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Abstract

This paper reports on the findings of an on-going project
to investigate techniques to diagnose complex dynami-
cal systems that are modeled as hybrid systems. In par-
ticular, we examine continuous systems with embedded
supervisory controllers which experience abrupt, partial
or full failure of component devices. The problem we
address is: given a hybrid model of system behavior, a
history of executed controller actions, and a history of
observations, including an observation of behavior that
is aberrant relative to the model of expected behavior,
determine what fault occurred to have caused the aber-
rant behavior. Determining a diagnosis can be cast as
a search problem to find the most likely model for the
data. Unfortunately, the search space is extremely large.
To reduce search space size and to identify an initial set
of candidate diagnoses, we propose to exploit techniques
originally applied to qualitative diagnosis of continuous
systems. We refine these diagnoses using parameter es-
timation and model fitting techniques. As a motivating
case study, we have examined the problem of diagnos-
ing NASA’s Sprint AERCam, a small spherical robotic
camera unit with 12 thrusters that enable both linear and
rotational motion.

1 Introduction
The objective of our project has been to investigate how
to diagnose hybrid systems – complex dynamical sys-
tems whose behavior is modeled as a hybrid system.
Hybrid models comprise both discrete and continuous
behavior. They are typically represented as a sequence
of piecewise continuous behaviors interleaved with dis-
crete transitions (e.g., (Branicky 1995)). Each period
of continuous behavior represents a so-called mode of
the system. For example, in the case of NASA’s Sprint
AERCam, modes might include translate X-axis, ro-
tate X-axis, translate Y-axis, etc. (Alenius & Gupta
1998). In the case of an Airbus fly-by-wire system,
modes might include take-off, landing, climbing, and
cruise (Sweet 1995). Mode transitions generally result
in changes to the model governing the continuous be-
havior of the system, as well as to the state vector that
initializes that behavior in the new mode. Discrete tran-
sitions that dictate mode switching are modeled by finite

state automata, temporal logics, switching functions, or
some other transition system, while continuous behav-
ior within a mode is modeled by ordinary differential
equations (ODEs) or differential and algebraic equa-
tions (DAEs).

While at the macroscopic level, all physical systems
are inherently continuous, the exploitation of hybrid
models, and in particular the distinguishing of modes
and discrete mode transitions proves useful for mod-
eling and analysis of many physical systems. For ex-
ample, discrete supervisory controllers embedded in
continuous systems may impose multiple continuous
modes of operation that are best modeled as hybrid sys-
tems. Hybrid models are also useful for simplifying
models of complex system behavior. Many complex
systems exhibit fast nonlinear behaviors that are hard
to model and analyze. A number of these fast transients
can be attributed to parasitic parameters, whose values
are hard to estimate. In such cases, nonlinear system
behavior can be abstracted to piecewise continuous be-
haviors with discrete transitions that are simpler to ana-
lyze and interpret (e.g., (Mosterman & Biswas 1997a)).
In the examples above, hybrid models use discrete tran-
sitions to model both controller actions, and so-called
autonomous jumps, i.e. model-induced jumps from one
continuous behavior to another (Branicky 1995). As we
shall see in this paper, we may also use discrete transi-
tions to model exogenous actions, i.e., unpredicted ac-
tions that cause components of our system to fail.

The problem we address in this paper is how to di-
agnose such hybrid systems. For the purposes of this
paper, we consider the class of hybrid systems that
are continuous systems with an embedded supervisory
controller, but whose hybrid models contain no au-
tonomous jumps. The class of systems we consider can
be modeled as a composition of a set of component sub-
systems, each of which is itself a hybrid system. We
assume that the system operation is being tracked by a
monitoring and observer system (e.g., (Mosterman &
Biswas 1999a)) that ensures that the system behavior
predicted by the model does not deviate significantly
from the observed behavior in normal system operation.
When observations occur outside this range, the behav-



ior is deemed to be aberrant and diagnosis is initiated.
In this paper, we consider faults whose onset is abrupt,
and which result in partial or complete degradation of
component behavior. The general problem we wish to
address can be stated as follows: Given a hybrid model
of system behavior, a history of executed controller ac-
tions, a history of observations, including observations
of aberrant behavior relative to the model, isolate the
fault that is the cause for the aberrant behavior. Diag-
nosis is done online in conjunction with the continued
operation of the system. Hence, we divide our diagno-
sis task into two stages, initial conjecturing of candidate
diagnosis and subsequent refinement and tracking to se-
lect the most likely diagnoses.

In this paper we conceive the diagnosis problem as a
model selection, fitting, and comparison problem. The
task is to find a mathematical model and associated pa-
rameter values that best fit the system data. These mod-
els further dictate the components of the system that
have malfunctioned, their mode of failure, the estimated
time of failure and any additional parameters that fur-
ther characterize the failure. To address this diagnosis
problem, we propose to exploit AI techniques for qual-
itative diagnosis of continuous systems to generate an
initial set of qualitative candidate diagnoses and associ-
ated models, thus drastically reducing and simplifying
the size of the model search space. This is followed
by parameter estimation and model fitting techniques
to select the most likely mode and system parameters
for candidate models of system behavior, given both
past and subsequent observations of system behavior
and controller actions. The main contributions of the
paper are:� formulation of the hybrid diagnosis problem;� the exploitation of techniques for qualitative diag-

nosis of continuous systems to reduce the diagnosis
search space; and� the use of parameter estimation and data fitting tech-
niques for evaluation and comparison of candidate di-
agnoses.

In Section 2 we present a formal characterization of
the class of hybrid systems we study and the diagnosis
problem they present. This is followed in Section 3 by
a brief description of NASA’s Sprint AERCam, which
we have used as a motivating example and which we
will use to illustrate certain concepts in this paper. In
Section 4 we describe the algorithms we use to achieve
hybrid diagnosis. The generation of initial candidate
qualitative diagnoses is described in Section 4.1, and the
subsequent quantitative fitting and tracking of candidate
diagnoses and their models is described in Section 4.2.
Finally in Section 5, we summarize and discuss where
our investigation will go from here.

2 Problem Formulation
In this section we provide a formal definition of the
class of hybrid systems we study in this paper, and de-

fine the hybrid diagnosis problem.

Definition 1 (Hybrid System) A hybrid system is a 5-
tuple

����������	
��������
, where� � is a finite set of modes ����� ��������� ����� , representing

the possible modes of system behavior.� ��� �"! defines the continuous state variables. #$�&%��
describes the continuous behavior at time % .� 	 is a finite set of functions ')(�*,+ ��������� ()*�-/. , such
that for each mode, ��0 , ( *)1 �&% � #��&%��2�43 �65��879�
defines the continuous behavior of the system in �$0 .� � is a finite set of discrete actions �;: � �������<� :>=;� ,
which transition the system from one mode to an-
other.� � is a transition function which maps an action, mode
and system state vector into a new mode and initial
state vector, i.e.,

� 3 �?5@� 5A�B7�� 5A�
.

Definition 2 (System State) The state of a hybrid sys-
tem at time % is defined by the discrete mode and the
continuous state at that time, as represented by the tu-
ple �&�<C0 � #$�&%��2� .

To define the hybrid diagnosis problem, we augment
the description of our hybrid systems as follows.

Definition 3 (Hybrid System Diagnosis Terminology)
Consider a hybrid system

����������	
��������
com-

prised of D potentially malfunctioning components��E � �������<� EGFH� , each of which is itself a hybrid system.� �JIJ�K� is a distinguished subset of modes rep-
resenting fault modes of the hybrid system. There is
at least one fault mode ��LAM � I , for each compo-
nent E 0 . For notational convenience, we will use the
notation ��N to denote a fault mode � L M �JI .� We assume that transitions to fault modes are
achieved by exogenous actions. Hence,

�
, the finite

set of discrete actions is divided into two subsets such
that
�POQ�SR$T@�SU

, and
–
� R

is a finite set of controller actions, and
–
�SU

is a finite set of exogenous actions.
We define a controller action history, V to be a se-
quence of time-indexed actions performed by the con-
troller.� �XW�Y[Z\�]� , denotes the continuous state variables
that are observable. # W2Y^Z ��%�� denotes the values of
observations at time % . We define the observation his-
tory, O to be values of # W2Y^Z ��%�� at a sequence of sample
times, % 0 .� For each continuous behavior function of a fault
mode ()*�_`M 	 , we distinguish parameters a N of
the function, which are to be estimated as part of
the diagnosis task. Allowable ranges may be asso-
ciated with some or all of the individual parameters.
These parameters will, e.g., characterize the degree
of degradation of some aspect of component behav-
ior.



� a Model, ����� , for time-indexed mode sequence� � � ��������� ��F�� is the corresponding time-indexed
piecewise continuous sequence of functions� ()*,+ �������<� (�*��	� .
In this paper we make several simplifying assump-

tions regarding our diagnosis task. In particular, we
make a single-time fault assumption. We assume
that our systems do not experience multiple sequential
faults. Further, we assume that faults are abrupt, result-
ing in partial or full degradation of component behav-
ior. We also assume that components fail independently.
This is of course, not always a reasonable assumption.

Intuitively, we can think of our hybrid diagnosis
task as a big model-finding, model-fitting and model-
comparison problem. The behavior of the system
as it transitions through controller-induced and fault-
induced modes � 0 can be modeled by the appropriate
sequence of functions, (,* 1 . Hence, given infinite re-
sources, we could, in principle, build a sequence of
functions, corresponding to a model for every possible
sequences of modes, and estimate parameters to maxi-
mally fit the observed data to each model. The model
with the best fit would indicate the state and mode his-
tory of the system, including any fault modes that had
occurred. Clearly this is not a computationally feasible
approach, particularly since fault modes can occur at
potentially infinitely varying times and with many dif-
ferent parameter values.

Instead, we propose to monitor observed system be-
havior against one model, ����� ! W�
 F��= , the model for
the mode sequence

� ��� �������<� � F � that corresponds to the
mode sequence dictated by the controller action historyV , the initial state #$��%��)� , and the transition function

�
.

We define the probability that the system is operating
according to the normal or expected model, given the
action and observation history, � ������� ! W�
 F��=��/V ��� � ,
as the measure of fit of the observation history

�
with

the model.
When aberrant behavior is detected, e.g., when

observations fall outside a range predicted by the����� ! W�
 F��= , we assume that the normal model does
not reflect the evolution of system behavior, and the
diagnosis task commences. Given a hybrid system�����2� ��	
��������

, a controller action history, V and a
history of observations,

�
which includes observations

of aberrant behavior, the hybrid diagnosis task is to
determine what components are faulty, what fault mode
caused the aberrant behavior, when it occurred, and
what the values of the parameters associated with the
fault mode are. In the AERCam system, a diagnosis
might be that thruster � � experienced a blockage fault
at time % 0 , and that the thruster is operating at 50% its
normal level.

Again, we are faced with an enormous search prob-
lem to determine the time-indexed sequence of param-
eterized functions that best fits the observed data. To
overcome this challenge, this paper proposes the ex-
ploitation of qualitative reasoning techniques to prune

the search space. In particular, from the controller ac-
tion history V , we initially assume the system is oper-
ating normally, as dictated by the model ����� ! W�
 F��= ,
with associated mode history

� ��� ��������� � F � , temporally
indexed with the corresponding controller action times
from V . Exploiting previous research on temporal
causal graphs for qualitative diagnosis of continuous
systems (Mosterman & Biswas 1999b), we compute
a set of candidate qualitative diagnoses that are con-
sistent with the model and associated mode history� �$� �������<� � F � and the observed aberrant behavior. More
formally,

Definition 4 (D-tuple) A D-tuple is a 4-tuple���"� ��N � % N � a)N � , where ��N is a fault mode, %�N is
the time the fault mode commenced, a�N is the parame-
ter values associated with the fault mode behavior, and�

is the set of failed components corresponding to � N .

Definition 5 (Candidate Qualitative Diagnosis)
Given a hybrid system

����������	
��������
, an action

history V , a model and associated mode sequence� � � �������<� ��F�� , and a history of observations,
�

which
includes observations of aberrant behavior, D-tuple���"� � N � % N � a N � is a candidate qualitative diagnosis iff
there exists a range of parameter values a�N O�� a = � a���� ,
and time range %�N O�� % = � %���� such that the occurrence of
fault mode � N with parameter values a N in time range% N is consistent with

�
and V .

Hence, a candidate qualitative diagnosis stipulates a
fault mode, corresponding to one or more faulty com-
ponents. It also stipulates a lower and upper bound,� % = � %���� , on the time the fault mode occurred. This range
generally corresponds to the start times of the controller
induced modes preceding and following the fault, or
up to the point the fault was detected. For example, if
we are conjecturing that the fault occurred within mode� 0 of the mode sequence associated with the normal
model, then %�N would be the interval

� %�0 � % 0 � � � , where % 0
and % 0!� � are the start times for modes ��0 and ��0!� � , re-
spectively. The parameter range,

� a = � a � � is generally the
reals, unless otherwise constrained. An algorithm for
computing candidate qualitative diagnoses in discussed
in Section 4.1.

Each candidate qualitative diagnosis, also indirectly
dictates a new candidate mode sequence and a new can-
didate model –

� � � ��������� ��0 � ��N � ��N 1!" + �������<� ��N#�$� and� ( * + ��������� ( *)1 � ( * _ � ( * _ 1!" + �������<� ( * _ � � , respectively.
The new candidate mode sequence corresponds to the
previous mode sequence

� � � ��������� ��F%� with the fault
mode ��N interjected at %�N . Note that the occurrence
of fault mode ��N may affect subsequent modes in the
mode sequence, as dictated by transition function

�
.

Hence all modes in the new candidate mode sequence
that follow ��N reflect the modes obtained from the
controller actions of V transitioning from this faulty
mode and continuous state.

Observe that since each candidate qualitative diag-
nosis only conjectured ranges for the time of the fault



mode, %�N and parameter values associated with the fault
mode, a)N , the associated candidate models are under-
constrained. To complete our model, we must find a
more precise estimate of the time of failure, % N , and the
parameter values, a)N . In Section 4.2, we discuss two
methods for estimating %�N and a)N . The first uses ex-
pectation maximization (EM) (e.g., (Dempster, Laird,
& Rubin 1977)) to estimate a N and % N simultaneously.
The second uses statistical hypothesis testing methods
(e.g., (Basseville & Nikiforov 1993)) to estimate %2N ,
and then applies nonlinear regression methods to esti-
mate a)N . Both proposed techniques have advantages
and disadvantages. We are currently exploring the effi-
cacy of these techniques in practice.

Each candidate qualitative diagnosis
���"� � N � % N � a N �

has now been refined to refer to an individual time point% N and parameters a�N , and we have associated a unique
candidate model, which we refer to as ������� , with each
diagnosis. From this, we define a candidate diagnosis to
be a D-tuple and associated candidate model ����� � that
has a posterior probability, given the observations and
controller actions, that is above some specified thresh-
old value. In particular,

Definition 6 (Candidate Diagnosis) Given a hybrid
system

����������	
��������
, a history of controller ac-

tions V , and a history of observations
�

, D-tuple���"� ��N � % N � a)N � with associated model ����� � is a can-
didate diagnosis for the hybrid system, iff ������� is con-
sistent with V and � ��������� � � ����� , for defined
threshold value � M � � �	� � .

Bayes Theorem provides us with the mathematics to
estimate both the posterior probability of the param-
eters, given the observation history

�
and the model����� � , i.e.
�������������	������� 
����� ���	�����!
��"�#� $�%���	���&�
��"�'�����(���&� �

where the normalizing constant � � � � ������� � is de-
fined as
��"�'� ���	� � �)� *+
��"���!,� ���	� � �-�$

� *+
��"�'�	��%���	� � �!
����� ���	� � �-�$�.
Bayes Theorem also provides us with the mathematics

to estimate the posterior probability of the model given
the observation history, i.e.,
��"���	� � � ����� 
��"�'�����	� � �!
��"���(� � �
��"�/� �
where � � � ������� � � is the measure of fit of

�
to�����0� , � �������0� � is the prior � ��� N � , and � � � � is a

normalizing constant.
The observation history

�
contains a history of time

indexed observations
� # W2Y^Z � � � �������<� # W2Y^Z ��%�132�� � , which

we use to initially estimate parameters and to compute
the posterior for the candidate models. As the system
progresses, we obtain further observations, and we up-
date the probabilities of our candidate models for every

subsequent observation # W2Y^Z ��%�� , exploiting a Markov
assumption.


��"���	� � �	4�5%6879�;:��<��� 
��=4�5%6879�;:��>� ���	� � �!
��"���	� � �
��=4�5%6"7	�;:<�<� �
where � ��# W2Y^Z ��%�� � ����� � � is the measure of fit of# W�Y[Z ��%�� to �����?� , � �������0� � is, by a Markov assump-

tion, � �������0� � � � computed as the result of the
previous observations,

� # W�Y^Z � � � ��������� # W�Y^Z �&%@1A2�� � , and� �&# W�Y^Z �&%��2� is again a normalizing constant.
Intuitively, candidate diagnoses are D-tuples whose

associated models characterize the observed system be-
havior within some threshold of accuracy. In order to
compare candidate diagnoses, we must compare their
associated candidate models. It is insufficient to simply
choose the model with the best fit because such a crite-
rion is likely to be biased in favor of a more complex,
highly parameterized, model which can overfit the data.
To compare different models, we use Bayesian model
comparison as described in (MacKay 1991). As noted
by MacKay, Bayesian model comparison captures the
notion of Occam’s Razor, favoring simpler models over
more complex models. In terms of diagnosis, Bayesian
model comparison captures the commonly held bias
in model-based diagnosis of preferring minimal diag-
noses, i.e., diagnoses with the minimal number of fail-
ing components (e.g., single fault hypotheses).

3 Motivating Example: The AERCam
We are using NASA’s Sprint AERCam and a simulation
of system dynamics and the controller written in HCC
(Alenius & Gupta 1998) as a testbed for investigating
monitoring and diagnosis techniques in hybrid environ-
ments. We describe the dynamic model of the AERCam
system briefly, a more detailed description of the mod-
els appears in (Alenius & Gupta 1998).

The AERCam is a small spherical robotic camera
unit, with 12 thrusters that allow both linear and rota-
tional motion (Figure 1). For the purposes of this model,
we assume the sphere is uniform, and the fuel that pow-
ers the movement is in the center of the sphere. The fuel
depletes as the thrusters fire.

The dynamics of the AERCam are described in the
AERCam body frame of reference. The translation ve-
locity of this frame with respect to the shuttle inertial
frame of reference is 0. However, its orientation is
the same as the orientation of the AERCam, thus its
orientation with respect to the shuttle reference frame
changes as the AERCam rotates (i.e., it is not an inertial
frame). The twelve thrusters are aligned so that there
are four along each major axis in the AERCam body
frame (Figure 1). For modeling purposes, we assume
the positions of the thrusters are on the centers of the
edges of a cube circumscribing the AERCam. Thrusters��� � �CB � �ED � �EF are parallel to the X-axis and are used for
translation along the X-axis or rotation around the Y-
axis. Firing thrusters � � and � B results in translation
along the positive X-axis, and firing thrusters � � and
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velocities (u, v, w) are the components of the translation
velocity. (p, q, r) are components of the angular velocity.

The body frame of reference and the directions of

Figure 1: The AERCam axes and thrusters

�EF to get a negative rotation around the Y-axis. Simi-
larly, thrusters ��� � ��� � ��� � ��� are parallel to the Y-axis,
and are used to rotate around the Z-axis, and thrusters��� � ��� � � ���2� � ����B are parallel to the Z-axis, and are used
for rotation around the X-axis. AERCam operations
are simplified by making it either translate or rotate.
Thrusters are either on or off, therefore, the control ac-
tions are discrete. In normal mode of operation, only
two thrusters are on at any time. For safety of the crew
and the shuttle equipment, the thruster linear and an-
gular velocities are not allowed to exceed prespecified
thresholds.

3.1 AERCam dynamics

A simplified model of the AERCam dynamics based
on Newtonian laws is derived using an inertial frame
of reference fixed to the space shuttle (Etkin & Reid
1995). The AERCam position in this frame is defined

as the triple �&# �����	� � . Let

�

be the velocity in the AER-
Cam body frame, with its vector components given by�� ��� ��� � . The frame rotates with respect to the inertial
reference frame with velocity � O ��� ��� ��� � , the angular

velocity of the AERCam. The rotating Body frame im-
plies an additional Coriolis force acting upon the AER-
Cam. We assume uniform rotational velocity since in
the normal model of operation, the AERCam does not
translate and rotate at the same time (Arnold 1978, pg.
130). Similar equations can be derived for the rotational
dynamics (Alenius & Gupta 1998).

� �&D 
� �	���,% O 
 � 1��)D � 
� 5 
 � � Newton’s Law
� �/D����/%��\D � � 
� �����/% O 
 � 1��)D � 
 � 5 
� �
The resultant equation for each coordinate appears
below.

�������/% O��! � D 1"�>� �#� 1 �$� �>1 ���� D ��%$�,D����/%� � ���,% O&�(' � D 1)� � � � 1*� � �>1 � � �)D@�+%$�/D����/%� � ���,% O&�(, � D 1"�>�-� � 1 � �<� 1 � � � D �+%$�/D.���,%
3.2 Position Control Mode of the AERCam
In the position control mode, the AERCam is directed
to go to a specified position and point the camera in a
particular direction. Assume the AERCam is at position
A and directed to go to position B. In the first phase, the
AERCam rotates to get one set of thrusters pointed to-
wards B. These are then fired, and the AERCam cruises
towards B. Upon reaching close to B, it fires thrusters
to converge to B, and then rotates to point the camera in
the desired direction.

To facilitate the illustration of the diagnosis problem,
we use a simple trapezoidal controller, which we ex-
plain in two dimensions. Suppose the task is to travel
along the # -axis for some distance, then along the

�
-

axis. Such a manoeuvre could be needed in the space
shuttle, to avoid hitting some objects. In order to do
this, the AERCam fires its # thrusters for some time.
Upon reaching the desired velocity, these are switched
off. When the AERCam has reached close tox the de-
sired point, the reverse thrusters are switched on, and it
is brought to a halt — the velocity graph is a trapezium.
The same process is repeated in order to travel along the�

direction.

4 Diagnosing Hybrid Systems
In Section 2 we defined the restricted class of hybrid
systems we wish to diagnose, and the hybrid diagno-
sis problem. In this section we discuss one method
for computing hybrid diagnoses. In particular, in this
paper we propose to exploit previous work on qualita-
tive diagnosis of continuous systems to help diagnose
hybrid systems. The benefit of qualitative techniques
in this context is that they use qualitative representa-
tions of the domain knowledge to drastically reduce the
search space for candidate diagnoses and hence candi-
date models. In Section 4.1 we discuss a technique for
generating candidate qualitative diagnoses, and their as-
sociated candidate models of system behavior, first pro-
posed for qualitative diagnosis of continuous systems
(Mosterman & Biswas 1999b). In Section 4.2 we dis-
cuss techniques for model fitting and for model (and
hence diagnosis) comparison. In particular we discuss
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Figure 2: Trajectories of AERCam under various possi-
ble faults. The fault trajectories are simplified for illus-
tration purposes.

techniques for estimating the parameters of the candi-
date models, and the likelihood of the models, and for
continued monitoring and refinement of the candidate
models as the system continues to operate and observa-
tions continue to be made.

We illustrate these techniques with the following sim-
ple AERCam example. Consider the scenario depicted
in Figure 2. In the first acceleration phase, the AER-
Cam is being powered by thrusters � �

and � � . Assume
that at some point in this phase, a sudden leak in the� � thruster causes an abrupt change in its output. As
a consequence, the AERCam starts veering to the right
of the desired trajectory, as illustrated by the left-most
dotted lines in Figure 2. (The other dotted lines repre-
sent other potential candidate diagnoses consistent with
the point of detection of the failure.) Soon after this
occurs, the supervisory controller commands the AER-
Cam to turn off Thrusters � �

and � � with the objec-
tive of getting the AERCam to cruise in a straight line.
In the faulty situation, the AERCam has some residual
angular velocity about the z-axis, so it continues to ro-
tate in the cruise mode. Then the controller turns on
thrusters � �

and ��� , to decelerate the AERCam with
the objective of bringing it to a halt. Again, this objec-
tive is not entirely achieved in the the faulty situation.
Next, thrusters ��� and ��� are switched on, to move the
AERCam in the

�
direction. However, since the AER-

Cam is not in the desired orientation after the failure,
the position error due to faulty thruster � � accumulates
causing a greater and greater deviation from the desired
trajectory of the system. The position of the AERCam is
being continuously sensed, filtered for noise and mon-
itored. At some point within the

�
translation the tra-

jectory crosses a predefined error bound and is flagged
by the monitoring system as aberrant behavior relative
to model ����� ! W�
 F��= . At this point, the diagnosis task
begins.

4.1 Qualitative Candidate Generation
Given the normal system model ����� ! W�
 F��= , a history
of controller actions V and associated mode sequence� � � �������<� ��F�� , and a history of observations

�
includ-

ing one or more observations of aberrant behavior, we
wish to generate a set of consistent candidate qualita-
tive diagnoses

���"� � N � % N � a N � , and associated models
as described in Definition 5. To do so, we extend tech-
niques for generating qualitative diagnoses of continu-
ous dynamic systems to deal with hybrid systems with
multiple modes. A full description of the model rep-
resentation and propagation mechanism applied to con-
tinuous systems diagnosis can be found in (Mosterman
& Biswas 1997b; 1999b).

In the case of our AERCam example, the ac-
tion history V is

� � on � � � � � on � � �/��� � � off � � � � �
off � � �,�2� � � on � � � � � on � ��� ��� , � off � � � � � off � ��� � �
on � ���,� � on � ��� ��� , � off � ���/� � off � ��� ����� ; the mode
sequence is

� 	 EGE�
��
 ��	 %�
 # � E � ������
 # � ��
 E�
��
 ��	 %�
 # �	 E�E�
��
 ��	 %�
 ��� E � ������
 � � . ����� ! W�
 F � = is the time-
indexed sequence of functions

� (#� R R U = U�
 � C
U  � ( R 
 � 0 Z�U  �(�� U R U = U�
 � C

U  >� ( � R R U = U�
 � C
U ' � ( R 
 � 0 Z U ' � derived from

the system dynamics overviewed in Section 3. The
time indexing corresponds to the times of the control
actions. Finally, the observation history

�
is sequence

of �&#��&% 0 � ��� �&% 0 � �	� �&% 0 ��� and computed velocity and
acceleration at the sample times %20 .

To generate candidate qualitative diagnoses we con-
struct an abstract model of the dynamic system behav-
ior, ����� ! W�
 F��= as a temporal causal graph. A part of
the temporal causal graph for the AERCam dynamics is
shown in Figure 3. The graph expresses directed cause-
effect relations between component parameters and the
system state variables. Links between variables are la-
beled as: (i) � �

, implying direct proportionality, (ii)1 �
, implying inverse proportionality, and (iii) � , imply-

ing an integrating relation. An integrating relation in-
troduces a temporal delay in that a change on the cause
side of the relation affects the derivative of the variable
on the effect side. This adds temporal characteristics to
the relations between variables. Some edges are labeled
by variables, implying the sign of the variable in the par-
ticular situation defines the nature of the relationship.

The candidate generation algorithm is invoked for ev-
ery initial instance of an aberrant observation. The aber-
rant observation plus the controller action history V are
input to a backward propagation algorithm that operates
on the temporal causal graph. The algorithm operates
backward in time from � F , the last mode in the given
mode sequence

� � � ��������� ��F�� :
1. For the current mode, extract the corresponding tem-

poral causal graph model, and apply the Identify Pos-
sible Faults algorithm. Details of this algorithm are
presented in (Mosterman & Biswas 1999b), but the
key aspect of this algorithm is to propagate the aber-
rant observation expressed as a � value, backward
depth-first through the graph. For example, given
that the

� 1 position of the AERCam has deviated 1
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Figure 3: A subset of the temporal causal graph show-
ing the relations between Thrusters � � 1 ��� and the x
and y positions of the AERCam.

(i.e., below normal), backward propagation implies� � � �����/% is 1 , and so on, till we get ���� and ���� , im-
plying thrusters ��� and ��� are possible faulty with
decreased thrust performance. Propagation along
a path can terminate if conflicting assignments are
made to a node. The goal is to systematically prop-
agate observed discrepancies backward to identify
all possible candidate hypotheses that are consistent
with the observations. In our example, the compo-
nent parameters, � � 1 � � � form the space of candi-
date hypotheses.

2. Repeat Step 1 for every mode in the mode sequence,
to �$� . The system model needs to be substituted
as the algorithm traverses the mode sequence back-
wards, therefore, back propagation will be performed
on a different temporal causal graph for each mode in
the controller history1.

The output of this step is a set of qualitative diagnoses���"� ��N � % N � a)N � , each with an associated candidate
mode sequence and candidate model, as described
in Section 2. Returning to our AERCam example,
three qualitative candidate diagnoses are generated2.
The first candidate diagnosis is that � � failed in
the # acceleration phase, and that there was a jump
to a new mode called �

	 � � � 	 EGE�
��
 ��	 %�
 # . The
time of the fault mode transition is

� % � � % B � , and the
parameters associated with the failure – the percent-

1Heuristics may be introduced to cut off back-propagation
along the mode sequence beyond a time limit. The ratio-
nale would be that any significant fault manifestation unless
masked, would produce observable changes in the state vari-
ables within this pre-specified time limit.

2Based on the assumption that the thrusters do not fail pos-
itively, i.e., their output cannot exceed their 100% maximum
thrust value as defined by parameter restrictions in the model.

age degradation of the component is in the range� � �	�(�?� � . So the first candidate qualitative diagno-
sis is

� � � � � 	 � � � 	 EGE 
���
 �	 %�
 # � � %2� � %�B � � � � �	�(�?� � � .
The candidate mode sequence is

� 	 EGE�
��
 ��	 %�
 # �
�
	 � � � 	 EGE 
���
 �	 %�
 # � E � � ����
 # � � 
 E�
��
 ��	 %�
 # �	 E�E�
��
 ��	 %�
 ��� E � � ����
 � � , and the associated can-

didate model is defined accordingly. The second
candidate qualitative diagnosis is that ��� failed
in the deceleration phase of # translation, i.e.,� ��� � � 	 � ��� � 
 E�
��
 ��	 %�
 # � � % D � % F � � � �>�	� ��� � � . The third
candidate is that ��� failed during

�
acceleration, i.e.,� ��� � � 	 � ��� 	 EGE 
���
 �	 %�
 ��� � % F � % � � � �>�(�(�?� � � , where% O %�� , the time of detection of the aberrant behavior.

4.2 Model Fitting and Comparison
The candidate qualitative diagnoses and the associated
candidate mode sequences and candidate models pro-
vide a qualitative characterization of the hypothesized
faults, obtained through a qualitative analysis of the
model of normal behavior, ����� ! W�
 F��= , and the obser-
vations. Given this information, the next phase of the
diagnosis process is quantitative refinement of the qual-
itative candidate diagnoses and their associated models
through parameter estimation and data fitting, followed
by tracking of the fit of subsequent observations to the
candidate models. The goal is to identify a unique diag-
nosis, or barring that, to provide a probabilistic ranking
of the plausible candidates, so that the supervisory con-
troller can use this information in making decisions on
future action selection.

As observed in the previous section, the model asso-
ciated with the qualitative candidate diagnosis, �������
is underconstrained. Both the time of the fault mode
occurrence, % N and the parameters associated with
the faulty behavior a�N are represented as ranges and
must be estimated. Further, the candidate qualitative
diagnoses were generated from initial observations of
aberrant behavior, and their consistency can be further
evaluated by monitoring the qualitative transients
associated with each candidate. The refinement process
is performed by a set of trackers (Rinner & Kuipers
1999), one for each candidate diagnosis and associated
model. Each tracker comprises both a qualitative
transient analysis component and a quantitative model
estimation, component as shown in Figure 4. The two
components operate in parallel as described below.

Qualitative Transient Analysis
The qualitative transient analysis component performs
a further qualitative analysis of the consistency of
candidate qualitative diagnoses based on monitoring
of higher-order transients whose manifestation is seen
over a longer period of time. If the transients of a candi-
date qualitative diagnosis do not remain consistent with
subsequent observations, the candidate diagnosis will
be eliminated and the model estimation component in-
formed. The technique we employ is derived from tech-
niques for qualitative monitoring of continuous systems
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Figure 4: Candidate generation, refinement and tracking

as described in (Mosterman & Biswas 1997b; 1999b;
Manders, Mosterman, & Biswas 1999).

Given a candidate qualitative diagnosis,�������	�
������������
, the temporal causal graph and

causal propagation machinery described in Section 4.1
are used to compute the qualitative dynamic, transient
behavior for all the observed variables. Predicted
future behavior is expressed as a qualitative signature
of magnitude (i.e., instantaneous ( ����� order)), slope
(i.e., ����� order time derivatives), and higher-order
effects. Details of the Predict Future Behavior al-
gorithm appear in (Mosterman & Biswas 1999b). In
brief, the algorithm forward propagates the effect of
a hypothesized fault along the temporal causal graph
in a breadth-first manner to build the fault signature
for individual observations. For example, the predicted
signature for a ��� failure, i.e., ��� � , for observed
position ! is

� � � � �#" � �#" ��$�%&$('&)+*�% � ) � , and for ' is� � � � � � �," �-$�.�) � . A �/� failure introduces a negative
second order deviation in the ! position value, but a
third-order positive deviation in the ' position value
(because the fault causes a negative . value). A mode
change governed by a controller action may cause the
signs of %0$�'&)+*�% � or . to change, which would then
reverse the third order effect of the ��� failure on ! , and' . This information is used to evaluate the consistency
of the candidate diagnoses with respect to the transient
characteristics of subsequent observations, and to reject
inconsistent candidate qualitative diagnoses. In such
a case, the corresponding tracker is eliminated, and
the remaining candidate probabilities are normalized
accordingly.

Model Estimation
The purpose of the model estimation component is to
perform quantitative model fitting, i.e., to provide a
quantitative estimate of the parameters of the models
and to assign a probability to each of the candidate
models (and hence candidate diagnoses), given the

noisy observed data. In particular, given a candidate
model, 132�%�4 the model estimation component uses
parameter estimation techniques to estimate both the
time at which the failure occurred,

� �
, and the value

for the parameters,
�5�

, associated with the conjectured
failure mode. In this paper we discuss two alternate
approaches to our time and parameter estimation
problem. The first approach is based on Expectation
Maximization (EM) (e.g., (Dempster, Laird, & Rubin
1977)), an iterative technique that converges to an
optimal value for

� �
and

� �
simultaneously. The

second approach we consider employs Generalized
Likelihood Ratio (GLR) techniques (e.g., (Basseville
& Nikiforov 1993)) to estimate the time of failure

� �
,

and then uses the observations obtained after the failure
to estimate the fault parameters,

�5�
, by a least squares

regression method. As described in Section 2, the
outcome of both approaches is a unique value for

� �
and

� �
and a measure of the likelihood of 132�%64 given

the observations. The proposed approaches to model
fitting have trade-offs and we are currently assessing
the efficacy of these and other alternative approaches
through experimentation.

EM-Based Approach The Expectation Maximization
(EM) algorithm (e.g., (Dempster, Laird, & Rubin 1977),
(Blimes 1998)) provides a technique for finding the
maximum-likelihood estimate of the parameters of an
underlying distribution from a given set of data, when
that data is incomplete or has missing values. The pa-
rameter estimation problem we address in this paper is
a variant of the motion segmentation problem described
in (Weiss 1997). Here, we define the basic algorithm
and the intuition behind our approach. For a more rigor-
ous mathematical account of EM, the reader is referred
to (Dempster, Laird, & Rubin 1977).

The time of failure,
���87 9 �;:���<>=

of our candi-
date qualitative diagnosis,

������� � ��� � ��� � �
, dictates the

mode in which the failure is conjectured to have oc-



curred. Let us call this mode �$0 . The behavior of our
hybrid system in mode �$0 is described by the continu-
ous function (�* 1 , with known parameters a 0 . At some
(to be estimated) time point % N within the predicted
time period of ��0 , we have conjectured that the system
experienced a fault which transitions it into mode �$N .
The behavior of our hybrid system in mode � N is de-
scribed by the continuous function (,*�_ , with unknown
parameters, a�N . We also have a set of data points

���O � # W�Y[Z � � � �������<� # W2Y^Z ��%�� � � �
, the observation history,

which either reflect the behavior of the system under ( *)1
or under ()*�_ .

Given all this information, our task is to find 1) val-
ues for parameters a)N , and 2) an assignment of the data
points

� � O � # W�Y^Z � � � �������<� # W�Y[Z �&%�� � to either ( *)1 or ( * _
so that we maximize the fit of the data to the two func-
tions. The assignment of data points will in turn tell us
the value of % N . Clearly each assignment is easy given
the other. EM provides an iterative algorithm which
converges to provide a maximum-likelihood estimate
for a N given

� �
, i.e., roughly we are calculating the

likelihood of a , � �&a/� O � � � � � a)N � ����� � , where ����� ,
the model, is the sequence of functions

� (/* 1 � ()*�_ � .
The basic EM algorithm comprises two steps: an Ex-

pectation Step (E Step), and a Maximization Step (M
Step). The following is a sketch of the algorithm for
our task (Weiss 1997):� Select an initial (random) value for a�N .� Iterate until convergence:

– E Step: assign data points to either ( *)1 �&a)0[� or( * _ �&a)N � , which ever fits it best.
– M Step: re-estimate a�N using the data points as-

signed to ( * _ ��a)N � . a)N may be estimated using
e.g., non-linear regression, depending upon the
form of ( * _ ��a N � .

We are currently considering several implementa-
tions for this algorithm that will exploit problem-
specific qualities to help improve convergence of this
algorithm. In particular, we may exploit the fact that
data points at the end of the

� �
sequence must belong to( * _ �&a)N � , rather than ( *)1 �&a)0^� . Hence we may use these

data points to get a better initial estimate of a,N . Also,
we may exploit spatial continuity in the E Step to assign
data points to functions. In the general case, EM would
assign data points randomly to the two functions. In our
case, we know that there is a high likelihood that neigh-
boring data points belong to the same function, and we
may exploit this to our advantage.

EM provides a rich algorithm for maximum-
likelihood parameter estimation, when we don’t know
the value of %�N . In some hybrid diagnosis applications,
depending upon the sensors in our system, and the level
of noise in the sensors, we may be able to develop mon-
itoring techniques that will help isolate a reasonable
value for % N , minimizing the need for iteration in EM.
We are beginning to experiment with these techniques

to better understand the convergence properties of this
technique. We would also like to better understand the
mathematical relationship of this technique to alternate
approaches.

GLR + Least Squares Approach An alternative to the
EM-based approach divides the parameter estimation
problem into two parts: (i) estimate the time of fail-
ure, % N , using the Generalized Likelihood Ratio (GLR)
method, and (ii) apply a standard least squares method
for parameter estimation. The intuition is that solv-
ing the problem in two parts simplifies the estimation
process, and very likely mitigates the numerical con-
vergence problems that arise in dealing with complex
higher-order models.

The GLR method for detecting abrupt changes in
continuous signals is described in (Basseville & Niki-
forov 1993). We have applied it to fault transients
analysis in complex fluid thermal systems (Manders,
Mosterman, & Biswas 1999). Here we provide an
overview of the method for the single parameter case.
Assume that the signal under scrutiny is a time-indexed
sequence of random variables

� ���>� , with probability
density function, ��� 1 � � � in desired mode ��0 , and ����_ � � �
in fault mode ��N .

�
is either contained in # W2Y^Z or com-

puted from # W2Y^Z . We assume that a fault causes an
abrupt change in

� ���>� . In the case of the AERCam,�
captures the difference between the observed and ex-

pected values of the, e.g., acceleration, as predicted by
the model.

The central quantity in the change detection algo-
rithm is the cumulative sum of the log-likelihood ratio
for a window of observations between times D and � ,	 !F ��a)N � O !


��� F �� ���2_ � � ���>�2�� � 1 � � ���>�2� �
Again, this ratio is a function of two unknowns: %2N anda N . The common statistical solution is to use maximum
likelihood estimates for these two parameters, resulting
in a double maximization:� ! O �����

��� F � !��������_ 	 !F �&a)N � .
If we assume that probability density functions,��� 1 � � � and ����_ � � � are Gaussian, then � ! reduces to:� ! O �

��: B0
�����
��� F � ! �� 1 D � ��� !
��� F � � ���>� 1 � 0 �� B �

where � 0 and : B0 are, respectively, the mean and vari-
ance for ��� 1 � � � .

When processing a sequence of samples, the point of
abrupt change, % N , is computed from D �!� '"��3 � !$#&% . ,
where % is an appropriately defined threshold. Hence,
the smaller the value of % , the more sensitive the func-
tion to change, and unfortunately to false alarms, so %
must be set carefully.

Once % N is estimated, data points observed after % N ,
are used to estimate the parameter, a�N for a hypothe-
sized fault using regression techniques. In the case of



the AERCam, the position vector of the AERCam is
modeled as a set of quadratic functions in terms of the
thruster force. These functions contain one unknown,a N , the parameter that corresponds to the degree of
degradation in the faulty thruster. The least squares
estimate for a�N is computed, and the the measure of
fit of the candidate model to the observed data used to
estimated the probability of the candidate diagnosis.

Model Comparison
From the model estimation component, each tracker
(see Fig. 4) computes the likelihood of its model����� � , and hence of the associated candidate diagno-
sis
���"� � N � % N � a N � , as a measure of fit of the observa-

tions to the model. As new data # W�Y^Z �&%�� are observed,a)N and % N � are adjusted and � ������� � � # W2Y^Z ��%���� com-
puted as outlined in Section 2. Different models are
compared according to Bayesian model comparison, as
described in (MacKay 1991). If the likelihood of �������
falls below a predefined acceptable likelihood thresh-
old, � , then its tracker is terminated, and the associated
candidate diagnosis

� �"� � N � % N � a N � removed from the
list of candidate diagnoses. Tracking terminates when
a unique diagnosis is obtained, or when the diagnoses
are sufficiently discriminated to determine suitable con-
troller actions. It is possible that the subsequent actions
performed by the controller will not provide the neces-
sary observations to sufficiently discriminate candidate
diagnoses. In such cases, active testing must be per-
formed, to discriminate diagnoses. We do not address
the issue of active testing in this paper. 3

5 Discussion and Summary
In this paper we addressed the problem of diagnosing
a restricted class of hybrid systems. The main contri-
butions of the paper are 1) formulation of the hybrid
diagnosis problem; 2) the exploitation of techniques for
qualitative diagnosis of continuous systems to qualita-
tively reduce the diagnosis search space; and 3) the use
of parameter estimation and data fitting techniques for
evaluation and comparison of candidate diagnoses.

For computational efficiency, we proposed a simple
monitoring and fault detection methodology that was
based on flagging individual signal deviations, exceed-
ing a prespecified threshold value. Our implementa-
tion will employ a more sophisticated non-linear filter-
ing techniques that ensures a certain number of zero-
crossings before a fault is detected. An interesting ques-
tion that we will have to answer by empirical analysis
is whether the GLR method could be employed during
the monitoring phase for initial fault detection. The ad-
vantage of doing this would be more precise and robust
fault detection and time point of failure estimation, that

3Note that the technique described here relies on a single-
time fault assumption, as observed in Section 2. If multiple in-
dependent faults occur in rapid succession this technique may
not detect them.

in turn is likely to simplify the candidate generation and
parameter estimation process in the model estimation
component. The disadvantage is that the GLR tech-
nique is computationally expensive, and it is not clear
that real-time implementations can be achieved, in the
general case. We plan to conduct a number of exper-
imental studies to analyze this issue and related issues
concerning the efficacy of alternative time of failure and
parameter estimation algorithms.

Clearly the qualitative and quantitative techniques
exploited in this paper present only one approach to
addressing the problem of diagnosing hybrid systems.
Further, our approach was applicable to a restricted
class of hybrid systems under some (reasonable) as-
sumptions regarding the nature of faults. In future work
we would like to investigate other probabilistic and
logic-based techniques (e.g., (Williams & Nayak 1996;
McIlraith 1998)) for addressing the problem of diag-
nosing hybrid systems. We would also like to extend
our investigation to a broader class of hybrid systems
that include systems whose models contain autonomous
jumps (Branicky 1995). In applications where it is rel-
evant, we would like to investigate the role of active
testing to support candidate elimination. Finally, our
long-term vision is to integrate hybrid diagnosis into a
model-based control paradigm that facilitates the con-
tinued operation of devices under off-nominal condi-
tions. To do so, diagnosis must be integrated into the
action selection process so that diagnosis is performed
purposefully to support control decisions.
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