Definition 7 (Naive Optimality Monitoring Algorithm).
Given the annotated plan
π(~α) = (G1(s), V1, Alt1, α1), . . . , (Gm(s), Vm, Altm, αm):

i = 1
while (i ≤ m) {

obtainS∗

(φValue ,vi) = Vi

if (D |= Gi(S
∗) and∃va ∈ IR s.t.D |= φValue [s/S∗, v/va]

and∀(β, φPoss
β ,pβ , φ

Value

β ,vβ) ∈ Alti, ∃vb ∈ IR s.t.
D |= φPoss

β [s/S∗] ∧ φValue

β [s/S∗, v/vb] ∧ vb ≥ va)
then { executeαi; i = i + 1; }
else replan }

This prescribes to continue execution as long as no feasible
element from the list of alternatives achieves a better value
in S∗ than the current plan. The time cost of this algorithm
is greatly determined by the computation of the condition

as it reevaluates all annotated formulae anew inS∗. We
can significantly reduce this time by only reevaluating those
conditions that may have been affected by the discrepancy
between the predicted situationSi and actual situationS∗.

Let ∆F (Si, S
∗) be the set of fluents whose truth values

differ betweenSi andS∗, i.e. ∆F (Si, S
∗) = {F (~X) | F ∈ F

andD |= F (~X, Si) 6≡ F (~X, S∗)}, with F the set of fluents.
Only conditions mentioning any of these fluents need to be
reevaluated, all others remain unaffected by the discrepancy.
Let fluents(ϕ) denote the set of all fluents occurring inϕ. An
improved algorithm for monitoring plan optimality during
execution is as follows:

Definition 8 (Monoplex). Given the annotated plan
π(~α) = (G1(s), V1, Alt1, α1), . . . , (Gm(s), Vm, Altm, αm)
monoplex(D, π(~α)) :

1 i = 1

2 while (i ≤ m) {

3 obtainS∗; generate∆F (Si, S
∗);

4 if (D |= Gi(S
∗)) then { // plan remains valid

5 (φValue ,vi) = Vi

6 if (fluents(φValue) ∩ ∆F (Si, S
∗) 6= ∅) then

7 { vi = vnew

i s.t.D |= φValue [s/S∗, v/vnew

i] }

8 foreach ((β, φPoss
β ,pβ , φ

Value

β ,vβ) ∈ Alti) {

9 if (fluents(φPoss
β) ∩ ∆F (Si, S

∗) 6= ∅) then
10 { if (D |= φPoss

β [s/S∗]) then pβ = 1 elsepβ = 0 }

11 if (pβ == 1∧ fluents(φValue

β)∩∆F (Si, S
∗) 6= ∅) then

12 { vβ = vnew

β s.t.D |= φValue

β [s/S∗, v/vnew

β] }

13 if (pβ == 1 ∧ vβ < vi) then
14 { replan} } // plan may be sub-optimal, replan
15 executeαi; i = i+1 // plan remains optimal, continue
17 elsereplan} } // plan is invalid

While the plan has not been executed to completion (line 2),
the algorithm does the following:

line 4: it checks validity;

lines 5–7: if the regression of the evaluation function over
the plan (φValue) mentions any affected fluent, it is reeval-
uated, obtaining new valuevnew

i
;

lines 8–14: the algorithm then checks for each alternative
~β at this point of plan execution: (in lines 9,10) whether
its preconditions are affected and need to be reevaluated,
(in lines 11,12) whether its value is affected and needs to
be reevaluated, and (in line 13) whether this alternative is
now possible and better than the current plan. If an alter-
native has become better, the algorithm calls for replan-
ning. Otherwise the next action of the plan is executed.

Intuitively, the foreach loop revises relevant values – the
truth of preconditions and the value of the evaluation func-
tion – generated forSi with respect to the actual situation
S∗, aborting execution when a viable and superior alterna-
tive is found. Line12 is most crucial: Here the regression of
the evaluation relation over alternative plan~β is reevaluated
with respect to the actual current situationS∗, yielding a new
valuevnew

β for the evaluation relation (cf.Altij
in Defini-

tion 6). This reevaluation only occurs if the regression result
(formula) contains any of the affected fluents. Otherwise the

value hasn’t changed as a result of the discrepancy. Again,
the realization of the entailment (D |= ϕ(s)) depends on the
implemented action language. The method is in particular
not reliant on the situation calculus and can be used with
any action language for which regression can be defined.

Theorem 3 (Correctness). Whenevermonoplex executes
the next step of the plan (executeαi), the remaining plan
αi, . . . , αm is optimal in the actual current situationS∗.
Proof Sketch: The plan~α and the alternatives~βij

’s in Alti
describe a fringe ofSi. The foreach loop provides for all
of the latter thatvij

is such thatD |= Value(vij
, do(~βij

, S∗))

and thatpij
= 1 if D |= Poss(~βij

, S∗) andpij
= 0 otherwise

(Regression Theorem), and similarly the code of lines 5–7
updatesvi as necessary, i.e. s.t.D |= Value(vi, do(~α, S

∗)).
The theorem then follows from Theorem 2. �

Exploiting the Search Tree Working with the fringe di-
rectly causes a lot of redundant work. This is because many
alternative action sequences share the same prefix and so the
costs and preconditions of these prefixes are annotated and
potentially reevaluated multiple times. We can avoid this
by exploiting the search tree structure in both the annotation
and the algorithm. The details of this method are much more
complicated than the above description based on the list of
alternatives, which is why we chose to omit these details
in this paper. Our implementation, however, uses the im-
proved search tree method. Formally the search tree method
is equivalent to the described method with respect to making
the decision between continuing and aborting/replanning.

4.3 An Illustrative Example
Consider the following simplified example from the TPP do-
main, where an agent drives to various markets to purchase
goods which she then brings to the depot. For simplicity,
assume there is only one kind of good, two markets, and
the following fluents: in situations, At(l, s) denotes the cur-
rent locationl, Totalcost(t, s) denotes the accumulated costs
t of all actions sinceS0, Request(r, s) represents the num-
berr requested of the good,Price(p,m, s) denotes the price
p of the good on marketm, andDriveCost(c, src, dest, s)
the costc of driving from src to dest. Let there be two
actions: drive(dest) moves the agent from the current lo-
cation todest, andbuyAllNeeded purchases the requested
number of goods. Assume, the planner has determined the
plan ~α = [drive(Market1), buyAllNeeded, drive(Depot)]

to be optimal, but has as well considered~β =
[drive(Market2), buyAllNeeded, drive(Depot)] as one alter-
native among others. To shorten presentation, we ignore the
heuristic here, i.e. assume uniform cost search (h = 0). Then

V1 = ((∃t, l, c1, p, r, c2).T otalcost(t, s) ∧At(l, s)∧

DriveCost(c1, l,Market1, s) ∧ Price(p,Market1, s) ∧

Requested(r, s) ∧DriveCost(c2,Market1, depot, s) ∧

v = t+ c1 + (r · p) + c2, v1)

and similarly Alt11
= (~β, φPoss

11
,p11 , φ

Value
11

,v11)
where, very similar to above, φValue

11
=

(∃t, l, c1, p, r, c2).T otalcost(t, s) ∧ At(l, s) ∧
DriveCost(c1, l,Market2, s) ∧ Price(p,Market2, s) ∧
Requested(r, s) ∧ DriveCost(c2,Market2, depot, s) ∧ v =
t + c1 + (r · p) + c2 where we ignore preconditions for

simplicity andv1 andv11 are the respective values of the
cost function for the plan and the alternative with respect to
the situation where we expect to execute this plan,S0.

Let’s assume that even before the execution of the plan
begins, a discrepancy in the form of an exogenous actione
happens, putting us in situationS∗ = do(e, S0) instead ofS0.
The question is, whether~α is still optimal and in particular
still better than~β. This clearly depends on the effects of
e. If e does not affect any of the fluents occurring in above
annotated formulae, it can be ignored, the plan is guaranteed
to remain optimal. This would, for instance, be the case
whene represents the event of a price change on a market
not considered, as that price would not find its way into the
regressed formulae which only mention relevant fluents.

But even whene affects a relevant fluent, replanning may
not be necessary. Assume, for instance, thate represents
the event of an increased demand, that is, increasing the
value r of Request(r), formally D |= Request(r, S∗) >
Request(r, S0). Then∆F (S0, S

∗) = {Request(r)} and we
need to reevaluate the annotated conditions, as~β may have
become superior. This could be the case, for instance, if
the drive cost toMarket1 is lower than toMarket2, but the
price at this market is higher. Then, a higher demand may
makeMarket2 favorable, as the drive cost is compensated
more than before by the lower price. This can quickly be de-
termined by reevaluating the annotated conditions, obtaining
new valuesv1 for ~α andv11 for ~β. If v11 < v1 we have to
replan, otherwise the plan is guaranteed to remain optimal.

5 Empirical Results
We have proven that our approach establishes conditions
under which plan optimality persists in a situation. We
were interested in determining whether the approach was
time-effective – whether the discrepancy-based incremental
reevaluation could indeed be done more quickly than sim-
ply replanning when a discrepancy was detected. As noted
in the introduction, continuous replanning has already been
determined to be ineffective in highly-dynamic domains.

To this end, we compared a preliminary implementation
of ourmonoplex algorithm to replanning from scratch on
9 different problems in the metricTPP domain and two dif-
ferent problems of theopen stacks domain with time
(durative actions) of the5th International Planning Competi-
tion. In each case, we solved the original planning problem,
perturbed the state of the world by changing some fluents,
and then ran bothmonoplex and replanning from scratch.
To maximize objectivity, the perturbations were done sys-
tematically by multiplying the value of one of the numeric
fluents by a factor between 0.5 and 1.5 (step-size 0.1), or by
changing the truth value of a Boolean fluent.

TPP: In theTPP domain this resulted in a total of 2574
unique test cases. Figure 2 shows the performance of both
approaches on a logarithmic scale (all experiments were run
on an Intel Xeon, 3.6GHz, 1GB RAM). To enhance read-
ability we ordered the test cases by the running time of
monoplex. The determining factors for the running time
(cf. Figure 2a) are predominantly the number of states for
which the evaluation function had to be reevaluated (2b),

test case, ordered by monoplex time

monoplex

replan

0 500 1000 1500 2000 2500

se
co

n
d
s

256

64

16

4

1

0.25

0.0625

0.01
0.005

(a) running time

test case, ordered by monoplex time

monoplex

replan

0 500 1000 1500 2000 2500

e
v
a
lu

a
te

d
st

a
te

s

16384

4096

1024

256

64

16

4

1

(b) number of evaluated states

Figure 2:TPP domain (note the logarithmic scale)

and the number of reevaluated action preconditions. The
discrepancy guidance ofmonoplex found that on average
only 1.18% of all preconditions evaluated during replan-
ning were affected by the discrepancy and had to actually
be reevaluated.

The results show that although it is possible for
monoplex to be slower than replanning (in 8 out of 2574
cases), it generally performs much better, resulting in a
pleasing average speed-up of 209.12. In 1785 cases the cur-
rent plan was asserted still optimal and therefore replanning
unnecessary, in 105 it had become invalid. In 340 of the re-
maining 684 cases, replanning found the current plan to still
be optimal. Notice in (b) and (c) that sometimes the reevalu-
ation of states and/or preconditions can be entirely avoided,
namely when the perturbation does not affect any relevant
fluents. This happened 545 times and constitutes the great-
est time savings potential, a result of our formal characteri-
zation of the situation-dependent relevance of fluents to the
optimality of the plan.

Open stacks:Less drastic, but similar in nature are the re-
sult for theopen stacks domain, with an average speed-
up of 139.84. Figure 3 shows the fraction of running time
required bymonoplex compared to replanning for two dif-
ferent planning heuristics. In order to investigate the influ-
ence of the applied heuristic function we ran the same set
of experiments with two different heuristics, ’A’ and ’B’,

fr
a
ct

io
n

o
f
ru

n
n
in

g
ti

m
e

test case, ordered by monoplex time

heuristic A (less informed)
heuristic B (more informed)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0
0

10 20 30 40 50 60 70 80 90

Figure 3:Fraction of running time inopen stacks domain.

where ’B’ is more informed than ’A’ (cf. the respective lines
in the figure). Again comparingmonoplex to replanning,
we note that the performance ofmonoplex improves with
the use of a more informed heuristic and that it, in particu-
lar, preserves its superiority over replanning. This meetsthe
intuition that, like the planner,monoplex benefits from a
more focused search, resulting in a smaller search tree.

6 Related Work
The use of some form of plan annotation to monitor the con-
tinued validity of a plan during execution has been exploited
in a number of systems (e.g., (Fikes, Hart, & Nilsson 1972;
Wilkins 1985; Ambros-Ingerson & Steel 1988; Kambham-
pati 1990)), however none identified the formal foundations
of the annotations as regression of the goal to relevant plan
steps. Annotations (implicitly the regression) were com-
puted as part of the planning algorithm (backward chain-
ing, POP, or HTN planning). Our formalization in Section 3
elucidates this approach making it easily applicable to other
planning algorithms.

To the best of our knowledge, the SHERPA system
(Koenig, Furcy, & Bauer 2002) is the sole previous work
that addresses the problem of monitoring the continued op-
timality of a plan, though only in a limited form. SHERPA
lifts the Life-Long PlanningA∗ (LPA∗) search algorithm to
symbolic propositional planning.LPA∗ was developed for
the purpose of replanning in problems like robot navigation
(i.e. path (re-)planning). As such this algorithm only ap-
plies to replanning problems where the current state remains
unchanged, but the costs of actions in the search tree have
changed. This is a major limitation. Similar to our approach,
SHERPA retains the search tree to determine how changes
may affect the current plan. But again, these changes are
limited to action costs, while our approach guarantees opti-
mality in the general case.

Another advantage of our approach is that it facilitates ac-
tive sensing on the part of the agent. Our annotations can
be exploited by the agent to quickly discern conditions that
are relevant to a situation. Others have recognized the im-
portance of this issue (cf. e.g. (Doyle, Atkinson, & Doshi
1986)), but to the best of our knowledge we are the first to
address it with respect to the relevant features for optimality,
rather than just for validity.

Also related is (Veloso, Pollack, & Cox 1998) in which

the authors exploit the ‘rationale’, the reasons for choices
made during planning, to deal with discrepancies that occur
during planning. The authors acknowledge the possibility
that previously sub-optimal alternatives become better than
the current plan candidate as the world evolves during plan-
ning, but the treatment of optimality is informal and limited.

In (De Giacomo, Reiter, & Soutchanski 1998) the authors
formalize an execution monitoring framework in the situa-
tion calculus to monitor the execution of Golog programs.
However, they too are only concerned with plan validity.
They do not follow the approach of goal regression but in-
stead use projection every time a discrepancy is detected.

Also worth noting is the distinction between our approach
to execution monitoring and so-called “Universal Plans”
(Schoppers 1987). Roughly, universal plans perform replan-
ning ahead of time, by regressing the goal over all possible
action sequences. This approach is infeasible, as it grows
exponentially in the number of domain features. The com-
plexity of our approach on the other hand is bounded by the
size of the search tree expanded during planning.

Also related are the results of (Nebel & Koehler 1995).
They show that plan reuse – and plan repair in reaction to
unforeseen discrepancies is a special case of this – is as com-
plex as planning from scratch in worst case, and that this re-
sult even holds for cases where the considered planning in-
stances are very similar. These results further motivate our
work, as they highlight the benefit of avoiding replanning
entirely whenever possible.

7 Summary and Future Work
When executing plans in dynamic environments, discrepan-
cies between the expected and actual state of the world can
arise for a variety of reasons. When such circumstances can-
not be anticipated and accounted for during planning, they
bring into question whether discrepancies are relevant, and
whether they render the current plan invalid or sub-optimal.
While there are several approaches for monitoring valid-
ity, no approaches exist for monitoring optimality. Instead
it is common practice to replan when a discrepancy oc-
curs or to ignore the discrepancy, accepting potentially sub-
optimal behavior. Time-consuming replanning is impracti-
cal in highly dynamic domains and many discrepancies are
irrelevant and thus replanning unnecessary, but to maintain
optimality we have to determine which these are.

This paper makes several contributions to this problem.
We provided a formal characterization of a common tech-
nique for monitoring plan validity based on annotating the
plan with conditions for the continued validity, which are
checked during execution. We then generalized this to the
notion of plan optimality, providing a sufficient conditionfor
optimality and an algorithm that exploits knowledge about
the actual discrepancy to quickly test this condition at exe-
cution. This approach guarantees plan optimality while min-
imizing unnecessary replanning.

Relevant properties of a situation as provided in the anno-
tation, can further serve to focus on-line sensing when faced
with limited sensing resources: the agent knows which fea-
tures to sense and which can simply be ignored as they do
not influence its objective.

The requirements for the applicability of our method are
easy to fulfill: The used action language has to be expres-
sive enough to represent the user’s preferences and regres-
sion has to be defined.

We implemented our algorithm and tested it on system-
atically generated execution discrepancies in theTPP and
open stacks domains. The results show that many dis-
crepancies are irrelevant, leaving the current plan optimal,
and that our approach is much faster than replanning, with
an average speed-up of two orders of magnitude.

In future work we plan to broaden our view to several
other planning paradigms, first and foremost, decision theo-
retic planning. In real world domains it is likely that we will
be able to model and plan for some of the uncertainty, while
other contingencies remain unaccounted for. In the latter,a
future version of our algorithm for decision theoretic plan-
ning can again be used to assert continued plan optimality
to minimize on-line replanning time. Finally, we are trying
to find complexity results for deriving and testing necessary
(not just sufficient) conditions, but believe that the evalua-
tion of such a condition would not outperform replanning.

Acknowledgments: We would like to thank the anony-
mous reviewers for their helpful comments, Jorge Baier for
providing detailed comments on an early version of this
paper, and the Natural Sciences and Engineering Research
Council of Canada (NSERC), and the Ontario Ministry of
Research and Innovation (MRI) for financial support.

References
Ambros-Ingerson, J., and Steel, S. 1988. Integrating planning,
execution and monitoring. InProc. AAAI’88, 83–88.
De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998. Exe-
cution monitoring of high-level robot programs. InProc. KR’98,
453–465.
Doyle, R.; Atkinson, D.; and Doshi, R. 1986. Generating percep-
tion requests and expectations to verify the execution of plans. In
Proc. AAAI’86, 81–88.
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and executing
generalized robot plans.Artificial Intelligence3:251–288.
Kambhampati, S. 1990. A theory of plan modification. InProc.
AAAI’90, 176–182.
Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic search-based
replanning. InProc. AIPS’02, 294–301.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan gen-
eration: A theoretical and empirical analysis. InArtificial In-
telligence (Special Issue on Planning and Scheduling), 76(1-2),
427–454.
Pednault, E. 1989. ADL: exploring the middle ground between
STRIPS and the situation calculus. InProc. KR’89, 324–332.
Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. Cambridge,
MA: MIT Press.
Schoppers, M. J. 1987. Universal plans for reactive robots in
unpredictable environments. InProc. IJCAI’87.
Veloso, M.; Pollack, M.; and Cox, M. 1998. Rationale-based
monitoring for continuous planning in dynamic environments. In
Proc. AIPS’98, 171–179.
Wilkins, D. 1985. Recovering from execution errors in SIPE. In
Computational Intelligence, volume 1, 33–45.

