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Abstract

Motivated by the problem of automatically com-
posing network accessible services, such as those
on the World Wide Web, this paper proposes an
approach to building agent technology based on
the the notion of generic procedures and cus-
tomizing user constraint. We argue that an aug-
mented version of the logic programming language
Golog provides a natural formalism for program-
ming Web services. To this end, we adapt and ex-
tend the Golog language to enable programs that
are generic, customizable and usable in the context
of the Web. We realize these extensions in an aug-
mented ConGolog interpreter that combines online
execution of information-providing Web services
with offline simulation of world-altering Web ser-
vices, to determine a sequence of Web Services for
subsequent execution. Our implemented system is
currently interacting with services on the Web.

1 Introduction

The Web, once solely a repository for documents, is evolving
into a provider of services — information-providing services
such as flight information providers, temperature sensors, and
cameras; and world-altering services such as flight booking
programs, sensor controllers, and a variety of E-Commerce
and B2B applications. These services are realized by Web-
accessible programs, databases, sensors, and eventually by a
variety of other physical devices. Today’s Web was designed
primarily for human use. As the Web grows in size and diver-
sity there is an increased need to automate aspects of Web ser-
vices such as 1) automatic Web service discovery (e.g., “Find
me a service that books airline tickets from San Francisco to
Saskatoon, and that accepts En Route credit cards.”), 2) auto-
matic Web service execution (e.g., “Buy me ‘Harry Potter and
the Sorcerer’s Stone’ at www.acmebooks.com”), and 3) auto-
matic Web service selection, composition and interoperation
(e.g., “Make the travel arrangements for my 1JCAI confer-
ence trip.”). To realize wide-scale Web service automation
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we must make Web service properties and capabilities under-
standable to computer programs — we must create semantic
Web services [15].

The so-called “Semantic Web” [1] is emerging with the
development of semantic Web markup languages such as
DAML-ONT [2], OIL [20], and most recently DAML+OIL
[3]. These markup languages build on the foundations of
XML and RDF(S) [9] to provide the taxonomic and log-
ical expressiveness of description logics in a markup lan-
guage with a clearly defined semantics. Over the next year,
it is hoped that there will be a proposal for a semantic Web
markup language that has much of the expressive capability
of Horn clause logic. These markup languages, while still in
their infancy, are being used to mark up Web pages. In our
work, we are developing a knowledge representation scheme
to mark up Web services in order to automate Web service
discovery, execution, selection, composition and interopera-
tion. Each service is conceived as a primitive or complex
action. In using an action metaphor for marking up Web ser-
vices, we are able to bring to bear much of the research on
reasoning about action, to assist in developing technology for
Web service composition and interoperation. We do not dis-
cuss the markup of Web services in this paper, nor the archi-
tecture that connects our markup to the technology developed
here. The reader is referred to (e.g., [15]) for further details.

In this paper we focus on the issue of automating Web ser-
vice composition by programming agents to compose and ex-
ecute services on the Web. Our goal is to develop programs
that are easy to use, generic, customizable, and that are us-
able by a variety of users under varying conditions. We ar-
gue that the logic programming language Golog (e.g., [11;
16; 4]) provides a natural formalism for this task. To this
end, in Section 3, we augment Golog with the ability to in-
clude customizing user constraints. We also add a new pro-
gramming construct called order that relaxes the notion of
sequence, enabling the definition of more generic procedures.
Finally, we define the notion of self-sufficient programs that
are executable with minimal assumptions about the agent’s
initial state of knowledge, making them amenable to wide-
spread use. In Section 4, we realize these ideas in an aug-
mented ConGolog interpreter that combines online execution
of information-gathering Web services with offline simula-
tion of world-altering Web services, to determine a sequence
of world-altering services for subsequent execution. Our ap-



proach to sensing and acting presents a middle ground be-
tween online and offline execution, leveraging properties of
our Web domain. We describe our implementation briefly at
the end of this paper.

2 Programming the Semantic Web

Consider the example composition task given in the previous
section, “Make the travel arrangements for my 1JCAI con-
ference trip.” If you were to perform this task yourself us-
ing services available on the Web, you might first find the
IJCAI°2001 conference Web page and determine the location
and dates of the conference. Based on the location, you would
decide upon the most appropriate mode of transportation. If
traveling by air, you might then check flight schedules with
one or more Web services, book flights, and arrange trans-
portation to the airport through another Web service. Oth-
erwise, you might book a rental car. You would then need to
arrange transportation and accommodations at the conference
location, and so on.

While the procedure is lengthy and somewhat tedious to
perform, what you have to do to make travel arrangements is
easily described by the average person. Nevertheless, many
of us know it is very difficult to get someone else to actu-
ally make your travel arrangements for you. What makes this
task difficult to perform is not the basic steps but the need to
make choices and customize the procedure in order to enforce
your personal preferences and constraints. For example, you
may only like to fly on selected airlines where you can collect
travel bonus points. You may have scheduled activities that
you need to work around. You may or may not prefer to have
a car at the conference location, which will affect the selec-
tion of hotel. In turn, your company may require that you get
approval for travel, they may place budget constraints on your
travel, or they may mandate that you use particular air carri-
ers. Constraints can be numerous and consequently difficult
for another human being to keep in their head and to simul-
taneously satisfy. Fortunately, the enforcement of complex
constraints is something a computer does well.

Our objective is to develop agent technology that will per-
form these types of tasks automatically by exploiting markup
(knowledge representation) of Web services and markup of
user constraints. Clearly we cannot simply program an agent
to perform these tasks because there is so much variability in
how a task is achieved, depending upon an individual’s con-
straints. One approach to addressing the problem would be to
exploit Al techniques for planning, and to build an agent that
plans a sequence of Web service requests to achieve the goals
of the task, predicated on the user’s constraints. This is cer-
tainly a reasonable approach, but planning is computationally
intensive and in this case, we actually know much of what the
agent needs to do. We just need the agent to fill in the details
and enforce the user’s constraints.

We argue that a number of the activities a user may wish to
perform on the semantic Web or within some networked ser-
vice environment in the workplace or at home, can be viewed
as customizations of reusable, high-level generic procedures.
Our vision is to construct such reusable, high-level generic
procedures, and to archive them in sharable generic proce-

dures ontologies so that multiple users can access them. A
user could then select a task-specific generic procedure from
the ontology and submit it to their agent for execution. The
agent would automatically customize the procedure with re-
spect to the user’s personal or group-inherited constraints, the
current state of the world, and available services, to generate
and execute a sequence of requests to Web services to per-
form the task.

We realize this vision by adapting and extending the logic
programming language Golog. The adaptations and exten-
sions described in the sections to follow are designed to ad-
dress the following desiderata. Generic: We want to build
a class of programs that are sufficiently generic to meet the
needs of a variety of different users. Thus programs will often
have a high degree of nondeterminism to embody the variabil-
ity desired by different users. Customizable: We want our
programs to be easily customizable by individual users. Us-
able: We want our programs to be usable by different agents
with different levels of knowledge. As a consequence, we
need to ensure that the program accesses all the knowledge it
needs itself, or that knowledge of certain things is a prereg-
uisite to executing the program. Thus we want programs that
are self-sufficient.

3 Golog

Golog (e.g., [11; 16; 4]) is a high-level logic programming
language, developed at the University of Toronto, for the
specification and execution of complex actions in dynamical
domains. It is built on top of the situation calculus (e.g.,[16]),
a first-order logical language for reasoning about action and
change.

In the situation calculus, the state of the world is expressed
in terms of functions and relations (fluents) relativized to a
particular situation s, e.g., f(Z, s). For the purpose of propo-
sitions and theorems at the end of this paper, we assume a
finite number of fluent symbols, and no functional fluents. A
situation s is a history of the primitive actions (e.g., a) per-
formed from an initial, distinguished situation So. The func-
tion do(a, s) maps a situation and action into a new situation.
A situation calculus theory D comprises the following sets of
axioms (See [16] for details):

e domain independent foundational axioms of the situa-
tion calculus, X,

e successor state axioms, Dgg, one for every fluent F in
the domain.

o action precondition axioms, D,,, one for every action a
in the domain, that serve to define Poss(a, s).

o axioms describing the initial situation, D, .
e unique names axioms for actions, D..q,
e domain closure axioms for actions, D .ot

Note that in our work, we consider both world-altering ac-
tions and information-gathering or sensing actions. We fol-
low the work of Levesque and others (e.g., [10]), and repre-
sent the effects of sensing actions by including a sensed fluent

'Not always necessary, but we will requireitin 3.1.



axiom for each primitive action a in our domain, SF(a, s) =
Pa(s).

Golog (alGOI in LOGic) [11] builds on top of the situa-
tion calculus by providing a set of extralogical constructs for
assembling primitive actions, defined in the situation calcu-
lus, into complex actions that collectively comprise a pro-
gram, 8. Constructs include the following (see [11; 16;
4] for details).

a — primitive actions

¢? — tests

d1; 62 — Sequences

41|92 — nondeterministic choice of actions
m(x)d — nondeterministic choice of parameters
if ¢ then §; else d>— conditionals

while ¢ do 6 — while loops

proc P(¥) ¢ endProc — procedure

These constructs can be used to write programs in the lan-
guage of a domain theory, e.g.,
book AirTicket(Z);if far then bookCar(y) else bookT axi(y).
Given a domain theory, D and Golog program &, program
execution must find a sequence of actions & such that:

D 'Z DO((S, So, do(a, S(]))

Do(8, So,do(d@, So)) denotes that the Golog program 4,
starting execution in So will legally terminate in situ-
ation do(a@, So), where do(a, So) is an abbreviation for
do(an,do(an—1,...,do(a1,So))).

3.1 Customizing Golog Programs

In this section we describe an extension to Golog that enables
individuals to customize a Golog program by specifying per-
sonal constraints. To this end, we introduce a new distin-
guished fluent in the situation calculus called Desirable(a, s),
i.e., action a is desirable in situation s. We contrast this with
Poss(a, s), i.e. action a is physically possible is situation s.
We further restrict the cases in which an action is executable
by requiring not only that an action a is Poss(a, s) but further
that it is Desirable(a,s). This further constrains the search
space for actions when realizing a Golog program. The set
of Desirable fluents, one for each action in our theory, is re-
ferred to collectively as Dp. Desirable(a,s) = true unless
otherwise noted.

An individual specifies her personal constraints in our se-
mantic Web markup language. The constraints are expressed
in the situation calculus as necessary conditions for an action
a to be desirable, D,..p of the form:

Desirable(a, s) D w;, D

and personal constraints Dpc which are formulae, C in the
situation calculus.

For example, Marielle’s personal constraint is that she
would like to book an airline ticket from origin, o to desti-
nation, d if the driving time between these two locations is
greater than 3 hours. We specify this as the following con-
straint which is included in Dpecp:

Desirable(book AirTicket(o,d, dt, s)) D
gt(DriveTime(o,d), 3, s)

Similarly, Marielle has specified dates she must be at home
(her son’s birthday, her daughter’s hockey game,...) and her
constraint is not to be away on those dates. These are include
in Dpc, €.9.,

—(Away(dt, s) N Mustbe Home(dt, s))

Using D,..p and Dpc, and exploiting our successor state ax-
ioms and domain closure axioms for actions, Dss and Daca,
we define Desirable(a, s) for every action a as follows:

Desirable(A(Z),s) = Qa A /\ Qpc, )
CeDpc

where Q4 = w1 V...V w,, foreach w; of (1). E.g.,

Qbook AirTicket = gt(DriveTime(o,d), 3, s)

Qpe = RY[C(do(A(Z), 5))] ©)

where R* is repeated regression rewriting (e.g., [16]) of
C(do(A(%),s)), the constraints relativized to do(a, s), using
the successor state axioms, Dss from D. E.g.,

Qpc = R [~(Away(dt, do(book AirTicket(o,d, dt, s)))
A Mustbe Home(dt, do(bookAirTicket(o,d, dt, s))))]
We rewrite this expression using the successor state axioms
for fluents Away(dt, s) and Mustbe Home(dt, s). E.g.,
Away(dt,do(a, s)) =
[(a = bookAirTicket(o,d,dt) A d # Home)
V (Away(dt,s) A
—(a = bookAirTicket(o,d,dt) Ad = Home))]

Mustbe Home(dt,do(a, s)) = Mustbe Home(dt, s)
From this we determine

Desirable(book AirTicket(o,d,dt, s)) =
gt(DriveTime(o,d), 3,s) A
(d = Home V ~"MustbeHome(dt, s))

Having computed Dp, we include it in D. In addition to com-

puting Dp, the set of Desirable fluents, we also modify the
computational semantics of our dialect of Golog. In partic-
ular, we adopt the computational semantics for Golog. (See
[4] for details.) Two predicates are used to define the seman-
tics. Trans(4,s,d’,s') is intented to say that the program ¢ in
situation s may legally execute one step, ending in situation s’
with the program ¢’ remaining. Final(d, s) is intended to say
that the program § may legally terminate in situation s. We
require one change in the definition to incorporate Desirable.
In particular, (4) is replaced by (5).

Trans(a,s,8',s') =
Poss(a[s], s) Ad' =nil A s’ = do(a[s], 5) 4

Trans(a,s,8',s') =
Poss(a[s], s) A Desirable(a[s], s)
A & =nil A s' = do(as], 5) (5)
We can encode this more compactly by simply defining

Legal(a, s) = Poss(a, s)ADesirable(a, s), and replacing Poss
with Legal in (4).



This approach has many advantages. First it is elabora-
tion tolerant [14]. An individual’s customized Dp may sim-
ply be added to an existing situation calculus axiomatization.
If an individual’s constraints change, the affected Desirable
fluents in Dp may be elaborated by a simple local rewrite.
Further, Desirable is easily implemented as an augmentation
of most existing Golog interpreters. Finally, it reduces the
search space for terminating situations, rather than pruning
situations after they have been found, thus it has computa-
tional advantages over other approaches to determining pre-
ferred sequences of actions. Our approach is related to the
approach to the qualification problem proposed by Lin and
Reiter [12]. There are other types of customizing constraints
which we do not address in this paper (e.g., certain temporal
constraints). We will address these constraints in future work.

Observe that this approach to defining Desirable can be
likewise adopted to incorporate other deontic constraints. For
example, just as we have customized our Golog programs to
the constraints of particular users in our Web-motivated appli-
cation, we can similarly, customize our procedures to the nu-
ances and constraints of particular agents, particular services,
or particular end effectors, by encoding deontic notions such
as Able or Should in a similar fashion and including them in
Legal.

3.2 Adding the Order Construct

In the previous subsection we described a way to customize
Golog programs by incorporating user constraints. In order
for Golog programs to be customizable and in order for them
to be generic, they must have some nondeterminism and be
fairly general in nature, enabling a variety of different choice
points to incorporate user’s constraints. Golog’s nondeter-
ministic choice of actions construct (|) and nondeterministic
choice of arguments construct () both provide for nondeter-
minism in Golog programs.

In contrast, the sequence construct (;) provides no flex-
ibility, and can be overly constraining for the specifica-
tion of many generic procedures. Consider the program
book AirTicket(T); bookCar(y). The sequence construct dic-
tates that bookCar () must be performed in the situation re-
sulting from performing the action book AirTicket (%) and that
Poss(bookCar(¥f), do(book AirTicket(Z), s) must be true, oth-
erwise the program will fail. Imagine that the precondition
Poss(bookCar(3), s) dictates that the user’s credit card not be
over its limit. If Poss is not true, we would like for the agent
executing the program to have the flexibility to perform a se-
quence of actions to reduce the credit card balance, in order to
achieve this precondition, rather than having the program fail.
The sequence construct ; does not provide for this flexibility.

To enable the insertion of actions in between a dictated se-
quence of actions for the purposes of achieving preconditions,
we define a new construct called order, designated by the :
connective?. Informally, a: : a» will perform the sequence of
action ai;as whenever Poss(as,do(a1,s)) is true. However,
when it is false, the : construct dictates that Golog search for a
sequence of actions a that achieves Poss(as, do(a, do(a1, s))).

2Strictly speaking, thisis a shorthand for a combination of exist-
ing constructs, rather than an extension.

This can be achieved by a planner that searches for a sequence
of actions @ to achieve the goal Poss(az, do(@, do(a1, s))). For
the purpose of this paper, we simplify the definition, restrict-
ing a» to be a primitive action. The definition is easily ex-
tended to an order of complex actions §; : d2.

Thus, a; : a2 is equivalent to the program

a1; (while (nPoss(a2)) do (wa)[Poss(a)?;al); az.
It is easy to see that
while (—Poss(az)) do (wa)[Poss(a)?;a]

will eventually achieve the precondition for a» if they can be
achieved.

We extend the computational semantics of Golog as fol-
lows to include this construct.

Trans(é : a,s,8',s') =
Trans((§; achieve(Poss(a[s]));a, s,6,s") (6)

Final( : a,s) =
Final(4; achieve(Poss(a[s])); a, s) (7)

where achieve(G) = while (=G) do (wa)[Poss(a)?;a).
Since achieve is defined in terms of existing Golog con-
structs, the definitions of Trans and Final follow from pre-
vious definitions.

Note that the order construct, *:> introduces undirected
search into the instantiation process of Golog programs and
though well-motivated for many programs, should be used
with some discretion because of the potential computational
overhead. We can improve upon this simplistic specification
by a more directed realization of the action selection mecha-
nism used by achieve using various planning algorithms. We
discuss this further in Section 4.1.

Also note that the order construct has been presented
here independently of the notion of Desirable, introduced
in the previous subsection. It is easy to incorporate the
contributions of Section 3.2 by replacing achieve(Poss(a[s])
with achieve(Legal(a[s]) in Axioms (6) and (7) above, where
Legal(a[s]) = Poss(a[s]) A Desirable(a[s]), plus any other de-
ontic notions we may wish to include.

Finally note that a variant of the order construct also has
utility in expressing narrative as proposed in [17]. We can
modify : to express that actions a1 and a. are ordered, but
that it is not necessarily the case that a» occurred in situation
do(ai, s).

3.3 Self-Sufficient Golog Programs

Now that our Golog programs are customizable and can be
encoded generically, we wish them to be usable. An agent
needs sensing actions to execute a Golog program when the
agent has incomplete knowledge of the initial situation or
when exogenous actions exist that change the world in ways
the agent’s theory of the world does not predict. In our
work, we need to define Golog programs that can be used
by a variety of different agents without making assumptions
about what they know. As such, we want to ensure that our
Golog programs are self-sufficient with respect to obtaining
the knowledge that they require to execute the program. That
is, we wish to ensure that the agent knows whether actions



are possible, and it also knows the truth or falsity of the con-
ditions of conditional actions (if-then-else, while loops, pick)
immediately prior to the situation in which those actions are
executed. This can be achieved either by sensing immedi-
ately prior to the conditional, sensing earlier and the knowl-
edge persisting, or by the condition being known in the initial
situation and the knowledge persisting.

To capture this intuition, we define the notion of a Golog
program that is self-sufficient with respect to a set of axioms
D and kernel initial situation, Dss, - This kernel initial situ-
ation can be thought of as a necessary precondition for exe-
cuting the Golog program. It is the conditions that must be
true in So (and that all agents know about). To characterize
self-sufficiency, we define a predicate ssf(d, s) that charac-
terizes the conditions underwhich a Golog program has suf-
ficient knowledge to be executable in situation s. As with
the definition of the Trans and Final predicates, ssf(é,s) is
defined inductively over the structure of § as follows.

ssf(nil, s) = true (8)
ssf(¢?,s) = KWhether3(¢, s) 9)
ssf(a,s) = KWhether(Poss(a[s], s)) A

KWhether (Desirable(a[s], s)) (10)
ssf(if ¢ then &1 else d2,8) =
KWhether (¢, s) A
(9ls] > 55£(61,5)) A
(=¢[s] D s5£(d2, 5)) (11)
$8f(01;82,8) = ssf(d1,8) A
Vs’ [Trans(di, s,nil, s') D ssf(d2,s")] (12)
ssf(d1|02,s) = ssf(d1, s) A ssf(d2,9) (13)
ssf(while ¢ do o, 3) =
KWhether (¢, s) A
(¢ls] >
Vs'.[Trans(o, s,nil,s') D
ssf(while ¢ do a, s")]
) (1)
ssf(Il.z[é(x), 0], s) =

Jz.[KWhether (¢(z), s) A ssf (o, 3)] (15)

Since : is defined in terms of existing constructs, ssf(d: :
d2, s) follows from (8)—(15) above. We define a Golog pro-
gram § to be self-sufficient with respect to a kernel initial sit-
uation D, effectively the precondition for that program, if
ssf(d,So) is true and additionally that it can terminate given
that the kernel initial situation holds in Sg. This second con-
dition is more stringent, and we may choose to relax it at
times.

Definition 1 (Self-Sufficient Program) A Golog program §
is self-sufficient relative to a set of axioms D and kernel initial
state D5, if DU Dsg is satisfiable, and

1. DUDs,, [ ssf(d,S0) = true, and
2. DUDsg, | 3s'.[Trans($, So, 0,5") A Final(a, s")].

3K Whether (¢, s) isan abbreviation for aformulaindicating that
the truth value of ¢ isknown. (See[19] for details.)

In addition to defining the notion of self-sufficient pro-
grams, we also define some simplifying assumptions. In par-
ticular, we assume that the fluents we are sensing persist for
a reasonable period of time, and that none of the actions we
perform in our program, cause this assumption to be violated.
Many systems that sense make this assumption, they simply
differ on the period of time for which they assume a sensed
fluent persists or how drastically it changes when it changes.
This assumption is generally true of much of the information
we access on the Web (e.qg., flight schedules, store merchan-
dise), but not all (e.g., stock prices). This assumption is much
less pervasive in mobile robotic applications where we may
assume persistence for milliseconds, rather than minutes or
hours.

Definition 2 (Conditioned-on Fluent) Fluent C is a
conditioned-on fluent in Golog program 4§ iff for some
conditional action A with condition ¢ of the form

1. if ¢ then ;1 else do,
2. while¢ doé, or
3. TLz[¢, 4]
C appears in the formula ¢.

Definition 3 (Invocation and Reasonable Persistence
(IRP) Assumption) We assume that our Golog programs do
not experience sensors errors. \We say that a Golog program
6 adheres to the invocation and reasonable persistence
assumption if for every conditioned-on fluent in our Golog
program 4,

1. If sensing actions have preconditions then they are true
in the initial state.

2. The knowledge of conditioned-on fluents, once estab-
lished, persists*.

We use this assumption in the development of our Golog
interpreter in the section to follow. We also use it to help
prove properties of self-sufficient programs and to verify that
programs are self-sufficient. Our work in this area is prelim-
inary. Hence, we postpone discussion to a longer version of
this paper.

4 Middle-Ground Execution

In building a Golog interpreter that incorporates sensing ac-
tions, the interplay between sensing and execution of world-
altering actions can be complex and a number of different
approaches have been discussed (e.g., [5; 8; 18]). While De
Giacomo and Levesque [5] and Reiter [18] advocate the use
of an online interpreter to reason with sensing actions, Lake-
meyer [8] suggests the use of an offline interpreter with con-
ditional plans. The trade-off is clear here. An online inter-
preter is incomplete because no backtracking is allowed while
an offline interpreter is computationally expensive due to the
much larger search space, and the need to generate condi-
tional plans, if sensing actions are involved. The choice be-
tween an online or offline interpreter depends on properties

4i.e., no subsequent actions in the program change the value of
sensed fuents.



of the domain, such as the ones discussed in the previous sec-
tion. For instance, in a mobile robot domain, an online inter-
preter seems to be more appropriate because critical aspects
of the world change quickly. On the other hand, for contin-
gency planning, an offline interpreter that enables search may
be more useful. We argue that for many applications that uti-
lize semantic Web services, there is a middle ground.

Following the intuition in the previous section, we define a
middle ground between offline and online execution that ex-
ploits both the merits of backtracking and search and the mer-
its of online execution of sensing actions to reduce the search
space size. Our interpreter senses online to collect the rel-
evant information needed in the Golog program, while only
simulating the effects of world-altering actions. By only sim-
ulating rather than executing, the interpreter can backtrack if
it finds that a decision it has made does not lead to success-
ful termination of the program. Humans often follow this
approach when instantiating their generic procedures. They
collect information (e.g., flight schedules, hotel availability)
and choose a sequence of actions, relying on the information
they have collected persisting until they actually execute the
associated world-altering actions (e.g., booking the flight or
the hotel). If this persistence assumption fails, they replan at
execution time. In our middle-ground interpreter, following
successful generation of a terminating situation by our inter-
preter, the sequence of world-altering actions that comprise
the terminating situation can be executed, and will result in
successful execution of the Golog program, if our persistence
assumptions have not been violated. This is the approach
we take right now. Alternately, the generated sequence of
world-altering actions could be executed with an online exe-
cution monitoring system that potentially re-performs sensing
actions to ensure our persistence assumptions have not been
violated, and executes the world-altering actions that were fi-
nally selected by our middle-ground interpreter. The explicit
encoding of search areas in a program, as proposed by [5]
through the addition of their ¥ search construct, can achieve
some of the same functionality as our middle-ground inter-
preter.

Of course, as we discussed, the invocation and reasonable
persistence (IRP) assumption upon which this approach is
predicated may not always hold, or it may not hold for all
fluents in a Golog program. In such cases, the interpreter we
propose in the section to follow can be combined with an in-
terpreter that builds conditional plans, following the approach
proposed in [8]. The generation of condition plans can be
used for actions whose conditioned-on-fluents do not adhere
to the IRP assumption. We don’t favour the generation of
conditional plans in all cases because they are more compu-
tationally intensive, and can lead to the consideration of many
irrelevant paths and the generation of large conditional plans.

4.1 The Middle-Ground ConGolog Interpreter

We have modified the ConGolog offline interpreter in [5;
4] to account for user constraints and the order construct. We
have also provided a means of encoding the sensed fluent
axioms that realizes the strategy for our middle-ground inter-
preter, described above. We discuss each of the modifications
in further detail.

User customizing constraints: We have modified the Con-
Golog interpreter in [5; 4] to take into consideration personal
constraints in a rather straightforward and elegant way. We
replaced the following code

trans(A S, R S1) :- primct(A),
(poss(A'S), R=nil, Sl=do(A S));
of the ConGolog interpreter with
trans(A S, R S1) :- primAct (A),
(poss(A,'S), desirable(A'S),
R=nil, Sl=do(A S)); fail.

This ensures that every action selected by the interpreter is
also a desirable one.

fail.

Order Construct: To include the order construct :, we added
the following rules to our interpreter:

final (P:A S):-

action(A),

final ([ P; achi eve(poss(A),0);A],S).
trans(P: A, S,R S1): -

action(A),

trans([ P; achi eve(poss(A),0);A],S R S1).

where achieve(Goal,0) is an A*-planner, adapted from the
"World Simplest Breath First Planner’ (wsbfp) developed by
Reiter [16]. We appeal to its simplicity and the soundness
and completeness of the A* algorithm. For completeness, we
include the PROLOG code for achieve and wsbfp.

proc(achi eve(Goal , N),

[ (Goal ) ?$wsbf p( Goal ,
proc(wspbf (Goal, N, [plans(Goal, 0, NJ).
proc(plans(Goal, M N, [ (M< N)?,

[acti onSequence(M, (Goal )?] $ pl ans(Goal ,
1).
proc(acti onSequence(N),

[(N>0)7,
pi (a, [(poss(a))?, al),
acti onSequence(N- 1)

11).

Obviously any planner can be used to accomplish this task.
We are currently investigating the effectiveness of other
planners (e.g., regression planners).

N) $achi eve( Goal , N+1)]) .

[ (N=0)? $

Sensing Actions: A common approach to incorporating sens-
ing actions into a situation calculus theory is through the use
of the distinguished sensed-fluent predicate, SF. SF(a,s)
states that action a returns the binary sensing result true when
the fluent sensed by a, F is true in the situation s. Assuming
each sensing action senses one fluent, we would include one
sensed-fluent axiom for each action, SF(a, s) = F.(s) [16].

To accommodate both backtracking and sensing, we as-
sume that the truth value of SF(a, s) can be determined by
executing an external function call, denoted by ezxec(a, s).
Under this assumption, the truth value of F, in s can be deter-
mined by making the external function call ezec(a, s). When-
ever the execution succeeds, F, is true; otherwise, it is false.
This, together with the invocation and reasonable persistence
assumption, allows us to write the successor state axiom of
F, in the following form

F,(do(a,s)) = exec(a, s) (16)

M+ 1, N



Observe that guarded action theories [6] are similar to action

theories encoded in this way in that they no longer contain
the fluent SF. This allows a treatment of sensed fluents as
ordinary fluents if the external function call exec(a, s) can be
made and its termination code can be incorporated. This is
simple to implement in a PROLOG interpreter. Equation (16)
is translated into PROLOG as follows

hol ds(F, do(A, S)):- exec(A'S).
where F' denotes F,. Thus, we only need to provide the set

of rules that call the action A4, i.e., for each sensing action A4,
the theory contains a rule of the form

exec(A S):- execute A ...

Notice that the execution of action A is domain dependent,
and hence, the above rule will be a part of the situation calcu-
lus action theory rather than a part of the Golog interpreter®.

Theorem 1 For every self-sufficient Golog program § with
associated axioms D and kernel initial condition D~ that
adheres to the invocation and reasonable persistence as-
sumption and for all situations S, if D U D5, Fr Do(d, So, S)
then there exists a model M of D U D, such that M |
Do(4, So, S), where g is proof by our Golog interpreter.

We note that action theories in this paper are definitional
theories in the sense of [16] if the initial situation axioms
Ds, is complete, i.e., for each fluent, it contains a definition.
This can be achieved by making the closed-world assumption
(CWA), which, since our programs are self-sufficient, is less
egregious. Thus, the next proposition follows immediately
from the Implementation Theorem of [16].

Proposition 1 For every self-sufficient Golog program § with
associated axioms D and kernel initial condition D~ that
adheres to the invocation and reasonable persistence assump-
tion and for all situations S,
DU Dsg,FrDo(8, So, S) iff DU DgVOVA E Do(4, So, S),
where +x is proof by our Golog interpreter and D(%VO"A is

defined as D5, U {F(So) = false | there exists no definition
of Fin Dsg_ }.

5 Implementation

To realize our agent technology, we started with a simple im-
plementation of an offline ConGolog interpreter in Quintus
Prolog 3.2. We have modified and extended this interpreter
as described in the previous section. The interpreter was also
modified to communicate with the Open Agent Architecture
(OAA) agent brokering system [13], to send requests for ser-
vices, and to relay responses to Golog. Since commercial
Web services currently do not utilize semantic markup in or-
der to provide a computer-interpretable API, and computer-
interpretable output, we use an information extraction pro-
gram, World Wide Web Wrapper Factory (W4), to extract
the information we need from the HTML output of Web ser-
vices. All information-gathering actions are performed this
way. For obvious practical (and financial!) reasons, world-
altering services are not actually executed.

5The offine interpreter with the search operator in [5] can also
be modifi ed and used for this purpose.

The work described was demonstrated in August, 2000
and we are continuing development. We have built sev-
eral generic procedures including a travel scenario that books
travel (car/air), hotel, local transportation, emails the cus-
tomer an itinerary, and updates an online expense claim. The
same procedure has generated numerous instantiations based
on different user customization constraints, highlighting the
versatility of our approach to programming the semantic Web.
Integration with the semantic markup language DAML is on-
going as the language develops [15].

6 Summary and Related Work

In this paper we addressed the problem of automating Web
service composition by programming agents to execute ser-
vices on the Web. Our goal was to develop programs that
were easy to use, generic, customizable, and that were us-
able by a variety of users under varying conditions. We
argued that an effective way of programming the semantic
Web was through the use of high-level reusable generic pro-
cedures and customizing user constraints, and we proposed
the logic programming language Golog as providing a natu-
ral formalism for this task. To this end, we augmented Golog
with the ability to include customizing user constraints. We
also added a new programming construct called order that
relaxes the notion of sequence, enabling the insertion of ac-
tions to achieve the precondition for the next action to be per-
formed by the program. This construct facilitates customiza-
tion as well as enabling more generic procedures. Finally,
we defined the notion of self-sufficient programs that are ex-
ecutable with minimal assumptions about the agent’s initial
state of knowledge, making them amenable to wide-spread
use. These extensions were implemented as modifications to
an existing ConGolog interpreter, along with an implementa-
tion of sensing actions (for information-gathering services).
We have tested our results with a generic procedure for travel
and a variety of different customizing constraints that show-
case the effectiveness of our approach. The ConGolog in-
terpreter communicates with Web services through an agent
brokering systems and an HTML information extractor.

In ongoing work, we are extending the scope of Desirable.
We are developing an execution monitoring system to execute
the world-altering actions generated by our middle-ground
interpreter. \We are evaluating the use of regression-based
search to realize the order construct more efficiently. Finally
we are proving properties of self-sufficient programs.

Related Golog work was identified in the body of this pa-
per, with the work in [5] being most closely related. Two
other agent technologies that address aspects of Web or in-
ternet composition and that deserve mention are the work of
Waldinger and others at SRI on Web agent technology [21],
and the softbot work developed at the University of Wash-
ington (e.g., [71). The latter shares in spirit some of what is
proposed here and in [15] through the use of action schemas
to describe information-providing and world-altering actions
that an agent could use to plan to achieve a goal on the inter-
net.
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