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Abstract

In this paper we examine the problem of monitoring and di-
agnosing noisy complex dynamical systems that are modeled
as hybrid systems — models of continuous behavior, inter-
leaved by discrete transitions. In particular, we examine con-
tinuous systems with embedded supervisory controllers that
experience abrupt, partial or full failure of component de-
vices. Building on our previous work in this area (MBCG99;
MBCG00), our specific focus in this paper is on the mathe-
matical formulation of the hybrid monitoring and diagnosis
task as a Bayesian model tracking and selection problem, and
provision of a suitable tracking algorithm. The nonlinear dy-
namics of many hybrid systems present challenges to prob-
abilistic tracking. Further, probabilistic tracking of a system
for the purposes of diagnosis is problematic because the mod-
els of the system corresponding to failure modes are numer-
ous and generally very unlikely. To focus tracking on these
unlikely models and to reduce the number of potential mod-
els under consideration, we exploit logic-based techniques for
qualitative model-based diagnosis to conjecture a limited ini-
tial set of consistent candidate models. In this paper we dis-
cuss alternative tracking techniques that are relevant to dif-
ferent classes of hybrid systems, focusing specifically on a
method for tracking multiple models of nonlinear behavior
simultaneously using factored sampling and conditional den-
sity propagation. To illustrate and motivate the approach de-
scribed in this paper we examine the problem of monitoring
and diagnosing NASA’s Sprint AERCam, a small spherical
robotic camera unit with 12 thrusters that enable both linear
and rotational motion.

I ntroduction

We have been conducting an ongoing project to investigate
how to diagnose hybrid systems — complex dynamical sys-
tems whose behavior is modeled as a hybrid system. Follow-
ing the description in (MBCG99; MBCGO00), hybrid mod-
els comprise both discrete and continuous behavior. They
are typically represented as a sequence of piecewise con-
tinuous behaviors interleaved with discrete transitions (e.g.,
(Bra95)). Each period of continuous behavior represents a
so-called mode of the system. For example, in the case of
NASA’s Sprint AERCam, a spherical airborne robot cam-
era unit, modes might include trandate X-axis, rotate X-
axis, trandate_Y-axis, etc. (AG98). In the case of an Airbus
fly-by-wire system, modes might include take-off, landing,
climbing, and cruise. Mode transitions generally result in

changes to the set of equations governing the continuous be-
havior of the system, as well as to the state vector that initial-
izes that behavior in the new mode. Discrete transitions that
dictate such mode switching are modeled by finite state au-
tomata, temporal logics, switching functions, or some other
transition system, while continuous behavior within a mode
is modeled by, e.g., ordinary differential equations (ODES),
difference equations, or differential and algebraic equations
(DAEs). For the purposes of this paper, we restrict our at-
tention to discrete-time estimation for the class of systems
whose hybrid models contain no autonomous jumps. l.e.,
all nominal transitions between system modes are induced
by a controller action; none are induced by the system state
and mode (Bra95).

In (MBCG99) we presented the hybrid diagnosis prob-
lem:

Given a hybrid model of system behavior, a history of
executed controller actions, a history of observations,
including observations of aberrant behavior relative to
the model, isolate the fault that is the cause for the
aberrant behavior.

Our task was to perform diagnosis online in conjunction
with the continued operation of the system. Hence, we
divided our diagnosis task into two stages, initial conjec-
turing of candidate diagnoses and subsequent refinement
and tracking to select the most likely diagnoses. We cast
the diagnosis problem as the problem of finding a model
and associated parameter values that best fit the data. In
that paper we focused on the problem of dealing with the
multitude of potential models of the system by exploiting
qualitative diagnosis techniques to generate a set of can-
didate qualitative diagnoses, and we described two param-
eter estimation techniques to deal with estimating the pa-
rameters associated with the model, particularly when er-
roneous behavior manifested itself some period of time
after the initial occurrence of a fault. (See (MBCGOO;
MBCG99) for details.) We did not discuss the specific prob-
lem of tracking multiple candidate models, nor did we dis-
cuss how to compare them.

In this paper, we formulate the hybrid monitoring and
diagnosis task as a Bayesian model tracking and selection
problem (e.g., (Mac91)). In particular, we wish to estimate
the state (model) of the system at successive time instants,
given a history of observations. The system diagnosisis de-



scribed by the value of a specific subset of the state variables
— namely those that designate whether components are nor-
mal or abnormal, and what their associated parameter values
are. We estimate state by tracking the posterior distribution
of the state, given the observations.

Probabilistic tracking of complex hybrid systems for diag-
nosis purposes presents a number of interesting challenges.
Kalman filtering techniques, traditionally used for tracking
linear dynamical systems with Gaussian noise, assume a
Gaussian density which is unimodal, making a Kalman fil-
ter (Kal60) inadequate for simultaneously tracking alterna-
tive candidate models. Multiple Kalman filters, one for each
candidate model, can sometimes be used to track multiple
candidate models of linear dynamical systems with Gaus-
sian noise (e.g., (Fra90)). More importantly, hybrid systems
often have complex nonlinear, nonGaussian and potentially
nondeterministic behavior. The nonlinearities come from
both the mode switching (faulty or normal modes of behav-
ior), and from the nonlinear dynamics within a mode. The
latter has been addressed in some cases by using local lin-
ear (Taylor series) approximations of the nonlinear contin-
uous dynamics, such as is done with Extended Kalman Fil-
ters (e.g., (BF88)) or Iterated Extended Kalman Filters (e.g.,
(Jaz70)).

In this paper, following research on bootstrap filters, par-
ticle filters and the condensation algorithm (e.g., (GSS93;
IB98)), we use a factored sampling technique to sample and
represent our multimodal posterior distribution of the state
(models) given the observations. Such a technique enables
us to track multiple models of nonlinear systems simulta-
neously. Unfortunately, sampling techniques for probabilis-
tic tracking focus on the most likely models within the dis-
tribution, whereas most fault models have low probability,
initially. To overcome this bias, we show how to integrate
the qualitative diagnosis techniques described in (MBCGOO;
MBCG99) into the temporal prior of our Bayesian formula-
tion to focus sampling on models that are indicated by our
qualitative candidate diagnoses.

In the next section, we provide a brief description of
NASA’s Sprint AERCam, which we have used as a motivat-
ing example and which we will use to illustrate certain con-
cepts in this paper. In the section that follows the description
of the AERCam, we present a formal characterization of the
class of hybrid systems we study and the diagnosis problem
they present. Next, we describe our Bayesian formulation
of the problem and the algorithm we use for computing and
propagating posterior distributions. In the final section, we
summarize, discuss our continuing research in this area, and
reference some related work.

The AERCam

We are using NASA’s Sprint AERCam and a simulation of
system dynamics and the controller written in Hybrid CC
(HCC) (AG98) as a testbed for this work. To make this
paper somewhat self-contained, we condense and repeat the
description provided in (MBCG99). The AERCam is sim-
pler than many of the complex systems we intend to diag-
nose, but it serves well in illustrating the concepts developed
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Figure 1: The AERCam axes and thrusters

here, and has provided an excellent testbed for our prelimi-
nary work. We describe the dynamic model of the AERCam
system briefly, a more detailed description of the model and
simulation appear in (AG98).

The AERCam is a small spherical robotic camera unit,
with 12 thrusters that allow both linear and rotational mo-
tion (Fig. 1). For the purposes of this model, we assume the
sphere is uniform, and the fuel that powers the movement is
in the center of the sphere. The fuel depletes as the thrusters
fire.

The dynamics of the AERCam are described in the AER-
Cam body frame of reference. The translation velocity of
this frame with respect to the shuttle inertial frame of ref-
erence is 0. However, its orientation is the same as the ori-
entation of the AERCam, thus its orientation with respect
to the shuttle reference frame changes as the AERCam ro-
tates (i.e., it is not an inertial frame). The twelve thrusters
are aligned so that there are four along each major axis in
the AERCam body frame. For modeling purposes, we as-
sume the positions of the thrusters are on the centers of the
edges of a cube circumscribing the AERCam. Thus, for ex-
ample, thrusters Ty, T, T3, T} are parallel to the z-axis and
are used for translation along the z-axis or rotation around



the y-axis. l.e., firing thrusters 7; and T> results in transla-
tion along the positive z-axis, and firing thrusters 75 and T}
results in a negative rotation around the y-axis. AERCam
operations are simplified by limiting them to either transla-
tion or rotation. Thrusters are either on or off, therefore, the
control actions are discrete. In a normal mode of operation,
only two thrusters are on at any time.

AERCam dynamics

A simplified model of the AERCam dynamics based on
Newtonian laws is derived using an inertial frame of ref-
erence fixed to the space shuttle. The AERCam position in

this frame is defined as the triple (z,y, 2). Let\_} be the
velocity in the AERCam body frame, with its vector compo-
nents given by (u, v, w). The frame rotates with respect to
the inertial reference frame with velocity w = (p, q,r), the
angular velocity of the AERCam. The rotating body frame
implies an additional Coriolis force acting upon the AER-
Cam. We assume uniform rotational velocity since in the
normal mode of operation, the AERCam does not translate
and rotate at the same time (Arn78, pg. 130). Similar equa-
tions can be derived for the rotational dynamics (AG98).

— — - o
d(m V)/dt =F —2m(V x w)  Newton’s Law

— — — — —
V dm/dt + md(V)/dt =F —2m(w X V)
The resultant equation for each coordinate:

du/dt = Fp/m — 2(qw — vr) — (u/m) = dm/dt
dv/dt = Fy/m — 2(ru — pw) — (v/m) * dm/dt
dw/dt = F, /m — 2(pv — qu) — (w/m) * dm/dt,

where the force F' on each axis, is a function of the percent-
age degradation of the thrusters that are exerting force in that
direction as specified in Figure 1. Under normal operating
conditions, the thrusters operate at 100%.

We use these models to predict the position of the AER-
Cam at time ¢ + 1, given the position at time ¢. We add noise
to each of the models above. In this case the noise is white
Gaussian noise with a mean of zero and a standard deviation
o. As noted above, these models are implemented in HCC
and are used to compute the likelihood described in the next
section.

Position Control M ode of the AERCam

In the position control mode, the AERCam is directed to go
to a specified position and point the camera in a particular di-
rection. Assume the AERCam is at position A and directed
to go to position B. In the first phase, the AERCam rotates
to get one set of thrusters pointed towards B. These are then
fired, and the AERCam cruises towards B. Upon reaching a
position close to B, it fires thrusters to converge to B, and
then rotates to point the camera in the desired direction.

To facilitate the illustration of the diagnosis problem, we
use a simple trapezoidal controller, which we explain in two
dimensions. Suppose the task is to travel along the z-axis
for some distance, then along the y-axis. Such manoeuvres
are needed for navigating in the space shuttle. In order to do

this, the AERCam fires its x thrusters for some time. Upon
reaching the desired velocity, these are switched off. When
the AERCam has reached a position close to the desired x
position, the reverse thrusters are switched on, and the AER-
Cam is brought to a halt — the velocity graph is a trapezium.
The process is analogous for the y direction.

Problem For mulation

In this section we describe our formulation of the hybrid di-
agnosis problem. Once again, the hybrid systems we ex-
amine are discrete-time hybrid systems. Observations and
state estimation are made at regular intervals 1,2, ... ,¢,t +
1,.... Further, we assume that our systems contain no au-
tonomous jumps. l.e., all nominal transitions between sys-
tem modes are induced by a controller action, none are in-
duced by the system state and mode (Bra95). Autonomous
jumps are common in hybrid models where a mode with
complex nonlinear behavior has been simplified by creating
multiple modes of less complex behavior, with state-induced
autonomous jumps connecting them. Building on the con-
cepts in (MBCGO00):

Definition 1 (Hybrid System) A hybrid system is a 5-tuple
<M7X7 E7V7 f)'

e 1 € M isthe discrete state or mode of the system, where
M is a finite collection of variables. g is the system
mode at time ¢.

e x € X C R™isthe continuous state vector of the system.
x4 IS the continuous state at time ¢.

e ¢ € %, is the discrete input, where X is a finite collection
of actions. l.e., the controller actions that transition the
system between modes.

e v € V C R is the continuous input.

e f isthe system dynamics function that maps the mode, the
continuous state, and the input into the mode and contin-
uous state at the next discrete time point. (p¢+1, Tir1) =
f(ug, e, 0,08, we), Where wy € R™ is zero-mean white
noise of known pdf,and f : M x X x ¥ x R¥ x R™ —
M x X. f is often expressed as a collection of func-
tions, e.g., functions that describe the continuous behav-
ior within a specific mode, and a function that describes
the discrete transitions between modes, based on discrete
input.

e obs € RP is the observation vector of the system. obs; is
the observation vector at time ¢. obs; is related to the con-
tinuous state vector x; by the function obs; = h(x¢, 1)
where vy € R" is zero-mean white noise of known pdf,
andh: X x R" — RP.

Definition 2 (System State) The state of a hybrid system at
time ¢, (¢, z;) comprises the discrete mode of the system
and the continuous state at ¢.

To define the hybrid diagnosis problem, we augment Defini-
tion 1 as follows.

Definition 3 (Diagnosable Hybrid System) A diag-
nosable hybrid system, (M, X, ¥V, f,COMPS) is a
hybrid system comprised of m potentially malfunctioning
components COM PS = (¢, ... ,cm) Where



e For each y € M, p includes a designation of whether
each ¢; € COM PS is operating normally, or abnormally,
i.e., [D]ab(c;).

e For each y, continuous state vector z includes a set of
distinguished parameters 6 associated with that mode.

o We assume that transitions to fault modes are achieved by
exogenous actions. Hence, ¥ = 3. U 3., where

— Y. is a finite set of controller actions, and
— Y. is a finite set of exogenous actions.

We introduce the following additional notation,

e (0, designates the observation history, the sequence of
time-indexed observations. O, designates the observation
history to time ¢.

e ur denotes a faulty mode, i.e., a mode for which at least
one ¢; € COMPS is ab(c;) in up. 6F denotes the pa-
rameters associated with pp.

In the case of the AERCam example, the potentially mal-
functioning components are the 12 thrusters, and a mode
& includes the behavior mode (e.g., translate-x, translate-
y, rotate-x, etc.) and [-]ab(T;),¢i = 1,...,12, for each
thruster. The continuous state vector includes the z, y, 2
position of the AERCam, velocity and acceleration. The pa-
rameter values, 8 associated with each y are the percentage
degradation of each of the thrusters. As we will see later
on, we make a Markov assumption with respect to comput-
ing the temporal dynamics of our system. Hence all relevant
state must be included explicitly in the state variables.

Definition 4 (Model) A model of a diagnosable hybrid sys-
tems is a time-indexed mode sequence and associated pa-
rameter values ([pi1, - -- , m], [01,--- ,6m]). The model to

time ¢ is denoted (iZ, §) and the model at time ¢ is denoted
st = (ut,0;). The model is a distinguished subset of the
entire system state.

In this paper we make several simplifying assumptions re-
garding our diagnosis task. In particular, we make a single-
time fault assumption. We assume that our systems do not
experience multiple sequential faults. Further, we assume
that faults are abrupt, resulting in partial or full degradation
of component behavior. We cast the hybrid diagnosis task
as the problem of finding the most likely model for the ob-
servation history, P(s; | O), i.e, the mode and parameter
values (u, 6;) that best fit the observations over time. To do
this, we appeal to a Bayesian formulation of the problem.

Bayesian Formulation

To monitor and diagnose a hybrid system, we must compute
the posterior probability distribution over models at time ¢,
given the observation history. Recall, using Bayes’ rule that
the posterior is proportional to the likelihood times the prior.
le,

p(model | observations) o p(observations | model) p(model).

Our objective is to find the posterior probability distribu-
tion over models at time ¢, s;, given the observation history
up to time t, O;. l.e, we wish to compute p(s; | Oy).

To compute the temporal dynamics of our system, we
make a Markov assumption, i.e.,

p(8¢ | 8¢—1,... ,50) = Dp(5¢ | 5¢-1)

Further, we assume that at each time point, there is a small
probability of an exogenous action, leading to a transition
to a failure mode. Finally, we assume that given the current
model s;, the current observations obs; and previous obser-
vation history O;_; are independent.

Hence, in order to track our hybrid system, we can com-
pute the posterior distribution of the model at time ¢ given
the observation history which, according to Bayes’ rule
and our assumptions above, is proportional to the likeli-
hood of the observation at time ¢ given the model at time
t (p(obs; | s¢)) and the temporal prior, the prediction
of the current model, given the observation history up to
t— 1,({)(8,5 | Ot—l)- le.,

p(s¢ | Or) = kp(obs; | s¢) p(st | Op—1),

where & ensures that the distribution integrates to one.

The likelihood of the observations given the state is easily
evaluated for the AERCam following the model described in
the previous section. The temporal prior, i.e., the probability
of the current model given the observation history to ¢t — 1
depends on the posterior over models at the previous time
point, p(s¢—1 | O—1) and the temporal dynamics, p(s; |
st—l)- le.,

poe | O) = [ plo | s1-) st | Oroa)ds
St—1

The temporal prior expresses the probability of a partic-
ular model given the observation history up to that point.
In the case of a fault diagnosis, the likelihood of a fault
model will initially be very low. If we are tracking using a
finite number of parallel filters, or using a factored sampling
method as suggested in the next section, this may mean that
we will initially not track these fault models, or alternately
that we track many low probability models which is com-
putationally expensive. In order to focus the temporal prior
more quickly and accurately on the appropriate diagnostic
models, we make use of qualitative diagnosis techniques.

In (MBCGO00; MBCG99), we proposed to use qualitative
diagnosis techniques to generate qualitative candidate diag-
noses — candidate mode and parameter values that were con-
sistent with observations O in some window of time.

Definition 5 (D-tuple (MBCGO00)) A D-tuple is a 4-tuple
(C, ur,tr,0r), where up is a fault mode, ¢ty is the time
the fault mode commenced, 8 is the parameter values as-
sociated with the fault mode behavior, and C is the set of
failed (abnormal) components in p .

Definition 6 (Candidate Qualitative Diagnosis (MBCGO00))

—

Given a diagnosable hybrid system with model (&, ), in-
put history Z', and observation history, O, D-tuple
(C,ur,tr,0r) is a candidate qualitative diagnosis iff there
exists a range of parameter values 0z = [6;,6,], and time
range tp = [t;,t,] such that the occurrence of fault mode
pr With parameter values 8 in time range ¢ is consistent

-

with O, 7 and (, 9).



We do not repeat the diagnosis algorithms here, but re-
fer the reader to (MBCGO00; MBCG99) for details. These
generated diagnoses are used to propose a set of different
models to be tracked by the system. The candidate models
are generated by exploiting previous work on qualitative di-
agnosis of continuous systems (e.g., (MB99)), adapting the
authors’ causal propagation algorithms to deal with the dis-
crete state variables and mode transitions of the hybrid sys-
tems. To incorporate this so-called oracle into our Bayesian
formulation, we use it to bias or focus the temporal prior.
This will in turn more heavily weight the posterior for the
corresponding fault models, s;. In the case of particle filter-
ing, the technique we propose in the next section to compute
the posterior, this focusing of the temporal prior will help
the algorithm sample from the appropriate part of the dis-
tribution. To incorporate this qualitative diagnosis “oracle”
we may alter our view of the posterior we are computing as
follows.

p(s¢ | Oy, 0racle) o< p(obs | s¢,oracle)
(st | O¢—1,0racle)
x  p(obst | st) p(st | O—1,0racle)

where p(s; | O_1, oracle) is equal to p(s; | Oy—1) above,
when the observations are consistent with the current model,
and otherwise p(s; | O_1, oracle) is simply the normalized
probability of the faulty models, given the observations. To
ensure the speed of the oracle, and because of the lack of re-
liable numbers for such calculations, the probabilities gener-
ated by the oracle are normalized prior probabilities of dif-
ferent faults given the observations, as defined by the system
builder.

Once the posterior is computed, different models can be
compared by estimating the expected value of different mod-
els, normalizing and comparing. For example, we may sum
the likelihoods for all samples having like [-]ab(c;) desig-
nations, and compare these to determine which components
are likely malfunctioning.

Computing the Posterior

In the previous section we presented the problem of tracking
and diagnosing hybrid systems using a Bayesian formula-
tion. As noted in the introduction, there are many algorithms
for probabilistic tracking of dynamical systems, though most
are not tailored to simultaneously tracking multiple candi-
date models nor to dealing with nonlinear dynamics. Our
posterior distribution p(s; | O;) will be a multi-dimensional,
multi-modal distribution, reflecting the multiple competing
diagnostic models. There is no closed-form (parametric)
representation for this distribution, as there is, for exam-
ple, for a unimodal Gaussian. Consequently, to compute this
posterior, we appeal to factored sampling techniques to pro-
vide an approximation of the distribution, and project this
distribution forward through time according to its dynamics,
using the Condensation algorithm (1B98), derivative of the
bootstrap algorithm (GSS93) and commonly referred to as a
particle filter.

Previously referred to as the action history.

More specifically, the posterior distribution p(s | O;),
is represented as a set of N weighted samples {sV), ...,
s(M}, with associated weights {z(V,... ,#z(™}. Intu-
itively, the larger the N, the better the approximation, but
the more costly the computation. Hence we would like to
sample the distribution as sparsely as possible, while maxi-
mizing our coverage of our distribution, and thus weighting
samples more heavily in those parts of the distribution that
have greater volume.

At each time step, the basic algorithm comprises three
steps: select, predict, and update.

Select: We start with the posterior from the previous time
step, p(si—1 | O¢—1), represented as the factored sample

(Sl@l,?ﬁ@l)' i =1,...,N. Sample N times with replace-
ment with probability 71,@1, the sample {sg?l}, producing

the samples {s’ﬁ")}. Note that samples with high weights
may be chosen multiple times.

Predict: For each new sample s’g"), propagate the sample
forward according to the dynamics of the system to pro-

duce new samples {sg”}. In the case of our AERCam, these
are the dynamics described in the previous section, together
with zero-mean Gaussian white noise. This new set of sam-
ples approximates a fair random sample for the effective
prior p(s; | O¢—1). What remains to compute is the weights.
Update: Compute the weights, 7r§’) = p(obs; | 84 = s§’)).
From the observations obs;, evaluate the likelihood of each
sample, and normalize the likelihoods of the samples so they
sumto 1. l.e,

@ plobs, |s)
[ )
> n—1P(0bst | s;)

The above algorithm does not reflect our qualitative diag-
nosis oracle. In order to suitably focus the temporal prior, we
use a linear combination of the samples from the computed
temporal prior, and samples from the oracle. This technique
was inspired by (BF99), and could also be achieved using
importance sampling.

The sample approximation to the distribution, p(s; | O;)
can be used to compute the expected value for some moment
f of the density, for example a mean of some state variable,
ie.,

N
E[f(s) | 0 = " nf? f(st”)

i=1

In this way, we can compare the sum of the likelihoods for
each distinct model.

Summary and Related Work

In this paper we expanded the hybrid diagnosis framework
described in (MBCG99; MBCGO00) to present a mathemati-
cal formulation and computational techniques for generating
diagnoses of hybrid systems in terms of Bayesian tracking
and model comparison. We characterized the evaluation of
our models (system mode and associated parameter values)



as the computation of the posterior distribution of models
given a history of observations. Exploiting a Markov as-
sumption, we showed that this could be computed in terms
of the likelihood of the observations at time ¢, given the
model at time ¢, times a prior. Exploiting the work de-
scribed in (MBCG99; MBCGO00) for generating qualitative
diagnoses of hybrid systems, we treated our qualitative mon-
itoring and diagnosis system as an oracle. If the observations
were consistent with the current model, then the qualitative
monitoring and diagnosis system had no effect on the com-
putation of the posterior. However, if the observations were
inconsistent then the oracle would generate a set of candi-
date diagnoses that would be used to adjust the prior to focus
the likelihood computation on that part of the model space
that was indicated by the qualitative monitoring and diagno-
sis engine.

Since hybrid systems are generally nonlinear, and hence
the distribution of the posterior multimodal and non-
Gaussian, we represented the posterior distribution as dis-
crete samples and exploited factored sampling techniques,
used in particle filtering and in the Condensation algorithm,
to propagate conditional probability densities over time.

We are still in the early stages of experimenting with these
techniques, but preliminary results look promising. Con-
densation has proven effective for some near realtime visual
tracking tasks (e.g., (IB98)), but we anticipate that more
complex hybrid systems with large state spaces and par-
tial observability will require further computation and larger
amounts of memory that will compromise realtime compu-
tation, just as they do, for example, with POMDPs. Such
systems will require new variants of many of the techniques
we currently employ in model-based diagnosis including ex-
ploiting problem decomposition, compact representations of
state spaces, abstractions of problems, and approximation of
inference. In summary, Bayesian tracking and model com-
parison and factored sampling techniques for dynamical sys-
tems provide a sound mathematical formalism and promis-
ing tools for monitoring and diagnosing complex dynamical
systems.

The problem of monitoring and diagnosing hybrid sys-
tems has received little attention to date, although there is
much related work. Within the Al community, there has
been a great deal of research on diagnosing static systems
(e.g., (HCD92)), while much less on diagnosing discrete dy-
namical systems (e.g., (CT94; Mcl98; WN96; BLPZ99)),
qualitative diagnosis of continuous systems (e.g.,. (MB99)),
and tracking (e.g., (RK99)). Most recently, (LPKBOO), have
developed related techniques for monitoring and diagnosing
Conditional Linear Gaussian hybrid systems using a Dy-
namic Bayes Nets to compactly represent the conditional
probability distribution, and proposing algorithms for hy-
pothesis reduction and smoothing. Within the FDI commu-
nity, the largest proportion of research has focused on diag-
nosing continuous systems (e.g., (Ger98; Fra90)). These ap-
proaches have often used observer schemes and/or Kalman
filters to track continuous system behavior. Diagnosis of
discrete-event systems has also been studied within the FDI
community (e.g, (SSLST96; Lun99)). Nevertheless, our
work and the concurrent work of (LPKBO0O) has been the

first to propose a Bayesian tracking approach to diagnosing
hybrid systems. Our use of factored sampling techniques
and particle filtering drawn from the statistics and computer
vision communities, presents a significant contribution to a
challenging problem.
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