
Artificial Intelligence 175 (2011) 1308–1345
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Specifying and computing preferred plans ✩

Meghyn Bienvenu a, Christian Fritz b, Sheila A. McIlraith c,∗
a CNRS & Université Paris-Sud, France
b Palo Alto Research Center, USA
c Department of Computer Science, University of Toronto, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 April 2009
Received in revised form 30 July 2010
Accepted 30 July 2010
Available online 2 December 2010

Keywords:
Knowledge representation
Preferences
Planning with preferences

In this paper, we address the problem of specifying and computing preferred plans using
rich, qualitative, user preferences. We propose a logical language for specifying preferences
over the evolution of states and actions associated with a plan. We provide a semantics for
our first-order preference language in the situation calculus, and prove that progression
of our preference formulae preserves this semantics. This leads to the development of
PPlan, a bounded best-first search planner that computes preferred plans. Our preference
language is amenable to integration with many existing planners, and beyond planning,
can be used to support a diversity of dynamical reasoning tasks that employ preferences.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Research in automated planning has historically focused on classical planning – generating a sequence of actions to
achieve a user-defined goal, given a specification of a domain and an initial state. However, in many real-world settings
satisficing plans are plentiful, and it is the generation of high quality plans, meeting users’ preferences and constraints, that
presents the greatest challenge [50].

In this paper we examine the problem of preference-based planning – generating a plan that not only achieves a user-
defined goal, but that also conforms, where possible, to a user’s preferences over properties of the plan. To address the
problem of preference-based planning, we require a language for specifying user preferences, as well as a means of gener-
ating plans that is capable of optimizing for the defined class of preferences. To this end, we propose L P P , a first-order
language for specifying domain-specific, qualitative user preferences. L P P is expressive, supporting the definition of tem-
porally extended preferences over the evolution of actions and states associated with a plan. L P P harnesses much of the
expressive power of first-order and linear temporal logic (LTL) [51]. We define the semantics of our first-order preference
language in Reiter’s version of the situation calculus [47,53]. Leveraging this semantics, we also define an extension of L P P
that allows for the specification of preferences over the occurrence of Golog complex actions [44,53]. Golog is an Algol-
inspired agent programming language that supports the construction of complex actions using programming language-like
constructs over primitive and complex actions. Golog has proven of great utility in a diversity of agent programming appli-
cations.

L P P ’s situation calculus semantics enables us to reason about preferences over situations (corresponding to trajectories
or partial plans) within the language, which is beneficial for a diversity of reasoning tasks where distinguishing a preferred
situation or trajectory is relevant. Such tasks include but are not limited to plan understanding, diagnosis of dynamical

✩ The majority of the work presented in this paper was performed while the authors were affiliated with the University of Toronto. Revisions of the paper
were carried out while the first author was at Université Paul Sabatier and Universität Bremen, and the second author at Information Sciences Institute.

* Corresponding author.
E-mail addresses: meghyn@lri.fr (M. Bienvenu), cfritz@parc.com (C. Fritz), sheila@cs.toronto.edu (S.A. McIlraith).
0004-3702/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2010.11.021

http://dx.doi.org/10.1016/j.artint.2010.11.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:meghyn@lri.fr
mailto:cfritz@parc.com
mailto:sheila@cs.toronto.edu
http://dx.doi.org/10.1016/j.artint.2010.11.021

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1309
systems, and requirements modeling within software engineering. L P P can also be used to characterize ordered defaults
and norms for default and deontic reasoning.

Despite L P P ’s roots in the situation calculus, planning with L P P does not require the use of deductive plan synthesis
and a theorem prover. L P P is amenable to use by any state-of-the-art planner that can take LTL-based preferences as input.
Indeed, as we will discuss later, work by Baier and McIlraith [2] provides a compilation algorithm that enables preference-
based planners that do not accept LTL formulae as input to plan with L P P -like LTL preferences. In this paper, we propose
PPLAN, a bounded best-first search forward-chaining planner in the spirit of TLPlan [1] and TALPlanner [43]. PPLAN exploits
progression to efficiently evaluate LTL preference satisfaction over partial plans. To guide search towards an optimal plan, we
propose an admissible evaluation function that, in concert with A* search, results in the generation of optimal plans.

There is a significant body of research on preferences both within artificial intelligence (AI) and in related disciplines.
A recent special issue of AI Magazine [36] provides a high-level overview of some of the latest AI research in this field,
including research on planning with preferences [6]. In the last four years, there has been growing interest within the
planning community in preference-based planning. This includes study of the specification of preferences for planning (e.g.,
Son and Pontelli [59,60] and Delgrande, Schaub, and Tompits [23]), and in particular an extension to the Planning Domain
Definition Language (PDDL) [48] by Gerevini and Long to include preferences (PDDL3) [33]. In 2006, the biennial Interna-
tional Planning Competition (IPC-2006) included a track on planning with preferences specified in PDDL3. A number of
preference-based planners were developed in and around this time, and subsequently (e.g., [24,25,41,61,9,10,29,3,5,35]). We
discuss this related work in detail in Section 7.

This paper is organized as follows. In Section 2 we provide a brief review of the situation calculus. Then in Section 3,
we introduce the syntax and semantics of our L P P preference language for planning, illustrating its use through a moti-
vating example which is carried throughout the paper. With the semantics of our preference language in hand, we return
to the general problem of planning with preferences. In Section 4, we define the notion of progression over L P P pref-
erence formulae and prove that it preserves the semantics of our preferences. We also define an admissible evaluation
function, which can be used with progression and A* search to generate optimal plans. Then, in Section 5, we describe the
PPLAN algorithm, a bounded best-first forward-chaining planner that plans with preferences. We prove the correctness of
the PPLAN algorithm and present experimental results for a proof-of-concept implementation of the algorithm in Prolog.
Finally, in Section 6 we extend L P P to enable definition of preferences over Golog complex actions. We correspondingly
extend our notion of progression to include these new preference formulae. We conclude the paper with a discussion of
related work and a summary.

2. Preliminaries

The situation calculus is a sorted, logical language with equality designed for specifying and reasoning about dynamical
systems [53]. The signature of the language is specified in terms of three sorts: the set of action terms, A, consists of
constants or functions mapping objects and sometimes other actions into elements of type action; the set of situation terms
consists of the constant S0, denoting the initial state of the world, and terms of the form do(a, s) where a is an action
term and s is another situation term; finally object terms encompass everything that is neither an action nor a situation.
In the situation calculus, the state of the world is expressed in terms of functions and relations (called fluents) which are
relativized to a particular situation s, e.g., F (�x, s). In this paper, we consider only relational fluents, and we distinguish
between the set F of fluents (e.g., isSnowing(s)), which are used to model dynamic properties of the world, and the set
R of non-fluent relational formulae (e.g., meal(spaghetti)), which describe properties of the world that do not change over
time. A situation s is a history of primitive actions a ∈ A performed from the initial, distinguished situation S0. The function
do maps a situation s and an action a into a new situation do(a, s). The theory induces a tree of situations, rooted at S0.

A basic action theory D in the situation calculus comprises four domain-independent foundational axioms and a set of
domain-dependent axioms. The foundational axioms Σ define the situations, their branching structure and the situation
predecessor relation �. s � s′ states that situation s precedes situation s′ in the situation tree. Σ includes a second-order
induction axiom. The domain-dependent axioms are strictly first-order and are of the general form described below. The
reader is also directed to Appendix A for an example axiomatization of the dinner domain, which we use throughout this
paper to illustrate concepts. Note that we follow the notational convention established by Reiter [53] and assume that free
variables in situation calculus formulae are universally quantified from the outside, unless otherwise noted. In later sections,
when discussing preferences and Golog, we also adopt the convention of referring to fluents in situation-suppressed form,
e.g., at(home) rather than at(home, s).

• A set Dap of action precondition axioms which describe the conditions under which it is possible to execute an action
A in a situation s. An action precondition axiom for an action A takes the form

Poss
(

A(�x), s
) ≡ ΠA(�x, s)

where ΠA(�x, s) is a formula with free variables among �x, s which contains no situation terms other than s. For instance,
here is a possible action precondition axiom for the action eat:

Poss
(
eat(x), s

) ≡ meal(x) ∧ ∃y
(
at(y, s) ∧ readyToEat(x, y, s)

)

1310 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
• A set DSS of successor state axioms which capture the effects of actions on the truth values of the fluents. A successor
state axiom for a fluent F has the form

F
(�x,do(a, s)

) ≡ ΦF (�x,a, s)

where ΦF (�x,a, s) is a formula with free variables among a, �x, s which contains no situation terms other than s. For
example, a successor state axiom for the fluent kitchenClean might be:

kitchenClean
(
do(a, s)

) ≡ a = cleanDishes ∨ (
kitchenClean(s) ∧ ∀y a �= cook(y)

)
• A set of axioms D S0 describing the initial situation. These will consist of formulae which only mention S0, or mention

no situation at all (e.g., for the non-fluent predicates). In this paper, we assume complete information about the initial
situation, i.e., that for every n-ary relation F and every n-tuple of constants �c, we have either D S0 |� F (�c) or D S0 |�
¬F (�c).

• A set Duna of unique names axioms for actions. These have the forms

∀�x∀�y.A(�x) = A(�y) → �x = �y
where A is an action,

∀�x∀�y A(�x) �= B(�y)

where A, B are actions such that A �= B .

More details on the form of these axioms can be found in Reiter [53].

Definition 2.1 (Planning Problem). A planning problem � is a tuple 〈D, G〉 where D is a basic action theory and G is a goal
formula, representing properties that must hold in the final situation.

Here, a goal formula G denotes a formula that only contains one situation term, which is suppressed. We denote the
instantiation of G in a situation s by G(s).

In the situation calculus, planning is characterized as deductive plan synthesis [37]. Given a planning problem 〈D, G〉,
the task is to determine a situation s that is executable, and in which the goal holds, i.e.,

D |� ∃s
(
executable(s) ∧ G(s)

)
where executable(s)

def= ∀a∀s′(do(a, s′) � s → Poss(a, s′)). Notice that either the goal is satisfied in the initial situation (i.e., s =
S0), or s = do(an,do(an−1, . . . ,do(a1, S0)))

1 in which case we have shown that executing the sequence of actions a1a2 . . .an
from S0 enables us to reach a goal state.

We refer to this situation s as the plan trajectory and the (possibly empty) sequence of actions a1a2 . . .an as the associated
plan. The length of this plan is n. The set of all plans is denoted by Π , and Πk denotes the subset of plans of length � k.
A planning problem 〈D, G〉 is solvable if it has at least one plan. It is k-solvable if it has a plan of length k or less. Note that,
slightly abusing terminology, we will sometimes refer to executable sequences of actions as partial plans, even though not
all sequences of actions can be extended into a plan.

3. Preference specification

In this section we describe the syntax and semantics of our first-order preference language. We illustrate the concepts
in this paper in terms of a compelling domain we call the Dinner Domain. An independent contribution of this paper is the
creation of this planning domain which can serve as a benchmarking domain for problems in planning with preferences.
In addition to affording a number of natural and compelling temporally extended preferences, the dinner domain is easily
scaled either by increasing the number of objects involved (adding more restaurants, meals, etc.) or by making the events
more complex (e.g., buying groceries, cooking, etc.). A complete axiomatization of the dinner domain example used here is
provided in Appendix A.

Example 3.1 (The Dinner Domain). It’s dinner time and Claire is tired and hungry. Her goal is to be at home with her hunger
sated. There are three possible ways for Claire to get food: she can cook something at home, order in take-out food, or go
to a restaurant. To cook a meal, Claire needs to know how to make the meal and she must have the necessary ingredients,
which might require a trip to the grocery store. She also needs a clean kitchen in which to prepare her meal. Ordering
take-out is much simpler: she only has to order and eat the meal. Going to a restaurant requires getting to the restaurant,
ordering, eating, and then returning home.

1 We frequently abbreviate do(an,do(an−1, . . . ,do(a1, S0))) to do([a1, . . . ,an], S0), or do(�a, S0).

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1311
This example is easily encoded in any number of planning systems, and given a specification of Claire’s initial state, a
planner could generate numerous plans that achieve Claire’s goal. Nevertheless, like many of us, Claire has certain prefer-
ences concerning where and what she eats that make some plans better than others. It is the definition of these preferences
and the generation of these preferred plans that is the focus of this paper.

3.1. A first-order preference language

In this section we present the syntax of a first-order language for expressing preferences about dynamical systems.
Our preference language modifies and extends the preference language PP recently proposed by Son and Pontelli [59].
We keep their hierarchy of basic desire formulae (which we rename to trajectory property formulae), atomic preference
formulae, and general preference formulae, to which we add a new class of aggregated preference formulae. Subsequent
references to preference formulae refer to aggregated preference formulae, which encompass trajectory property formulae,
atomic preference formulae, and general preference formulae. It is such a preference formula that will be given as input to
a planner.

Definition 3.2 (Trajectory Property Formula (TPF)). A trajectory property formula is a sentence drawn from the smallest set B
where:

• F ⊂ B,
• R ⊂ B,
• If f ∈ F , then final(f) ∈ B,
• If a ∈ A, then occ(a) ∈ B,
• If ϕ1 and ϕ2 are in B, then so too are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ∃xϕ1, ∀xϕ1, next(ϕ1), always(ϕ1), eventually(ϕ1), and

until(ϕ1,ϕ2).

TPFs are used to describe properties of trajectories (sequences of actions and states). The TPFs f , r, and final(f) are used
to describe the static properties of states belonging to a trajectory, while the TPF occ(a) allows one to describe the types of
actions that occur along a trajectory. These basic TPFs then serve as building blocks for creating more complex TPFs using
the standard Boolean connectives, quantifiers, and temporal operators.

We now illustrate the kind of properties that can be expressed by TPFs by giving some sample TPFs from our motivating
example. The formal semantics of TPFs will be presented in Section 3.2.

hasIngredients(spaghetti) ∧ knowsHowToMake(spaghetti) (P1)

∃x
(
hasIngredients(x) ∧ knowsHowToMake(x)

)
(P2)

final(kitchenClean) (P3)

always
(
at(home)

)
(P4)

∃x eventually
(
occ

(
cook(x)

))
(P5)

∃x∃y eventually
(
occ

(
orderTakeout(x, y)

))
(P6)

∃x∃y eventually
(
occ

(
orderRestaurant(x, y)

))
(P7)

always
(¬(∃x∃y occ

(
drive(x, y)

) ∧ isSnowing
))

(P8)

always
(¬(∃x

(
occ

(
eat(x)

) ∧ chinese(x)
)))

(P9)

The first TPF (P1) states that in the initial situation Claire has the ingredients and the know-how to cook spaghetti. (P2)
is more general, expressing that in the initial situation Claire has the ingredients for something she knows how to make.
Observe that fluents that are not inside temporal connectives refer only to the initial situation. (P3) states that in the final
situation the kitchen is clean. The TPF (P4) states that Claire remains at home throughout the trajectory. (P5)–(P7) state
respectively that at some point in time Claire cooks, orders in take-out, or orders a meal in a restaurant. The TPF (P8) states
that at no point does Claire drive while it is snowing. Finally (P9) tells us that Claire never eats any Chinese food.

TPFs can be used to express simple “all-or-nothing” preferences. For example, the TPF (P7) can be used to indicate a
preference for going to a restaurant, and the TPF (P4) could be used to express a desire to stay at home. However, TPFs do
not allow us to express more complex preferences like the fact that Claire prefers cooking to ordering takeout to going to a
restaurant. Notice that preferences of the latter type can be satisfied to a certain degree: Claire is happiest when she cooks,
less happy if she orders take-out, and least happy when going out to a restaurant. Moreover, Claire might find cooking only
slightly better than take-out, and take-out much more appealing than going out. This suggests a need to specify preferences
over alternatives in which the user can indicate the level of preference for the different alternatives. These considerations
motivate the introduction of atomic preference formulae.

1312 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Definition 3.3 (Atomic Preference Formula (APF)). Let V be a totally ordered set with minimal element vmin and maximal
element vmax . An atomic preference formula is a formula ϕ0[v0] � ϕ1[v1] � · · · � ϕn[vn], where each ϕi is a TPF, each
vi ∈ V , vi < v j for i < j, and v0 = vmin . When n = 0, atomic preference formulae correspond to TPFs.

Note that the requirement that vi < v j for i < j, i.e., that the different values be distinct, is without loss of generality
since a set of TPFs with the same value could be replaced by their disjunction.

An atomic preference formula expresses a preference over alternatives. Each of the alternatives in the APF is annotated
with a value from a totally ordered set V which describes how far that alternative is from the ideal. The lower the value,
the closer to the ideal, the more satisfied the user. In what follows, we let V = [0,1] for parsimony, but we could just as
easily choose a strictly qualitative set like {best < good < indifferent < bad < worst}.

Returning to our example, the following APF expresses Claire’s preference over what to eat (spaghetti, followed by pizza,
followed by crêpes)2:

occ′(eat(spaghetti)
)[0] � occ′(eat(pizza)

)[0.4] � occ′(eat(crêpes)
)[0.5] (P10)

From the values that Claire assigned to the various options, we can see that she has a strong preference for spaghetti but
finds pizza and crêpes about equally appealing. If instead Claire is in a hurry, tired, or very hungry, she may be more
concerned about how long she will have to wait for her meal, giving rise to the following preference:

P6[0] � P5 ∧ P4[0.2] � P7[0.7] � P5 ∧ ¬P4[0.9] (P11)

This preference tells us that Claire’s first choice is take-out, followed by cooking if it doesn’t involve going out to get
groceries, followed by going to a restaurant, and lastly cooking when it requires leaving her home. We can see here that
Claire really prefers options that don’t involve going out.

To reiterate, an atomic preference formula represents a preference over alternatives ϕi . We wish to satisfy the TPF ϕi
with the lowest index i. Consequently, if Claire eats pizza and crêpes, this is no better nor worse with respect to (P10) than
situations in which Claire eats only pizza, and it is strictly better than situations in which she just eats crêpes. Note that
there is always implicitly one last option, which is to satisfy none of the ϕi , and this option is the least preferred.

Atomic preference formulae contribute significantly to the expressivity of our preference language, but we still lack a
way to combine atomic preferences together. In order to allow the user to specify more complex preferences, we introduce
our third class of formulae, which extends our language with conditional, conjunctive, and disjunctive preferences.

Definition 3.4 (General Preference Formula (GPF)). A formula Φ is a general preference formula if one of the following holds:

• Φ is an atomic preference formula
• Φ is γ : Ψ , where γ is a TPF and Ψ is a general preference formula [Conditional]
• Φ is one of

– Ψ1& . . . &Ψn [General And]
– Ψ1 | . . . | Ψn [General Or]

where n � 1 and each Ψi is a general preference formula.

Here are some example general preference formulae:

P2 : P5 ∧ P4 (P12)

P10 & P11 (P13)

P10 | P11 (P14)

(P12) states that if Claire initially has the ingredients for something she can make, then she prefers to stay in and cook.
Preferences (P13) and (P14) show the two ways we can combine Claire’s food and time preferences. (P13) maximizes the
satisfaction of both Claire’s food and time preferences, whereas (P14) says that she is content if either of the two were
satisfied.

Our final class of formulae allows us to combine our general preferences using a number of well-known preference
aggregation operators (cf., e.g., [26]).

Definition 3.5 (Aggregated Preference Formula (AgPF)). A formula Φ is an aggregated preference formula if one of the following
holds:

2 For legibility, we abbreviate eventually(occ(ϕ)) by occ′(ϕ), and we refer to preference formulae by their labels.

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1313
• Φ is a general preference
• Φ is one of

– lex(Φ1, . . . ,Φn)

– leximin(Φ1, . . . ,Φn)

– sum(Φ1, . . . ,Φn) [if there is a sum operation associated with V]

where n � 1 and each Φi is a general preference formula.

Note that summing elements in V (if such an operation exists) could possibly yield values outside of V , e.g., if we use
the standard arithmetic sum + on V = [0,1], we may obtain numbers greater than 1. All that we require is that the sum
operation is defined for every multi-set of elements from V , and that it outputs elements from a totally ordered set (possibly
different from V).

This concludes our description of the syntax of our preference language. Our language extends and modifies the PP
language recently proposed by Son and Pontelli [59]. Quantifiers, variables, non-fluent relations, a conditional construct, and
aggregation operators (AgPF) have been added to our language. In PP it is impossible to talk about arbitrary action or fluent
arguments or their properties, and difficult or even impossible to express the kinds of preferences given above. PP’s APFs
are ordinal rather than qualitative making relative differences between ordered preferences impossible to articulate. Finally,
our semantics, which we present in the next section, gives a different, and we argue more natural, interpretation of General
And and General Or. Relative to quantitative dynamical preferences, we argue that our language is more natural for a user.

3.2. The semantics of our language

We appeal to the situation calculus to define the semantics of our preference language. TPFs are interpreted as situation
calculus formulae and are evaluated relative to an action theory D. In order to define the semantics of more complex pref-
erence formulae, which can be satisfied to a certain degree, we associate a qualitative value or weight with a situation term,
depending upon how well it satisfies a preference formula. Weights are elements of V , with vmin indicating complete sat-
isfaction and vmax complete dissatisfaction. The motivation for introducing values was that purely ordinal preferences (such
as the atomic preference formulae in [59]) can be combined in only very limited, and not necessarily very natural, ways,
in addition to leading to great incomparability between outcomes. Replacing ordinal preferences by qualitative preferences
allows us to give a more nuanced representation of the user’s preferences.

Since TPFs may refer to properties that hold at various situations in a situation history, we use the notation ϕ[s, s′]
proposed by Gabaldon [32] to explicitly denote that ϕ holds in the sequence of situations originating in s and terminating
in s′ = do([a1, . . . ,an], s).3 Recall that fluents are represented in situation-suppressed form and F [s] denotes the re-insertion
of situation term s.

Definition 3.6. We define the following set of macros, providing an interpretation of TPFs in the situation calculus [32]4:

f
[
s, s′] def= f [s], for all f ∈ F

r
[
s, s′] def= r, for all r ∈ R

final(f)
[
s, s′] def= f

[
s′], for all f ∈ F

occ(a)
[
s, s′] def= do(a, s) � s′

(ϕ ∧ ψ)
[
s, s′] def= ϕ

[
s, s′] ∧ ψ

[
s, s′]

(ϕ ∨ ψ)
[
s, s′] def= ϕ

[
s, s′] ∨ ψ

[
s, s′]

(¬ϕ)
[
s, s′] def= ¬(

ϕ
[
s, s′])

(∃xϕ)
[
s, s′] def= ∃x

(
ϕ

[
s, s′])

(∀xϕ)
[
s, s′] def= ∀x

(
ϕ

[
s, s′])

eventually(ϕ)
[
s, s′] def= (∃s1 : s � s1 � s′)ϕ[

s1, s′]

3 Actually, in [32], the notation ϕ[s′, s] is used, where s′ is used for the start situation and s for the end situation. We chose to invert the roles of s and
s′ to keep with the situation calculus convention that s precedes s′ .

4 We use the following abbreviations:

(∃s1 : s � s1 � s′)Φ def= ∃s1(s � s1 ∧ s1 � s′ ∧ Φ)

(∀s1 : s � s1 � s′)Φ def= ∀s1((s � s1 ∧ s1 � s′) → Φ).

1314 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
always(ϕ)
[
s, s′] def= (∀s1 : s � s1 � s′)ϕ[

s1, s′]
next(ϕ)

[
s, s′] def= ∃a

(
do(a, s) � s′ ∧ ϕ

[
do(a, s), s′])

until(ϕ,ψ)
[
s, s′] def= (∃s1 : s � s1 � s′)(ψ[

s1, s′] ∧ (∀s2 : s � s2 � s1)ϕ
[
s2, s′])

That is, a fluent which is not embedded inside some temporal connective holds in a sequence of situations just in the case
that it holds in the first situation in the sequence. For r ∈ R, we have nothing to do as r is already a situation calculus
formula. A TPF final(f) just means that the fluent f holds in the final situation. The TPF occ(a) tells us that the first action
executed is a. The Boolean connectives and quantifiers are already part of the situation calculus and so require no special
translation. Finally, we interpret all temporal connectives in exactly the same way as in [32]. Since each TPF is shorthand
for a situation calculus expression, a simple model-theoretic semantics follows.

Definition 3.7 (Trajectory Property Satisfaction). Let D be an action theory. A trajectory property formula ϕ is satisfied by a
situation s just in the case that

D |� ϕ[S0, s]
We define ws(ϕ) to be the weight of TPF ϕ with respect to situation s. ws(ϕ) = vmin if ϕ is satisfied by s, otherwise
ws(ϕ) = vmax .

We can extend this definition to the more general case as follows:

Definition 3.8. Let D be an action theory, and let s and s′ be two situations such that s � s′ . A trajectory property formula
ϕ is satisfied by the sequence of situations between s and s′ just in the case that

D |� ϕ
[
s, s′]

We define ws,s′ (ϕ) to be the weight of TPF ϕ with respect to the situations s and s′ . We define ws,s′ (ϕ) = vmin if D |�
ϕ[s, s′], otherwise ws,s′ (ϕ) = vmax .

Clearly Definition 3.7 is just a special case of Definition 3.8 since ws is simply short-hand for w S0,s . In most circum-
stances, the short-hand ws notation of Definition 3.7 will suffice, with the advantage of being easier to read and understand.
Consequently, we use it throughout the paper. Nevertheless, in proving properties of our semantics relative to progression,
we will revert to the two-situation notation of Definition 3.8.

Example 3.9. We evaluate the example TPFs presented above with respect to the plan trajectory s1 = do([cook(crêpes),
eat(crêpes), cleanDishes], S0), and the initial situation S0 in which Claire is at home with a clean kitchen and ingredients for
crêpes, and she knows how to make both spaghetti and crêpes. Recall that for these examples we assume V = [0,1], i.e.,
vmin = 0 and vmax = 1. (See Appendix A for a more detailed description of S0.)

ws1(P1) = 1, ws1(P2) = 0, ws1(P3) = 0

ws1(P4) = 0, ws1(P5) = 0, ws1(P6) = 1

ws1(P7) = 1, ws1(P8) = 0, ws1(P9) = 0

The weight of an atomic preference formula is simply defined to be the value associated with the first satisfied compo-
nent TPF:

Definition 3.10 (Atomic Preference Satisfaction). Let s be a situation and Φ = ϕ0[v0] � ϕ1[v1] � · · · � ϕn[vn] be an atomic
preference formula. Then

ws(Φ) =
{

vi if D |� ϕi[S0, s] and D �|� ϕ j[S0, s] for all 0 � j < i
vmax if no such i exists

Example 3.11. We evaluate the atomic preferences (P10) and (P11) with respect to the trajectory s1 and initial situation S0
from Example 3.9:

ws1(P10) = 0.5, ws1(P11) = 0.2

For the trajectory s2 = do([drive(home, store),buyIngredients(spaghetti),drive(store,home), cook(spaghetti), eat(spaghetti)], S0),
we obtain:

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1315
ws2(P10) = 0, ws2(P11) = 0.9

For the trajectory s3 = do([drive(home, italianRest),orderRestaurant(spaghetti, italianRest), eat(spaghetti),drive(italianRest,
home)], S0), we have instead:

ws3(P10) = 0, ws3(P11) = 0.7

Finally, for the trajectory s4 = do([orderTakeout(pizza,pizzaPlace), eat(pizza)], S0), we get:

ws4(P10) = 0.4, ws4(P11) = 0

Definition 3.12 (General Preference Satisfaction). Let s be a situation and Φ be a general preference formula. Then ws(Φ) is
defined as follows:

• ws(ϕ0[v0] � ϕ1[v1] � · · · � ϕn[vn]) is defined above

• ws(γ : Ψ) =
{

vmin if ws(γ) = vmax

ws(Ψ) otherwise
• ws(Ψ1&Ψ2& . . . &Ψn) = max{ws(Ψi): 1 � i � n}
• ws(Ψ1 | Ψ2 | . . . | Ψn) = min{ws(Ψi): 1 � i � n}

Observe that the semantics of our generalized Boolean connectives extends the semantics of their Boolean counterparts:
a conjunction Ψ1& . . . &Ψn is fully satisfied (i.e., has weight vmin) if all of the component preferences Ψi are fully satisfied;
a disjunction Ψ1 | . . . | Ψn is fully satisfied if at least one of the disjuncts Ψi is fully satisfied; and a conditional preference
γ : Ψ is fully satisfied if either the condition γ is false (i.e., has weight vmax) or the component preference formula Ψ is
fully satisfied. Returning to our example GPFs from page 1312:

Example 3.13. We evaluate our general preference formulae with respect to the trajectories s1, s2, s3, s4 and the initial
situation S0 from above (also see D S0 in Appendix A):

s1 s2 s3 s4

P12 = P2 : P5 ∧ P4 0 1 1 1
P13 = P10 & P11 0.5 0.9 0.7 0.4
P14 = P10 | P11 0.2 0 0 0

We conclude this section with the following definition which shows us how to compare two situations with respect to
an aggregated preference formula:

Definition 3.14 (Preferred Situations). A situation s1 is at least as preferred as a situation s2 with respect to a preference
formula Φ , written s1 �Φ s2, if one of the following holds:

• Φ is a GPF, and ws1 (Φ) � ws2 (Φ)

• Φ = lex(Φ1, . . . ,Φn), and either ws1 (Φi) = ws2 (Φi) for all i, or there is some i such that ws1 (Φi) < ws2 (Φi) and for all
j < i, ws1 (Φ j) = ws2 (Φ j)

• Φ = leximin(Φ1, . . . ,Φn), and either |{i: ws1 (Φi) = v}| = |{i: ws2 (Φi) = v}| for all v ∈ V or there is some v such that
|{i: ws1 (Φi) = v}| > |{i: ws2 (Φi) = v}| and for all v ′ < v we have |{i: ws1 (Φi) = v ′}| = |{i: ws2 (Φi) = v ′}|

• Φ = sum(Φ1, . . . ,Φn), and
∑n

i=1 ws1 (Φi) �
∑n

i=1 ws2 (Φi)

Strict preference (�) and equivalence (≈) are defined in the standard way.

Thus, when comparing situations s1 and s2 with respect to the preference lex(Φ1, . . . ,Φn), we simply apply the standard
lexicographic ordering to the tuples of weights (ws1 (Φ1), . . . , ws1 (Φn)) and (ws2 (Φ1), . . . , ws2 (Φn)). For the preference
formula leximin(Φ1, . . . ,Φn), we check value by value (starting with the minimal value vmin) which of the situations has
more elements of that value, privileging those situations which have more small (= good) values. In other words, we
first sort the weights in the tuples (ws1 (Φ1), . . . , ws1 (Φn)) and (ws2 (Φ1), . . . , ws2 (Φn)) in ascending order, then apply the
lexicographic ordering to the reordered tuples. Finally, if we have the preference sum(Φ1, . . . ,Φn), then we simply sum up
the weights in the tuples (ws1 (Φ1), . . . , ws1 (Φn)) and (ws2 (Φ1), . . . , ws2 (Φn)) and then compare the resulting values.

Example 3.15. We evaluate some aggregated preference formulae with respect to the trajectories s1, s2, s3, s4 and the initial
situation S0 from above. If Claire places greater importance on satisfying her food preference than her time preference, we
might have the AgPF Φ1 = lex(P10,P11), which gives the following order on situations:

1316 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
s3 �Φ1 s2 �Φ1 s4 �Φ1 s1

Suppose now that Claire wants to satisfy her food and time preferences, but she accords equal importance to both prefer-
ences. This might be expressed by the AgPF Φ2 = leximin(P10,P11), which yields the following preference ordering:

s4 �Φ2 s3 �Φ1 s2 �Φ1 s1

Since we are using a numerical set of values, the sum operator could also be used to combine Claire’s preferences, Φ3 =
sum(P10,P11), allowing her to maximize the average level of satisfaction:

s4 �Φ3 s1 ≈Φ3 s3 �Φ3 s2

Notice that because our set V of weights is assumed to be totally ordered, for each general preference formula Φ and
every pair of trajectories s1 and s2, we must have either ws1 (Φ) < ws2 (Φ) or ws1 (Φ) = ws2 (Φ) or ws1 (Φ) > ws2 (Φ). It
follows that either s1 �Φ s2 or s2 �Φ s1, i.e., �Φ defines a complete pre-order over situations. This continues to hold when
we replace Φ by an aggregated preference formula.

Remark 3.16. Given any aggregated preference formula Φ , the relation �Φ defines a complete pre-order over situations.

What is interesting about our framework is that we are capable of representing ordinal, qualitative, and simple quantita-
tive preferences. For example, if we want to avoid specifying any values at all, we can still apply the aggregation operators
to a set of TPFs. If we combine them using leximin, we generate a pre-order that ranks plans based on the number of
satisfied preferences, whereas by using the lexicographic operator (lex), we can classify plans according to criteria of vary-
ing importance. By annotating APFs with qualitative values, which is a focus of this paper, the user can specify the relative
differences in levels of preference for different alternatives, which allows her to combine preferences in a number of natural
ways. Finally, our approach works equally well in the case where the relative differences are expressed numerically, in which
case the user can make use of the sum aggregation operator which allows for compensation between different preferences.

4. Planning with preferences

With a preference language in hand, we return to the problem of planning with preferences.

Definition 4.1 (Preference-Based Planning Problem). A preference-based planning problem �P is a tuple 〈D, G,Φ〉, where D is
an action theory, G is a goal formula, and Φ is a preference formula.

Definition 4.2 (Preferred Plan). Consider a preference-based planning problem �P = 〈D, G,Φ〉, with plan trajectories s1 and
s2, and associated plans �a1 and �a2. We say that plan �a1 is preferred to plan �a2 iff s1 �Φ s2.

Following the work on planning with domain control knowledge (e.g., TALPlanner [43], TLPlan [1]), it is interesting
to consider the generalized problem of planning with hard constraints, or domain knowledge, combined with preference
formulae. This constrained planning problem with preferences can be easily accommodated in our framework by simply adding
a TPF φc representing the control knowledge and requiring that all plans satisfy φc :

Definition 4.3 (Constrained Planning Problem with Preferences). A constrained planning problem with preferences �P
C is a tuple

〈D, G, φc,Φ〉, where φc is a TPF and D, G , and Φ are as above. A plan for �P
C is any plan �a of 〈D, G〉 such that D |�

φc[S0,do(�a, S0)].

As an example, a user of the dinner domain in conjunction with any of the previously exemplified preference formulae
may want to rule out any plans that involve leaving the house. She can do so by using φc = always(at(home)).

Definition 4.4 (Ideal Plan). Given a (constrained) preference-based planning problem with associated preference formula Φ ,
an ideal plan is any plan �a such that wdo(�a,S0)(Φ) = vmin if Φ is a GPF, or such that wdo(�a,S0)(Φi) = vmin for all 1 � i � n, if
Φ = lex(Φ1, . . . ,Φn), leximin(Φ1, . . . ,Φn), or sum(Φ1, . . . ,Φn).

Thus, an ideal plan is a plan which fully satisfies all of the user’s preferences.

Definition 4.5 (Optimal Plan). Given a (constrained) preference-based planning problem with associated preference formula
Φ , an optimal plan is any plan �a such that there does not exist a plan �b such that do(�b, S0) �Φ do(�a, S0).

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1317
An optimal plan is thus a plan which best satisfies the user’s preferences among all possible plans. Note that, since
optimality is relative, every preference-based planning problem for which at least one plan exists has at least one optimal
plan, but ideal plans do not always exist, as it may be impossible to achieve the goal while fully satisfying all of the agent’s
preferences.

Definition 4.6 (k-Optimal Plan). Given a (constrained) preference-based planning problem with preference formula Φ and
a length bound k, a k-optimal plan is any plan �a ∈ Πk such that there does not exist another plan �b ∈ Πk such that
do(�b, S0) �Φ do(�a, S0).

Thus, the set of k-optimal plans consists of those plans that best satisfy the user’s preferences among the plans composed
of at most k actions.

For the purposes of this paper, we restrict our attention to planning problems with finite domains, i.e., problems whose
planning domain definitions are representable in propositional logic. This restriction to finite domains is consistent with the
state of the art in automated classical planning. Before elaborating on our approach to generating preference-based plans,
we digress slightly to discuss issues related to the complexity of preference-based planning.

4.1. Complexity of preference-based planning

While a complete analysis of the computational complexity of preference-based planning is beyond the scope of this
paper, in this subsection we provide insight into some of the key issues related to the complexity of preference-based
planning.

The computational complexity of classical planning is generally examined with respect to two fundamental decision
problems: (i) the plan existence problem – informally, does there exist a plan; and (ii) the bounded plan existence problem –
does there exist a plan of length n or less. A key factor in determining the complexity of these decision problems is the
expressiveness of the planning domain description. It is well established that classical planning with STRIPS using first-
order terms is undecidable [28], as is numeric STRIPS [39]. However, when the STRIPS planning domain is propositional,
plan existence is PSPACE-complete [19]. It takes severe syntactic restrictions on the planning domain to guarantee even NP-
completeness, though such drastic restrictions can yield propositional STRIPS domains that are tractable. The most closely
related complexity result to the problem we examine here is that of van den Briel et al. who show that determining whether
a propositional partial satisfaction planning problem has a quality of at least k is PSPACE-complete [62]. However as noted
in Section 7, while partial satisfaction planning problems are related to the notion of preference-based planning defined
here, their notion of quality (or preference) is defined and evaluated in quite a different way.

In order to study the computational complexity of preference-based planning as defined here, we must examine the
decision problems associated with the definitions we provided above. In particular, we must examine the decision problems
associated with testing whether a given plan is ideal, optimal, or k-optimal. The decision problem relating to ideal plans
necessitates testing whether the sequence of states induced by an action sequence satisfies each of the component TPFs
in the preference formula. In contrast, the optimal and (k-)optimality problems not only involve evaluating the preference
formula with respect to the given plan but also verifying that there does not exist any more preferred plan. Note that once
we have decided which of the component TPFs is satisfied by a given plan, it is possible to determine all of the possible
combinations of TPFs that may give rise to more preferred plans.

Example 4.7. Consider a GPF Φ of the form
(
ϕ1[0] � ϕ2[0.2] � ϕ3[0.7])&

(
ϕ4[0] � ϕ5[0.5] � ϕ6[0.9])

where ϕ1, . . . , ϕ6 are all TPFs. Suppose we have identified a plan trajectory s which satisfies ϕ1, ϕ5, and ϕ6. The weight of
s is 0.5, so every more preferred plan must have a weight less than 0.5. There are two ways of achieving this: either satisfy
ϕ1 ∧ ϕ4 (to get a weight of 0) or satisfy ϕ2 ∧ ϕ4 (to obtain a weight of 0.2).

Thus, we see that the two key computational problems in our setting are to decide whether a plan satisfies a given TPF
and to decide whether there exists a plan that satisfies a given TPF. The latter problem can be seen as a generalization of
the plan existence problem.

Existing complexity results related to classical planning emphasize the expressiveness of the planning domain description
as a determining factor in the complexity of plan existence. With respect to preference-based planning, since our preference
language is intended to be used in combination with a diversity of action representations including but not limited to
situation calculus, a proper analysis would require us to parameterize each of the above decision problems by the form
of the action theory and perhaps also by the form of the preference formula. In the remainder of this subsection, we
briefly discuss the complexity of the plan existence problem for TPFs for the case of propositional STRIPS action theories
and propositional preference formulae, leaving an investigation of other settings to future work. We begin by noting that
the complexity of the plan existence problem for temporally extended goals expressed in LTL has been studied previously
by Baral et al. [7]. They show that the plan existence problem is NP-complete for propositional action theories when a

1318 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
polynomial bound is placed on plan length. As their LTL goals are very similar to our TPFs, this result is trivially extended
to our setting.

Of greater interest is the case where no length bound is provided (or where the length bound is succinctly encoded) since
then the minimal-length plans might be exponentially long, preventing us from applying the “guess-and-check” method
exploited by Baral et al. We know from the classical setting that it is PSPACE-complete to determine if an instance of a
propositional STRIPS planning problem has any solutions [19]. The PSPACE lower bound clearly transfers to our setting. The
proof of PSPACE membership is based upon a recursive computation of reachability in the transition system induced by the
action theory. Initially, we want to test, for each final state s f , whether s f can be reached from the initial state s0 in at most
2n steps, where n is the number of propositional variables. This test can be performed by first guessing an intermediate
state si and testing whether (i) si can be reached from s0 in 2n−1 steps and (ii) s f can be reached from si in 2n−1 steps.
The recursion stops when we are only allowed a single step, in which case the two states must be identical or the second
state must be reachable via a single action from the first state. Since the recursive calls can be processed independently,
and there is a recursion depth of log 2n = n, we obtain membership in PSPACE. A crucial point is that we never materialize
the transition system, nor even the path from s0 to s f , as both might be exponentially large.

At first glance, there appear to be two obstacles to extending the PSPACE upper bound for classical propositional planning
to our setting:

• In classical planning, one only needs to consider plans in which each state is visited at most once, which is why we
can assume paths of length at most 2n . Such a restriction is not valid in our setting as some states might need to be
visited multiple times in order to satisfy the TPF. This means the length of the shortest plan satisfying a TPF might be
larger than the number of states.

• The recursive reachability algorithm does not allow us to keep track of the satisfaction of temporal properties.

Fortunately, both points have already been addressed by the LTL model-checking community. Indeed, the key to the PSPACE
membership proof for model checking of LTL formulae, originally shown in [54], is the construction of an enhanced tran-
sition system (more precisely, a Büchi automaton) in which the states contain not only propositional atoms, but also the
temporal formulae which need to be satisfied at the state. Reachability analysis can be performed on this modified tran-
sition system,5 which is still at most exponentially large and can be constructed on-the-fly. The LTL approach cannot be
directly applied to our setting, since standard LTL semantics treats infinite, rather than finite, state sequences and our TPFs
contain some non-standard connectives such as occ and final. However, these differences are largely superficial, and by
modifying the definition of a final state in the transition system to account for finiteness and the final connective and
by compiling away the occ connective using fluents, we can obtain membership in PSPACE for TPF plan existence in the
purely propositional setting. A result by Baral et al. shows that verifying that a given plan satisfies a TPF (our second key
decision problem) is feasible in polynomial time. Thus, by combining these results, and applying the reduction from gen-
eral preferences to TPFs suggested above, we can show PSPACE-completeness of the optimality problem (and its bounded
variant).

4.2. Progression

We now return to the question of how to compute preferred plans. Again, recall that we are restricting our attention
to planning problems with finite domains, in keeping with the state of the art in classical planning. In Section 5 we will
present an algorithm for planning with preferences, based on forward-chaining planning. As has been done with control
knowledge containing linear temporal logic formulae [1,43], we evaluate our preference formulae by progressing them as
we construct our plan. Progression takes a situation and a temporal logic formula (TLF), evaluates the TLF with respect to
the state of the situation and generates a new formula representing those aspects of the TLF that remain to be satisfied
in subsequent situations. In this section, we define the notion of progression with respect to our preference formulae, and
prove that the semantics of preference formulae is preserved through progression.

Our objective in this section is to develop a method of planning for finite domain problems and as such we define
progression for preferences ranging over finite domains. This is consistent with previous definitions of progression (e.g.,
[1,43]). We believe that it is possible to extend the definition of progression to handle our first-order preference language,
at least under some syntactic restrictions, but investigation of this issue goes beyond the scope of the present paper and is
left for future work.

In order to define the progression operator, we add the propositional constants TRUE and FALSE both to the situation
calculus and to our set of TPFs, where D |� TRUE and D � FALSE for every action theory D. To capture the progression of

occ(a), we also add the TPF occLast(a),a ∈ A, whose semantics is defined by occLast(a)[s, s′] def= ∃s′′(s = do(a, s′′)).

5 More precisely, we need to determine the emptiness of the Büchi automaton. This can be done by finding a final state s f which is reachable from the
initial state and is reachable from itself.

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1319
Definition 4.8 (Progression of a Trajectory Property Formula). Let s be a situation. The progression of a trajectory property
formula ϕ through s, written ρs(ϕ), is given by:

• For all f ∈ F , ρs(f)
def=

{
TRUE if D |� f [s]
FALSE otherwise

• For all r ∈ R, ρs(r)
def=

{
TRUE if D |� r
FALSE otherwise

• ρs(occ(a))
def= occLast(a)

• ρs(occLast(a))
def=

{
TRUE if D |� ∃s′(s = do(a, s′))
FALSE otherwise

• ρs(final(ψ))
def= final(ψ)

• ρs(¬ψ)
def= ¬ρs(ψ)

• ρs(ψ1 ∧ ψ2)
def= ρs(ψ1) ∧ ρs(ψ2)

• ρs(ψ1 ∨ ψ2)
def= ρs(ψ1) ∨ ρs(ψ2)

• ρs(∃xψ)
def= ∨

c∈C ρs(ψ
c/x)

• ρs(∀xψ)
def= ∧

c∈C ρs(ψ
c/x)

• ρs(next(ψ))
def= ψ

• ρs(always(ψ))
def= ρs(ψ) ∧ always(ψ)

• ρs(eventually(ψ))
def= ρs(ψ) ∨ eventually(ψ)

• ρs(until(ψ1,ψ2))
def= (ρs(ψ1) ∧ until(ψ1,ψ2)) ∨ ρs(ψ2)

• ρs(TRUE)
def= TRUE

• ρs(FALSE)
def= FALSE

where ψc/x denotes the result of substituting the constant c for all instances of the variable x in ϕ .

Example 4.9. With S0 defined as before, we show how to progress some example TPFs:

• ρS0(occ(cook(crêpes))) = occLast(cook(crêpes))
• ρS0(eventually(kitchenClean))

= ρS0(kitchenClean) ∨ eventually(kitchenClean)

= TRUE ∨ eventually(kitchenClean) ≡ TRUE
• ρS0(∃xhasIngredients(x)) = ∨

c∈C ρS0(hasIngredients(c))
= ρS0(hasIngredients(crêpes)) ∨ · · · ∨ ρS0 (hasIngredients(pizza))

= TRUE ∨ · · · ∨ FALSE ≡ TRUE

Progression of atomic and general preference formulae is defined in a straightforward fashion by progressing the indi-
vidual TPFs that comprise these more expressive formulae.

Definition 4.10 (Progression of Atomic, General, and Aggregated Preference Formulae). Let s be a situation, and let Φ be an atomic
or general preference formula. The progression of Φ through s is defined by:

• ρs(ϕ0[v0] � ϕ1[v1] � · · · � ϕn[vn]) def= ρs(ϕ0)[v0] � · · · � ρs(ϕn)[vn]
• ρs(γ : Ψ)

def= ρs(γ) : ρs(Ψ)

• ρs(Ψ1& . . . &Ψn)
def= ρs(Ψ1)& . . . &ρs(Ψn)

• ρs(Ψ1 | . . . | Ψn)
def= ρs(Ψ1) | . . . | ρs(Ψn)

• ρs(lex(Φ1, . . . ,Φn))
def= lex(ρs(Φ1), . . . , ρs(Φn))

• ρs(leximin(Φ1, . . . ,Φn))
def= leximin(ρs(Φ1), . . . , ρs(Φn))

• ρs(sum(Φ1, . . . ,Φn))
def= sum(ρs(Φ1), . . . , ρs(Φn))

Note that progression can lead to a potentially exponential increase in the size of a TPF. In practice, we can (and do)
greatly reduce the size of progressed formulae by the use of Boolean simplification and bounded quantification, cf. [1].

Definitions 4.8 and 4.10 show us how to progress a preference formula one step, through one situation. We extend this
to the notion of iterated progression.

1320 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Definition 4.11 (Iterated Progression). The iterated progression of a preference formula Φ through situation s = do(�a, S0),
written ρ∗

s (Φ), is defined by:

ρ∗
S0

(Φ)
def= ρS0(Φ)

ρ∗
do(a,s)(Φ)

def= ρdo(a,s)
(
ρ∗

s (Φ)
)

To prove our progression theorem, we will make use of a more general form of iterated progression, which takes two
situation arguments:

Definition 4.12 (General Iterated Progression). The iterated progression of a preference formula Φ starting from situation s1
through situation s2 (where s1 � s2), written ρ∗

s1,s2
(Φ), is defined as follows:

ρ∗
s1,s1

(Φ)
def= ρs1(Φ)

ρ∗
s1,do(a,s3)(Φ)

def= ρdo(a,s3)

(
ρ∗

s1,s3
(Φ)

)

Finally we prove that the progression of our preference formulae preserves their semantics, i.e., that our action theory
entails a preference formula over the situation history of s if and only if it entails the progressed formula up to (but not
including) s in the state associated with s. We will exploit this in proving the correctness of our algorithm in the section to
follow.

Theorem 4.13 (Correctness of Progression). Let s1 and s2 = do([a1, . . . ,an], s1) be two situations where n � 1, and let ϕ be a TPF.
Then

D |� ϕ[s1, s2] iff D |� ρ∗
s1,s3

(ϕ)[s2, s2]
where s2 = do(an, s3).

Proof. Refer to Appendix B. �
In the context of planning, we will be most interested in the case where s1 = S0:

Corollary 4.14. Let s = do([a1, . . . ,an], S0) be a situation with n � 1, and let ϕ be a TPF. Then

D |� ϕ[S0, s] iff D |� ρ∗
s′(ϕ)[s, s]

where s = do(an, s′).

From Corollary 4.14, we can prove that the weight of a preference formula with respect to a situation (plan trajectory) is
equal to the weight of the progressed preference formula with respect to the final situation, disregarding its history.

Corollary 4.15. Let s = do([a1, . . . ,an], S0) be a situation with n � 1 and let Φ be a preference formula. Then

ws(Φ) = ws,s
(
ρ∗

s′(Φ)
)

where s = do(an, s′).

4.3. An evaluation function for best-first search

In this section, we propose an admissible evaluation function for best-first search. To this end, we introduce the notion
of optimistic and pessimistic weights of a situation relative to a GPF Φ . These weights provide a bound on the best and worst
weights of any successor situation with respect to Φ . As a result, our evaluation function is non-decreasing and will never
over-estimate the actual weight, thus enabling us to define an optimal search algorithm.

Optimistic (resp. pessimistic) weights are defined based on optimistic (resp. pessimistic) satisfaction of TPFs. Intuitively,
optimistic satisfaction, denoted ϕ[s, s′]opt , assumes that any parts of the TPF not yet falsified will eventually be satisfied,
i.e., that there is a continuation s′′ of situation s′ such that ϕ[s, s′′] is entailed by the action theory, but without doing
look-ahead. Pessimistic satisfaction, denoted ϕ[s, s′]pess , assumes the opposite, namely that anything not yet satisfied will
eventually be falsified. The definition of optimistic and pessimistic satisfaction largely follows the definition of (normal)
satisfaction of TPFs given earlier. The key difference is in the definition of next(ϕ), occ(a), and final(ϕ):

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1321
final(ϕ)
[
s, s′]opt def= TRUE

final(ϕ)
[
s, s′]pess def= FALSE

occ(a)
[
s, s′]opt def= do(a, s) � s′ ∨ s = s′

occ(a)
[
s, s′]pess def= do(a, s) � s′

next(ϕ)
[
s, s′]opt def= ∃a

(
do(a, s) � s′ ∧ ϕ

[
do(a, s), s′]opt ∨ s = s′)

next(ϕ)
[
s, s′]pess def= ∃a

(
do(a, s) � s′ ∧ ϕ

[
do(a, s), s′]pess)

It follows that when s = s′ , occ(a)[s, s′]pess ≡ FALSE and next(ϕ)[s, s′]pess ≡ FALSE. For later use with progression, we also

define occLast(a)[s, s′]opt/pess def= occLast(a)[s, s′]. We define the other temporal formulae in terms of next.

eventually(ϕ)
[
s, s′]opt/pess def= ϕ

[
s, s′]opt/pess ∨ next

(
eventually(ϕ)

)[
s, s′]opt/pess

always(ϕ)
[
s, s′]opt/pess def= ϕ

[
s, s′]opt/pess ∧ next

(
always(ϕ)

)[
s, s′]opt/pess

until(ϕ,ψ)
[
s, s′]opt/pess def= ψ

[
s, s′]opt/pess ∨ (

ϕ
[
s, s′]opt/pess ∧ next

(
until(ϕ,ψ)

)[
s, s′]opt/pess)

For the purpose of creating an admissible evaluation function for planning, we are really only interested in optimistic
evaluation. The reason why we also need pessimistic evaluation is simple: the TPF ¬ϕ is optimistically satisfied if and only
if ϕ is not pessimistically satisfied. That is, it is optimistic to assume that there is a way to falsify ϕ which in turn will
satisfy the negation. We thus define:

(¬ϕ)
[
s, s′]opt def= ¬(

ϕ
[
s, s′]pess)

(¬ϕ)
[
s, s′]pess def= ¬(

ϕ
[
s, s′]opt)

For all other elements of the language, the definitions are the same as for normal TPF satisfaction.
We can now define optimistic and pessimistic weights of TPFs in terms of optimistic and pessimistic TPF satisfaction:

wopt
s,s′(ϕ) =

{
vmin if D |� ϕ[s, s′]opt

vmax otherwise

and

wpess
s,s′ (ϕ) =

{
vmin if D |� ϕ[s, s′]pess

vmax otherwise

For readability, we abbreviate wopt
S0,s and wpess

S0,s by wopt
s and wpess

s respectively.
For APFs and GPFs the definitions of optimistic and pessimistic weights are straightforward.

Definition 4.16 (Optimistic/Pessimistic Atomic Preference Satisfaction). Let s be a situation and Φ = ϕ0[v0] � ϕ1[v1] � · · · �
ϕn[vn] be an atomic preference formula. Then

wopt/pess
s (Φ) =

{
vi if D |� ϕi[S0, s]opt/pess and D �|� ϕ j[S0, s]opt/pess for all 0 � j < i
vmax if no such i exists.

Definition 4.17 (General Preference Satisfaction). Let s be a situation and Φ be a general preference formula. Then wopt
s (Φ),

respectively wpess
s (Φ), is defined as follows:

• wopt/pess
s (ϕ0[v0] � ϕ1[v1] � · · · � ϕn[vn]) is defined above

• wopt/pess
s (γ : Ψ) =

{
vmin if w pess/opt

s (γ) = vmax

wopt/pess
s (Ψ) otherwise

• wopt/pess
s (Ψ1& . . . &Ψn) = max{wopt/pess

s (Ψi): 1 � i � n}
• wopt/pess

s (Ψ1 | . . . | Ψn) = min{wopt/pess
s (Ψi): 1 � i � n}

The following theorem describes some of the important properties of our optimistic and pessimistic weight functions.

Theorem 4.18. Let s be any situation, let [a1, . . . ,an] be an action sequence, and for every i such that 0 � i � n, let si =
do([a1, . . . ,ai], s). Let further ϕ be a TPF and Φ a general preference formula. Then for any 0 � i � j � k � n:

1322 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
1. If D |� ϕ[s, si]pess, then D |� ϕ[s, s j], and if D �|� ϕ[s, si]opt , then D �|� ϕ[s, s j],
2. wopt

si
(Φ) � wopt

s j
(Φ) and wopt

s j
(Φ) � wsk (Φ),

3. wpess
si

(Φ) � wpess
s j

(Φ) and wpess
s j

(Φ) � wsk (Φ).

Proof. Refer to Appendix C. �
Intuitively, 1. states that the pessimistic satisfaction of a formula over a sequence of situations implies that any continu-

ation of this sequence also satisfies the formula. It further states that a formula that does not hold optimistically cannot be
made true by any continuation. Correspondingly, 2. states that optimistic weight is non-decreasing and bounded from above
by the real weight of any future situation. Finally, 3. gives the analogue for pessimistic weights: they are non-increasing and
bounded from below by the real weight of any future situation.

One immediate implication of this is the following:

Corollary 4.19. For any two situations s, s′ , such that s � s′:

If wopt
s (Φ) = wpess

s (Φ) then ws′(Φ) = wopt
s (Φ) = wpess

s (Φ).

Since these definitions are compatible with those defined for progression, we have the following corollary to Theo-
rem 4.18:

Corollary 4.20. Let s = do([a1, . . . ,an−1], S0) and s′ = do(an, s) be situations where n � 1, and let ϕ be a TPF. Then D |�
ϕ[S0, s′]opt/pess iff D |� ρ∗

s (ϕ)[s′, s′]opt/pess.

Proof. Refer to Appendix D. �
This corollary states that we can still use progression when computing optimistic and pessimistic weights. Intuitively this

is because the optimistic (pessimistic) part of the evaluation is only concerned with the future whereas progression deals
with the past. Since the past won’t change, there is no room for optimism or pessimism.

We can now define our evaluation function fΦ .

Definition 4.21 (Evaluation function). Let s = do(�a, S0) be a situation and let Φ be a general preference formula. Then fΦ(s)
is defined as follows:

fΦ(s) =
{

ws(Φ) if �a is a plan
wopt

s (Φ) otherwise

From Theorem 4.18 we see that the optimistic weight is non-decreasing and never over-estimates the real weight. Thus,
fΦ is admissible and when used in best-first search, the search is optimal.

5. The PPLAN algorithm and implementation

In this section, we describe PPLAN, a bounded best-first search forward chaining planner for computing preferred plans.
PPLAN is currently implemented in Prolog and has not been optimized. Rather, its Prolog implementation provides a means
of experimenting with different heuristics and search techniques and a framework for reasoning with preferences in the
situation calculus. As a result of this, PPLAN’s subsequent integration with a Prolog interpreter for the agent programming
language Golog was straightforward [58]. In what follows, we describe the PPLAN algorithm and prove properties of the
system, as well as presenting experiments that illustrate the effectiveness of its heuristic to guide search. The PPLAN code
and test cases are available online [12].

The PPLAN algorithm is outlined in Algorithm 1. PPLAN takes as input an initial state init, a goal formula goal, a general
preference formula pref ,6 and a plan length bound maxLength. The algorithm returns two outputs: a plan and its weight
with respect to pref . The frontier is a list of nodes of the form (w1, w2,path, state,pref), where w1, w2 denote weights,
which usually hold the optimistic and pessimistic weight, respectively, path is the considered partial plan, state is the state
reached by it, and pref denotes the progressed preference formula. Recall that weights are values drawn from the totally
ordered set V , and may be qualitative concepts such as “excellent” or “good”, just as easily as numeric values. The frontier
is sorted by w1, then by w2, and by length (in increasing order). The frontier is initialized to the empty partial plan, its
optimistic and pessimistic weights, optW and pessW, with respect to the initial situation and the preference formula pref . In

6 For simplicity, we present our algorithm for general rather than aggregated preference formulae. We discuss the extension to aggregated preference
formulae later in the section.

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1323
Algorithm 1: PPLAN(D, init, goal, pref, maxLength)

begin1
frontier ← [(optW(pref, [], init), pessW(pref, [], init), [], init, pref)];2
if D |� goal[init] then3

node1 ← (realW(pref, [], init), realW(pref, [], init), [], init, pref);4
frontier ← sortNmergeByVal([node1] , frontier);5

while frontier �= ∅ do6
node ← removeFirst(frontier);7
if D |� goal[node.state] and node.w1 = node.w2 then8

return node.path, node.w1;9

successors ← expand(node.path, node.state, node.pref, maxLength);10
/* expand(path, state, pref, maxLength) returns a list of new nodes to add to the frontier. Each

node is of the form (w1, w2, path, state, pref). If path, the sequence of actions so far, has
length equal to maxLength, expand returns the empty list ([]). Otherwise, expand determines all
the executable actions in the given situation and returns a list which contains, for each of
these executable actions a node

(optW(pref′ , path′ , state′), pessW(pref′ , path′ , state′), path′ , state′ , pref′)
and for each action leading to a situation that satisfies the goal, a second node

(realW(pref′ , path′ , state′), realW(pref′ , path′ , state′), path′ , state′ , pref′).
Here optW, pessW, and realWdenote functions that return the optimistic, pessimistic, and real
weight for the given (progressed) preference formula, action sequence, and state.

*/
frontier ← sortNmergeByVal(successors, frontier);11

return “no solution”, ∞;12
end13

the case where the initial situation satisfies the goal, in addition, another node is added to the frontier, representing the real
weight for the empty plan (Lines 3–5). On each iteration of the while loop, PPLAN removes the first node from the frontier
and places it in node. If the partial plan of node satisfies the goal and its two weights are equal, then PPLAN returns node’s
partial plan and weight. Otherwise, we call the function expand using the elements of node as input. If path has length
equal to maxLength then no new nodes are added to the frontier. Otherwise, expand generates a new set of nodes of the
form (optW,pessW,path′, state′,pref ′), one for each action executable in state. For actions leading to goal states, expand also
generates a second node of the same form but with optW and pessW replaced by the actual weight achieved by the plan.
The reason that we need two nodes is that on the one hand, we need to record the actual weight associated with the plan
that we have found, and on the other hand, to ensure completeness, we need to be able to reach the node’s successors. The
new nodes generated by expand are then sorted by their two weights and length and are merged with the remainder of
the frontier. If we reach the empty frontier, we exit the while loop and return “no solution”.

A naive implementation of such a planner would require computing alternative plan trajectories and then evaluating
their relative weights. This is computationally explosive, requiring computation of numerous plan trajectories, caching of
relevant trajectory state, and redundant evaluation of preference formula weights. Instead, we make use of Theorem 4.13
to compute weights as we construct plans, progressing the preference formula as we go. Exploiting progression enables the
development of a best-first search strategy that orders search by weight, and evaluates preference formulae across shared
partial plans. Progression is commonly used to evaluate domain control knowledge in forward chaining planners such as
TLPlan [1] and TALPlanner [43], where progression of hard constraints prunes the search space. In contrast, we are unable
to prune less preferred partial plans, because they may yield the final solution, hence the need for a best-first strategy.

Note that the length bound is necessary to prevent the algorithm from exploring long or even infinite action sequences
that have optimistic weight zero but do not reach a goal state. This can, for instance, happen when a final(ϕ) TPF is used
with a formula ϕ that cannot ever be achieved using the available actions given the initial state. Since our heuristic does
not perform look-ahead – approximate or otherwise – it would not be able to detect such branches and could get stuck in
an infinite loop.

The following theorem asserts both the completeness and the k-optimality of PPLAN.

Theorem 5.1 (Correctness of PPLAN algorithm). Given as input a preference-based planning problem P and a length bound k, PPLAN re-
turns a k-optimal plan, if P is k-solvable, and returns “no solution” otherwise.

Proof. First, we prove that the algorithm terminates. There are two ways that PPLAN halts: either the first node on the
frontier is a plan and has w1 = w2 in which case PPLAN returns this plan, or we reach the empty frontier, in which case
PPLAN returns “no solution”. Let us then suppose that the first condition is never met. In this case, we will stay in the while
loop, expanding one node on each iteration. But since the successor nodes generated by expand always have length one
greater than their parent, and since expand returns an empty list whenever a node has a partial plan of length equal to k,
and there are only finitely many actions to consider in each node, we will eventually run out of nodes and reach the empty
frontier. Thus, the algorithm always terminates.

1324 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Next, we prove that the output satisfies the conditions of the theorem. This is obvious for the case where P is not
k-solvable as in this case, we will never find a plan and thus will stay in the while loop until we reach the empty frontier,
finally returning “no solution”.

We now treat the case where P is k-solvable. By definition, this means that there exists at least one plan of length
less than or equal to k. As PPLAN systematically explores the search space, at some point expand will create a node whose
partial plan satisfies the goal and will set w1 and w2 to the actual weight. This means that the frontier will contain a
node satisfying the conditions of the if-statement, and hence, at some point, we will enter the if-statement and return a
non-empty plan. It remains to be shown that the plan returned is k-optimal.

Suppose for a contradiction that we return a plan p with weight w which is not k-optimal. This means that there exists
a plan p′ of length less than or equal to k which has a weight w ′ < w . There are two possibilities: either (1) we have
generated a node corresponding to p′ and placed it behind p on the frontier, which is a contradiction as the frontier is
sorted in non-decreasing order by node.w1, which for nodes corresponding to plans is equal to their real weights, i.e., w
and w ′ in this case, or (2) there is an ancestor node of p′ which is behind p in the frontier. But this is not possible either,
as according to Theorem 4.18, any ancestor of p′ must have an optimistic weight less than or equal to w ′ < w (and hence
would again be before p on the frontier). We have thus shown that if P is k-solvable, the returned plan is k-optimal,
concluding the proof. �

Note that our algorithm is straightforwardly modified to handle aggregated preference formulae. It suffices to associate a
tuple of optimistic and pessimistic weights with each node, in order to keep track of the optimistic and pessimistic weights
of each of the component GPFs. We then sort the frontier by comparing the tuples according to Definition 3.14. So for
instance, given an AgPF Ψ = lex(Φ1,Φ2,Φ3), our frontier would contain nodes of the form ((w1

1, w2
1, w3

1), (w1
2, w2

w , w3
2),

path, state, pref), where wi
1 and wi

2 are the optimistic and pessimistic weights associated with the GPF Φi (for i = 1,2,3).
When sorting the frontier, we would place a node whose first component is (0,1,1) before a node with first component
(1,0,0), since (0,1,1) precedes (1,0,0) in the lexicographic ordering. It is easy to show that Theorem 5.1 continues to hold
for the modified algorithm which takes aggregated preference formulae as input.

5.1. Experiments

As noted previously, PPLAN was implemented in Prolog as a testbed for planning with rich, temporally extended pref-
erences and was not optimized to support large-scale experimental evaluation. As such, its performance is not competitive
with recent state-of-the-art preference-based planners such as those that competed in IPC-2006. We discuss these planners
and their relationship to PPLAN in Section 7.

We were interested in evaluating whether the combination of progression to evaluate LTL satisfaction and our proposed
admissible heuristic provided an approach that could help guide a planner toward finding an optimal plan. From the outset,
we had two concerns. The first was that while progression and blind search had proven effective in planners like TLPlan,
the strength of progression had been rooted in its ability to prune states that did not comply with LTL domain-control
knowledge, thus vastly reducing the search space. With LTL preferences no comparable pruning could be done and as such
the merit of progression was in question. Further, our objective was ambitious – to generate an optimal plan – and as
such we were using an admissible evaluation function; however it is widely accepted that admissible heuristics often don’t
provide sufficient guidance relative to inadmissible heuristics.

To assess the behaviour of our planner, we ran 60 instances of our dinner domain.7 Each instance was run with PPLAN,
PPLANC (PPLAN augmented with domain control knowledge – see below), and with depth-first search (DFS) and breadth-
first search (BFS) algorithms. In order to facilitate comparison, DFS and BFS were passed the k-optimal weight as a parameter
and run until they found a plan with this weight (or ran out of memory). All algorithms were implemented in Prolog using
the same code base, to the extent possible. Each run was compared with respect to the length of the returned plan and the
number of nodes expanded. Results are reported in Fig. 1 with instances numbered in order of increasing PPLAN running
time. Fig. 2 plots test cases against their running time.

The 60 individual instances differed with respect to the initial state, the goal, the size and nature of the GPF, and the
length of the optimal plan. In most experiments the agent is initially at home and has at least the goal of being sated. The
initial state varies with respect to ingredients that are available at home, or things the agent knows how to cook. Preferences
reflect the type of food the agent would like to eat, and how and where the agent obtains her meal. Most GPFs contained
multiple TPFs and APFs, but the domain did not warrant LTL nesting. Most GPFs contained one or more eventually(occ())
formulae. GPFs further differed with respect to whether formulae were ground or quantified, contained conditionals, etc.
Most optimal plans were of length 6 or less. The preferences expressible as GPFs are too diverse in form and complexity to
draw conclusions regarding any correspondence between the size of a GPF formula and the scalability of the planner. Much
depends on the specifics of the problem instance [12].

7 We also ran an early version of PPLAN on the simple school travel example presented in [59], but we were unable to get comparative statistics in order
to compare the two approaches.

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1325
PPLAN PPLANC BFS DFS

Test # l NE l NE l NE l NE

1 2 7 2 7 2 61 6 481
2 3 55 3 10 3 426 7 395
3 2 7 2 7 2 51 6 406
4 2 8 2 8 2 61 6 481
5 2 9 2 9 2 71 7 510
6 3 52 3 22 3 432 7 414
7 3 55 3 10 3 426 7 395
8 2 61 2 22 2 61 7 395
9 2 51 2 21 2 51 6 406

10 4 29 4 19 4 1975 7 1113
11 2 2 2 2 2 51 6 406
12 2 3 2 3 2 61 ∗ ∗
13 6 171 6 43 ∗ ∗ ∗ ∗
14 2 3 2 3 2 61 ∗ ∗
15 3 54 3 10 3 495 7 461
16 3 51 3 21 3 408 7 389
17 3 64 3 12 3 421 7 377
18 2 8 2 8 2 61 6 481
19 2 10 2 10 2 82 7 590
20 3 55 3 10 3 426 7 395
21 6 108 6 54 4 2479 7 1688
22 2 7 2 7 2 51 6 406
23 2 8 2 3 2 51 6 406
24 3 585 3 151 3 408 3 385
25 2 9 2 3 2 61 6 481
26 3 55 3 10 3 426 7 395
27 3 15 3 15 2 71 7 377
28 3 15 3 15 3 408 7 389
29 3 16 3 16 3 495 7 461
30 3 15 3 15 2 61 7 395

PPLAN PPLANC BFS DFS

Test # l NE l NE l NE l NE

31 3 15 3 15 3 426 7 395
32 2 8 2 3 2 51 6 406
33 3 68 3 23 3 408 3 385
34 3 15 3 15 3 426 7 395
35 3 408 3 119 3 408 7 389
36 5 13 6 15 2 60 7 432
37 5 29 6 11 4 1975 7 1113
38 5 22 5 22 2 61 6 481
39 4 29 4 19 4 1975 6 11 767
40 4 29 4 19 4 1975 6 11 767
41 5 49 5 29 ∗ ∗ 7 15 049
42 5 23 5 23 2 71 7 510
43 2 597 2 169 2 51 2 402
44 4 27 5 31 ∗ ∗ ∗ ∗
45 3 55 3 10 3 432 7 414
46 4 60 4 8 4 2537 7 1526
47 4 59 4 7 4 2088 7 1015
48 5 28 6 11 4 2088 7 1015
49 3 65 3 12 3 432 7 414
50 7 115 5 36 ∗ ∗ 7 2540
51 2 7 2 7 2 51 6 406
52 7 57 7 37 4 2417 7 1617
53 2 702 2 163 2 61 2 477
54 3 55 3 10 2 61 7 395
55 3 597 3 169 3 505 3 493
56 4 37 4 22 4 2479 7 1688
57 7 257 6 19 137 ∗ ∗ ∗ ∗
58 6 1254 6 85 4 2599 7 1597
59 6 51 753 6 8157 ∗ ∗ ∗ ∗
60 3 16 878 3 340 3 432 ∗ ∗

Fig. 1. Plan length (l) and nodes expanded (NE) by PPLAN, PPLAN augmented by hard constraints (PPLANC), breadth-first search (BFS), and depth-first search
(DFS). The symbol ∗ indicates out of memory (1 GB limit).

Overall, the results were quite positive. In 55 of the 60 test cases PPLAN expanded fewer nodes than BFS and DFS,
generally by a significant margin and often even an order of magnitude.

The four cases where BFS and DFS outperformed PPLAN are all cases where there was a short k-optimal but non-ideal
plan. In these cases, PPLAN quickly found the plan, but had to continue the search in order to ensure that no other better
plan existed. The poor performance of PPLAN relative to BFS and DFS in these cases is a result of the experimental setup
which gave BFS and DFS an unfair advantage by supplying them with the k-optimal weight. If PPLAN had received the same
input, it would not have resulted in a larger number of expanded nodes. In two cases, PPLAN expanded a comparatively
large number of nodes (> 10,000). This speaks to the difficulty of the task. A good way to cope with this problem is to
add domain-dependent control knowledge to reduce the search space, as was done in TLPlan. In order to test out this idea,
we reran PPLAN on the test suite, this time pruning all nodes whose partial plans contained two consecutive drive actions
or those containing orderTakeout, orderRestaurant, or cook actions not immediately followed by an eat action. As the results
show, adding these simple pieces of control knowledge allowed PPLAN to find a plan while expanding far fewer nodes in
the process. Taken all together, we feel that these results speak to the effectiveness of our evaluation function in guiding
the search but also to the interest of combining this approach with domain-dependent control knowledge, or some other
means of pruning the search space. Regarding the running times plotted in Fig. 2, there is a rough correspondence between
the numbers of nodes expanded by PPLAN and an instance’s running time. Interestingly, while DFS generally expands many
more nodes than PPLAN, it is still comparatively fast. This, however, is once again a consequence of knowing the k-optimal
value. If this value had to be found incrementally, long search horizons would need to be explored exhaustively first, before
the optimal plan/value would be found.

It is interesting to note test cases 24, 43, 53, 55, and 60 where PPLAN demonstrates poorer performance than BFS and
DFS. Recall that PPLAN’s best-first search explores plans based on weight then length. As a consequence, PPLAN can be
led astray, investigating a long plan with low weight, whereas the best plan can end up being a shorter plan with higher
weight. However, this behaviour appears to occur infrequently, and the heuristic generally leads to significantly improved
performance.

Also note that BFS sometimes finds shorter plans than PPLAN (see cases 31, 33, 34, 36, 37, 39, 48, 49, 52, and 54). PPLAN
uses plan length only as a third sorting criterion and hence length is only considered when the first two weights are equal.
However, when a goal is found, the second weight of the newly created tuple for this plan is set to the real weight, which
is often lower than the pessimistic weight. Therefore, when a plan is returned there may still be other plans with the same
weight which are shorter. The comparison with DFS shows that this is, however, not the reason for PPLAN’s performance
improvement over BFS. We conclude that the implemented heuristics provide valuable search guidance.

1326 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Fig. 2. Running-time of PPLAN, PPLAN augmented by hard constraints (PPLANC), breadth-first search (BFS), and depth-first search (DFS). Missing values
indicate out of memory (1 GB limit).

5.2. Beyond PPLAN

Our original experimental results with PPLAN were encouraging, but we realized from our experience with IPC planners
that much more could be done. In particular many state-of-the-art planners use some form of heuristic search, based on a
relaxed plan graph (RPG) that provides a good estimate of the distance from the current state to a state in which a goal is
reached (e.g., [40]). Of course, when the goal (or in this case, preference) is an LTL formula, it is more difficult to form such
an estimate.

Indeed in analyzing earlier PPLAN results, it was clear that our optimistic evaluation function was lacking in two ways.
First, in certain cases it could not distinguish between partial plans that made progress towards satisfying preferences and
those that did not. Second, and more importantly, our evaluation function provided no estimate of the number of actions
required to satisfy TPFs such as eventually(ϕ) nor did it have a way of determining actions to select that would make
progress towards satisfaction of preferences. To illustrate the former point, consider how PPLAN evaluates the following GPF,
Φ , taken from [5]:

[
eventually(ϕ1) ∧ eventually(ϕ2)

][v1] � always(ϕ3)[v2],
where ϕ1 might be occ(clean(kitchen)), ϕ2 might be occ(eat(pizza)) and ϕ3 might be at(home). Our PPLAN optimistic
evaluation assumes (optimistically) that each of the component predicates in the TPF can become true as new actions
are added, until proven false. As such, the TPF eventually(ϕ1) ∧ eventually(ϕ2) will be true whether or not either of ϕ1 or
ϕ2 have actually been satisfied because eventually(ϕi) can never be falsified. There is always hope that ϕi will be achieved
in a subsequent state of the plan. Thus, there is no distinction between a partial plan in which one or both of ϕ1 or ϕ2
have been achieved and one in which they have not, and as such no measure of progress towards satisfaction of the TPF.
This lack of ability to distinguish progress towards satisfaction of a TPF is dependent on the form of the TPF. In contrast, the
TPF always(ϕ3) is falsifiable as soon as ϕ3 is false in some state. To evaluate the APF/GPF, we assign a weight equal to the
smallest weight TPF that is optimistically satisfied. Since the TPF eventually(ϕ1) ∧ eventually(ϕ2) is always optimistically
satisfied, our example Φ is always evaluated to weight v1.

From these observations of the shortcomings of the PPLAN evaluation function, Baier and McIlraith explored whether
look-ahead heuristics could be developed that would address these deficiencies. The results of this examination were re-
ported in [5]. First L P P GPF preferences were decomposed into smaller constituent pieces and then translated, following
[2], into parameterized non-deterministic finite-state automata whose accepting conditions corresponded to satisfaction of
the component preference formulae. For each new planning instance, the planning domain description was augmented with
a description of the automata representing the preference formulae – the state of each automaton, and what governed
transitions between automaton states. From here, a set of inadmissible and admissible heuristics were proposed that were
used together to guide search towards satisfaction of the goal and preferences. These heuristics exploited the RPG over the
automata-enhanced domain and thus were able to measure progress towards satisfaction of LTL formulae. Since the use of
inadmissible heuristics caused the system to lose the guarantee that the first plan returned was optimal, an incremental
approach was used to search for a plan, and it was shown that if the algorithm terminated, the plan was optimal. Leveraging
the insights from PPLAN of the power of pruning, this work developed a sound pruning strategy that allowed inferior partial
plans to be identified and pruned from the search space, thus reducing the search space significantly.

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1327
Experimental results comparing this work with the PPLAN algorithm presented above showed that in some instances
there was an order of magnitude reduction in the number of nodes expanded before an optimal plan was found. This is
attributed in great part to the heuristics’ ability to guide search going forward, which in turn is the result of compiling
the LTL formulae into a form that can exploit a look-ahead heuristic such as an RPG heuristic. The optimistic evaluation
function itself operates well in many situations, and indeed was exploited in an IPC-2006 planner to great gain, as discussed
in Section 8.

6. Specifying preferences over complex actions

In previous sections we defined L P P , a language for specifying rich, temporally extended preferences, and proposed an
algorithm for computing optimal preference-based plans. In this section, we return to this language, proposing an extension
with complex actions.

One of the notable features of L P P is the occ(a) statement, which allows for the specification of preferences for partic-
ular actions. We extend L P P with two additional constructs in order to allow for the expression of preferences concerning
the occurrence of complex actions – actions that capture the orchestration of multiple primitive or other complex actions
using well-known programming constructs. Dine in restaurant might be such a complex action, comprising actions that take
the agent from her current location to the restaurant, where she orders and then eats a meal, and finally returns the agent
back to her original location.

In many practical circumstances, people think in terms of complex actions when they describe preferred ways of achiev-
ing a given goal. It follows that allowing users to describe preferences directly in terms of these complex actions, instead
of requiring them to reformulate their preferences in terms of atomic actions, may help simplify the preference elicitation
process. Furthermore, the provision of such – procedural – complex actions can be used to effectively guide the search
towards the goal, as complex actions often take the form of under-constrained prototypical plans.

For specifying and reasoning about complex actions, we use the Golog language and semantics [44]. Golog is a pro-
gramming language defined in the situation calculus which allows a user to specify programs whose set of legal executions
specifies a sub-tree of the tree of situations of a basic action theory. Golog has an Algol-inspired syntax extended with
flexible non-deterministic constructs, which are later transformed into specific sequences of actions by a planner. This in-
tegration of planning and programming has proved useful in a variety of diverse applications including museum tour-guide
robots [18], Web service composition [49], and soccer playing robots [30].

6.1. Golog

The set of Golog programs (without procedures) is inductively defined using the following constructs, where all appearing
δ’s are again Golog programs (without procedures) and the ϕ ’s are pseudo-fluent expressions. These represent situation
calculus formulae with all situation terms suppressed. The expression ϕ[s] denotes the instantiation of ϕ with all occurring
fluents relativized to situation s.

a primitive action
ϕ? test condition ϕ
(δ1; δ2) sequence
if ϕ then δ1 else δ2 conditional
while ϕ do δ′ loops
(δ1|δ2) non-deterministic choice
π v.δ non-deterministic choice of argument
δ∗ non-deterministic iteration

In addition, we introduce the term any to denote any action. In order to avoid ambiguity, in what follows we will call
programs built from these constructs L P P -programs.

As an example, the following program may describe a preferred way of going out to a restaurant:

πr.
(
dineInRest(r)?; if close(home, r)

then
(
walk(home, r);π y.orderRestaurant(r, y); eat(y);walk(r,home)

)
else

(
drive(home, r);π y.orderRestaurant(r, y); eat(y);drive(r,home)

))
(G1)

The program begins by picking a dine-in restaurant. Then, if the chosen place is close to home, it prescribes to walk there,
order, eat, and return home. Otherwise, walking is replaced by driving.

The next example shows how non-determinism can be used to “achieve” a sub-goal, here hasIngredients(m). Using the
any∗ construct, the program leaves it up to the planner to find a sequence of actions that will satisfy the subsequent
condition. The following program describes a sensible procedure for fixing a meal at home.

πm.
((

meal(m) ∧ knowsHowToMake(m)
)
?;any∗;hasIngredients(m)?; cook(m); eat(m)

)
(G2)

1328 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
According to this program, one starts by selecting a meal that one knows how to make and ensuring that one has all the
necessary ingredients, which could involve a trip to the grocery store, and then the meal can be prepared and finally eaten.

Originally, the semantics of Golog programs was defined via recursive macro expansion of programs into formulae of
the situation calculus. Such an “evaluation semantics” requires one to evaluate the entire program at once, which makes
it difficult to use in the context of planning. This is the reason that in this paper we adopt an alternative semantics for
Golog programs, the so-called “transition semantics”, which was introduced in [21], where it was shown to be equivalent
to the evaluation semantics. The transition semantics is defined in terms of possible transitions between program–situation
pairs, called configurations. Roughly speaking, a configuration δ, s can lead to a configuration δ′, s′ (written Trans(δ, s, δ′, s′))
if by executing a single step of the program δ in situation s, we reach the situation s′ where the remaining program
is δ′ . A second predicate Final is used to characterize the conditions under which a program has executed completely. The
transition semantics is well-suited to our purposes as it permits a step-by-step evaluation of programs.

Formally, the two aforementioned predicates, Trans and Final, are defined using the following axioms [21], where a[s]
denotes action a with all of its arguments evaluated in s, ϕ[s] denotes the truth value of formula ϕ in s, and δv

x denotes
the substitution of all occurrences of v in δ by x:

Trans
(
a, s, δ′, s′) ≡ Poss(a, s) ∧ δ′ = nil ∧ s′ = do

(
a[s], s

)
Trans

(
any, s, δ′, s′) ≡ ∃a

(
Poss(a, s) ∧ δ′ = nil ∧ s′ = do

(
a[s], s

))
Trans

(
ϕ?, s, δ′, s

) ≡ ϕ[s] ∧ δ′ = nil

Trans
(
δ1; δ2, s, δ′, s′) ≡ (

Final(δ1, s) ∧ Trans
(
δ2, s, δ′, s′))

∨∃γ ((
δ′ = (γ ; δ2) ∧ Trans

(
δ1, s, γ , s′)))

Trans
(
if ϕ then δ1 else δ2, s, δ′, s′) ≡ (

ϕ[s] ∧ Trans
(
δ1, s, δ′, s′)) ∨ (¬ϕ[s] ∧ Trans

(
δ2, s, δ′, s′))

Trans
(
while ϕ do δ1, s, δ′, s′) ≡ ϕ[s] ∧ ∃γ (

Trans
(
δ1, s, γ , s′) ∧ δ′ = (γ ;while ϕ do δ1)

)
Trans

(
δ1|δ2, s, δ′, s′) ≡ Trans

(
δ1, s, δ′, s′) ∨ Trans

(
δ2, s, δ′, s′)

Trans
(
π v.δ, s, δ′, s′) ≡ ∃xTrans

(
δv

x , s, δ′, s′)
Trans

(
δ∗, s, δ′, s′) ≡ ∃γ (

Trans
(
δ, s, γ , s′) ∧ δ′ = γ ; δ∗)

Final(nil, s)

Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(if ϕ then δ1 else δ2, s) ≡ (
ϕ[s] ∧ Final(δ1, s)

) ∨ (¬ϕ[s] ∧ Final(δ2, s)
)

Final
(
while ϕ do δ′, s

) ≡ ¬ϕ[s] ∨ Final
(
δ′, s

)
Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)

Final(π v.δ, s) ≡ ∃xFinal
(
δv

x , s
)

Final
(
δ∗, s

)
Trans and Final enable us to reason about the satisfaction of procedural constraints, similar to the satisfaction of the

temporal constraints expressed as trajectory property formulae described earlier. By using the transitive closure of Trans,
denoted Trans∗ , we can define a new predicate Do, which allows one to express the fact that a program δ can terminate in
situation s′ when executed in situation s:

Do
(
δ, s, s′) def= ∃δ′(Trans∗

(
δ, s, δ′, s′) ∧ Final

(
δ′, s′))

We say that s, s′ satisfy δ, or, alternatively, that s′ describes a complete execution of δ in s. Since in this paper we are
only concerned with finite situation terms, the above is equivalent to saying that there is a sequence of configurations
(δ1, s1), . . . , (δn, sn) such that: δ1 = δ, s1 = s, sn = s′ , and for all 1 � i < n, D |� Trans(δi, si, δi+1, si+1) and D |� Final(δn, sn).

Given that both our preference language and Golog define their semantics over situation trajectories in the situation cal-
culus, they can be seamlessly integrated with one another. This enables the specification of preferences over the occurrence
of complex actions, defined as the complete execution of the L P P -programs describing these actions.

6.2. Preferred programs

We are now ready to define preferences over the occurrence of complex actions. To this end, we extend our preference
language L P P by augmenting the set of trajectory property formulae as follows.

Definition 6.1 (Extended Trajectory Property Formula (eTPF)). An extended trajectory property formula is a sentence drawn
from the smallest set B′ where:

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1329
1. F ⊂ B′ .
2. R ⊂ B′ .
3. f ∈ F , then final(f) ∈ B′ .
4. If a ∈ A, then occ(a) ∈ B′ .
5. If ϕ1 and ϕ2 are in B′ , then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ∃xϕ1, ∀xϕ1, next(ϕ1), always(ϕ1),

eventually(ϕ1), and until(ϕ1,ϕ2).
6. If δ is an L P P -program and ϕ ∈ B′ , then occC(δ) ∈ B′ and afterC(δ,ϕ) ∈ B′ .

Intuitively, the eTPF occC(δ) states that the program δ is executed starting from the current state. To express that a
complex action δ is executed at some point during a plan, we can use the eventually construct: eventually(occC(δ)). The
eTPF afterC(δ,ϕ) stipulates that if the program δ is executed now, then ϕ holds in the situation where δ terminates. Note
that ϕ may be a temporal formula. For instance, afterC(cook(x),eventually(occ(eat(x)))) describes the set of trajectories
where if a dish is cooked, it is eventually eaten afterwards. Using always, it is also possible to state that ϕ holds whenever
δ completes executing (i.e., no matter when execution starts): always(afterC(δ,ϕ)).

Extending the semantics of TPFs to eTPFs is straightforward given the above definition of program satisfaction:

occC(δ)
[
s, s′] def= (∃s1: s � s1 � s′)Do(δ, s, s1)

afterC(δ,ϕ)
[
s, s′] def= (∀s1: s � s1 � s′)(Do(δ, s, s1) → ϕ

[
s1, s′])

Note that temporally extended properties can coexist with the occurrence of complex actions, in which case these prop-
erties are also applicable to the actions forming part of the complex action. For instance, the eTPF always(¬cold) ∧
eventually(occC(G1)), where (G1) denotes the program specified above, states that eventually the program is executed,
while at no time before, during, or after execution, the agent feels cold.

Using afterC, we can stipulate, for instance, that if cooking something at home using the above described procedure
(G2), the dishes will eventually be cleaned afterwards:

afterC
(
G2,eventually

(
occ(cleanDishes)

))
The remainder of the hierarchy of preference formulae stays the same, meaning that the change of semantics at the TPF

level does not require any changes at the higher levels, APFs, GPFs, and AgPFs. To refer to such preference formulae when
eTPFs are used instead of TPFs, we will use the terms eAPFs, eGPFs, and eAgPFs.

6.3. Progressing programs

The transition semantics presented in Section 6.1 is a progression of programs in disguise. To make this point clearer, we
provide a formal definition of program progression. In our definition, we make reference to the set

�′(δ,do(a, s)
) = {

δ′ ∣∣ D |� Trans∗
(
δ, s, δ′,do(a, s)

)}
which consists of all possible remaining programs δ′ , after having performed a (sequence of) program transition(s) whose
only primitive action is the given action a, starting in the given situation s. The reason that there may be a sequence of
(program) transitions, rather than just a single transition, is that tests (ψ?) do not change the situation term. Note that in
most cases, the set �′(δ, s) will either be empty (if there is no possible transition using a) or only contain a single element
(when there is a unique possible transition). One rather pathological example in which the set contains more than one
element is: �′((a|(a;b)),do(a, S0)) = {nil,b}.

Definition 6.2 (Progression of an L P P -program). Let s be a situation, and let δ be an L P P -program. The progression of
occC(δ) and afterC(δ,ψ) through s is given by:

• If ϕ = occC(δ), then ρs(ϕ) =
{

TRUE, if D |� Final(δ, s);
occCtrans(δ), otherwise.

• If ϕ = occCtrans(δ), then ρs(ϕ) = ∨
δ′∈�′(δ,s) ρs(occC(δ′)).

• If ϕ = afterC(δ,ψ), then ρs(ϕ) =
{

ρs(ψ), if D |� Final(δ, s);
afterCtrans(δ,ψ), otherwise.

• If ϕ = afterCtrans(δ,ψ), then ρs(ϕ) = ∧
δ′∈�′(δ,s) ρs(afterC(δ′,ψ)).

Recall that a disjunction over an empty set is false, whereas a conjunction over an empty set is true. Hence, when the
situation term does not describe an execution of the program δ, then occC(δ) will fail, whereas afterC(δ,ψ) will trivially
hold.

In these definitions we make use of auxiliary constructs, similar to occLast, called occCtrans and afterCtrans. These, just
like occLast, are required to do one-step bookkeeping: since the statement occC(a;b) states that the sequence of actions

1330 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
a;b is executed in the current situation, and hence regards the future, we need to keep track of this property and evaluate it
(partially) in the next step. Thus, e.g., occCtrans(a;b) requires that the last action of the situation term describes a transition
or sequence of transitions of the program, whose only primitive action is a.

In both occCtrans and afterCtrans we refer to a set of possible such (partial) program executions. This is mainly for tech-
nical reasons. In general, given a sequence of primitive actions, there is only one possible sequence of configurations of the
program whose contained sequence of situations corresponds to this action sequence. However, in rather pathological cases,
there may be several possible such configuration sequences, and hence, several possible remaining programs. For instance,
this is the case for the program (a|(a;b)) and the single-action sequence a (cf. above). Here, either the empty program or
the program b remains. Ambiguities of this kind are undesirable in programs, which should be rewritten accordingly – e.g.,
to (a; (nil|b)) in our example.

6.4. Planning with preferred programs

In order for our planning algorithm to be able to accept preference formulae involving complex actions, we need to de-
fine the optimistic/pessimistic satisfaction of extended trajectory property formulae by providing optimistic and pessimistic
interpretations of the new constructs.

For the occC construct, we can optimistically assume that any incompletely executed program will eventually be com-
pleted.

occC(δ)
[
s, s′]opt def= (∃s1 : s � s1 � s′)(∃δ′(Trans∗

(
δ, s, δ′, s1

) ∧ (
Final

(
δ′, s1

) ∨ s1 = s′)))
On the other hand, if we are pessimistic, then we would assume that incompletely executed programs will never be com-
pleted. Hence, pessimistic evaluation coincides with the original semantics of completed program execution.

occC(δ)
[
s, s′]pess def= (∃s1 : s � s1 � s′)Do(δ, s, s1)

Regarding post-conditions of programs (afterC), the optimistic assumption would be that either the program will not
execute until completion, or, if it already has, to evaluate the condition optimistically.

afterC(δ,ψ)
[
s, s′]opt def= (∀s1 : s � s1 � s′)(Do(δ, s, s1) → ψ

[
s1, s′]opt)

The pessimistic assumption would be that there will be a completed execution after which the condition will not hold.
Hence, in order for the condition to be pessimistically satisfied, all possible executions of the program must already termi-
nate within the given situation interval.

afterC(δ,ψ)
[
s, s′]pess def= (∀s1 : s � s1 � s′)(Do(δ, s, s1) → ψ

[
s1, s′]pess)

∧ �δ′, s′′(Trans∗
(
δ, s, δ′, s′′) ∧ s′ � s′′)

Theorem 6.3. Theorem 4.18 continues to hold when ϕ is an eTPF, and Φ is an eGPF.

Proof. Refer to Appendix E. �
Given this theorem, the algorithm described in Section 5 can be readily used to compute preferred plans also for the

case where preferences refer to complex actions, i.e., when preferences are expressed as an extended general preference
formula.8

7. Related work

There is growing interest in the issue of how to represent and reason with preferences in AI. In what follows we situate
the work presented in this paper with respect to related work on the representation of preferences, with particular attention
to those designed to represent preferences for planning. We also discuss the literature on the generation of preferred plans,
again situating our contributions within the context of this work.

7.1. Preference languages

The literature on preference languages is extensive, much of it originating from the field of economics rather than AI.
In comparing our work to other AI preference languages, many of the distinctions we raise relate to whether preference
formalisms are ordinal, qualitative or quantitative; whether they model temporal preferences or solely static preferences;

8 The algorithm can also be easily extended to treat aggregated preference formulae by associating tuples of weights with situations as we explained in
Section 5.1.

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1331
whether the formalism is propositional or first order; and whether it induces a complete pre-order on the possible outcomes
and if not the degree of incomparability in the ordering. In this context, our language is qualitative, models temporal
preferences, is first order, and induces a complete pre-order.

As further criteria for comparison, Coste-Marquis et al. [20] evaluate some propositional logic-based preference languages
with respect to expressiveness and succinctness. The issue of expressiveness is concerned with the nature of the pre-orders
that can be encoded (e.g., all pre-orders, all complete pre-orders). As noted above, L P P , by design, can encode any complete
pre-order as an atomic preference formula and thus our language can represent all complete pre-orders. We cannot however
express partial (or incomplete) pre-orders. We argue that for preference-based planning the restriction to complete pre-
orders is reasonable and even desirable. First, we feel that this restriction is not too great since many preference frameworks
adopt this same restriction. For example, in decision theory, the completeness of an agent’s preferences is taken as an axiom
[63]. Second, and more importantly, we feel that any disadvantages stemming from the restriction to complete pre-orders
are more than compensated for by the ease of comparison of different plans. Indeed, in some other formalisms where
partial orders can be encoded, the problem of deciding whether an outcome is preferred to another has been shown to be
NP-complete (e.g. [13]).

Succinctness evaluates the relative space efficiency of languages, i.e., how succinctly a preference relation (an ordering)
can be expressed in a language. In [20], this is done by showing that all orderings expressible in one language can be trans-
lated into another language with an at most polynomially large increase in size. With respect to L P P , we can demonstrate
using the following mapping that the preference language Rpen [20], which ranks outcomes by the sum of the penalties of
unsatisfied preferences, can be polynomially translated into an equivalent AgPF in our language:

{〈αi, Gi〉, i = 1, . . . ,n
} � sum

(
G1[0] � ¬G1[αi], . . . , Gn[0] � ¬Gn[αi]

)
This shows that L P P is at least as succinct as Rpen . Moreover, since there exists polynomial translations of the languages
Rbo

prio , Rlexi
prio , and R Z

cond into Rpen [20], it follows that L P P is at least as succinct as these languages as well. Overall, these
are rather positive results: L P P is expressive, being able to generate all complete pre-orders, and is at least as compact as
four of the five preference languages in [20] with the same expressivity.9 We point out however that for domain-dependent
approaches, like our own, comparisons based on domain-independent criteria are less relevant, as the real test is how well
the language can represent the types of preferences for which it was designed.

CP-Nets
A widely adopted language for studying user preferences in AI is the propositional CP-nets formalism [13]. CP-nets

enable the description of conditional ceteris paribus statements about user preferences (e.g., the user prefers red wine if
meat is being served and white wine if fish is being served, all other things being equal). User preferences are represented
in a graphical notation that is compact and that reflects the conditional independence and dependence of statements.
Unlike L P P , CP-nets is restricted to static, ordinal statements about preferences. As such, CP-nets cannot express temporal
preferences, nor can it express relative importance of different preferences. The CP-nets formalism is simple and elegant,
however it achieves this at the expense of expressiveness. There is often a high degree of incomparability between different
states because of the assumption of ceteris paribus. In [64], Wilson extends CP-Nets with stronger statements that enable the
statement of preferences irrespective of the value of other variables. Use of such preference statements supports determining a
complete pre-order on outcomes, which comes closer to the approach proposed in L P P , but is still static and ordinal.

QCL, RKBs, and possibilistic logic
Other noteworthy work includes that of Brewka on qualitative choice logic (QCL) [17]. This preference framework is

designed to represent preferences over alternatives and induces a complete pre-order over models. QCL was not developed
specifically for planning and provides a subset of the expressive power of our preference language. In [16], Brewka proposes
an ordinal preference language which expresses complex preferences over models in terms of ranked knowledge bases
(RKBs). RKBs were originally proposed for default reasoning. In 2006, Feldmann, Brewka, and Wenzel applied this work
to planning, proposing two extensions to PDDL that support the definition of preferences using RKBs [29]. In both these
extensions, the preferences are on the final state of a plan. There are no temporally extended preferences. In related earlier
work, Brekwa uses a variant of the QCL language to perform preference-based planning via answer set optimization in a
language called P L D [15]. The basic elements of P L D are rules that code context-dependent preferences over answer sets.
More complex preference formulae are formed using different aggregation operators: sum, (ranked) set inclusion, (ranked)
cardinality, pareto, and lexicographic order. Finally, the possibilistic logic approach to preferences [8] is notable in that, like
L P P , it proposes a qualitative preference framework, thus allowing the relative importance of preferences to be specified.

The approaches discussed so far do not consider temporal preferences, and hence are unable to express the types of
preferences that interest us. In what follows, we review some preference languages that have been designed for the task of
preference-based planning or related tasks.

9 We do not know the relationship between L P P and the fifth language R H (which is based on the Hamming distance between models), but most likely
there is no polynomial translation from R H to L P P since R H involves weighted sums, and L P P is not designed to handle any arithmetic operations
beyond possibly simple sums.

1332 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Planning-oriented preference languages
In [22,23] Delgrande, Schaub, and Tompits developed a useful framework for expressing preferences for causal reasoning

and planning. To this end, they proposed a general query language for histories – sequences of interleaved states and
actions. This language is not unlike our TPFs. Building on this, they define a second language that supports the expression
of preferences as a binary relation on histories. From these two base languages, they explored so-called choice and temporal
preferences in further detail, and also extended their language with different aggregate features. One of the argued benefits
of their base framework is its ability to encode other preference languages, and indeed, aside from the obvious distinction
that our language is first order whereas theirs is propositional, many of the notions and constructs of our language can be
nicely expressed within this framework. In particular, our TPFs, limited to finite domains, can be encoded in their query
language. However our APFs cannot be encoded in their second preference language because of our capacity to denote the
relative strength of preferences. Their framework has the capacity to characterize a diversity of aggregation techniques, some
similar to ours.

More generally, the framework proposed in these papers has some fundamental differences to L P P that, in our view,
underline the merits of the situation calculus. The histories employed in this framework are finite sequences of alternating
states and actions. In contrast, the situation calculus foundational axioms induce a tree of situations and, when conjoined
with a domain-specific action theory, characterize the space of all possible situations that follow from the domain axiomati-
zation. As such preferences over situations can be entailed from a domain axiomatization rather than from the comparison
of two specific, finite histories, as in this work.

P P
Most noteworthy of the related work is that of Son and Pontelli [59,60] who developed a propositional language, P P ,

for planning with preferences together with an implementation using answer-set programming (ASP). The original P P
language, described in [59], served as a starting point for the development of our language and we adopted their idea of
defining the language in terms of a hierarchy of formulae, and also adopted some of their nomenclature – BDF (we use
TPF), APF, and GPF – and augmenting it with AgPF.

Despite the similarity in names, there are significant differences between our preference languages, both in terms of
syntax and semantics. In particular, our language is first order, which affords us far more compact and simple expression
of preferences. It also enables the expression of preferences over unnamed objects, which is important for online planning
where groundings may not be known a priori. Planning with Web services is a good example, where the execution of the
plan can provide further knowledge of objects that a planner has preferences over (e.g., specific flights or hotels in the
case of Web travel planning). Furthermore, our language is qualitative rather than simply ordinal, allowing us to express,
for example, that one TPF (respectively, BDF) is strongly preferred over another, as opposed to just providing an preference
ordering over properties.

At the GPF level, our language includes conditional preferences, which are useful (cf. CP-nets). Like P P , our language
has the notion of General And (Conjunction) and General Or (Disjunction), but we provide a different semantics for these
constructs. According to P P ’s semantics, in order for a trajectory t1 to be preferred to a trajectory t2 with respect to a
General And preference, the trajectory t1 must be strictly preferred to t2 for each of the component preferences. For General
Or, they require that t1 be at least as preferred as t2 on all component preferences and strictly preferred to t2 for at least
one component preference. We did not feel that these were natural ways of interpreting conjunction and disjunction. For
example, one would expect that fully satisfying one of the component preferences should ensure satisfaction of a disjunction,
but this does not follow from the P P semantics. In contrast our semantics is more in keeping with the Boolean connectives
that give these constructs their names. Moreover, our semantics induces a complete pre-order, whereas the semantics of
P P ’s general preferences leads to great incomparability between plans. Finally, at the AgPF level, we provide several further
methods for aggregating preferences, which those using or reviewing our work have found to be compelling and useful,
though our claim of usefulness has not been verified by a usability study. Son and Pontelli have implemented a planner
using answer-set programming that can be used with a variety of black-box ASP solvers. In their later paper, they also
overview how to encode their preferences to exploit answer-set optimization engines.

PDDL3
Also of interest is a comparison of L P P to PDDL3 [34]. Following the description in [36], PDDL3 was developed by

Gerevini and Long as an extension of the Planning Domain Definition Language, PDDL [48], that provides a rich language
for defining hard constraints and user preferences for planning. PDDL3 was designed for the 5th International Planning
Competition (IPC-2006), which was the first international competition to include tracks for preference-based planning.

There are a number of commonalities between PDDL3 and L P P but ultimately some fundamental differences. In
particular, PDDL3 is a quantitative (rather than qualitative) preference language. Plans are evaluated with respect to the
maximization (or minimization) of a numeric objective function that is composed of a weighted linear sum of the satisfac-
tion or violation of individual preferences. Like L P P , individual preferences in PDDL3 are described as properties of plan
trajectories that are either satisfied or violated by a plan. However, preference formulae can be quantified in such a way that
a count can be taken of the number of individuals that violate a preference. This is a useful extension that could also be
integrated into L P P . For example, if you have a preference that all ingredients in the meal you are making be fresh, then
a plan that uses 5 fresh ingredients and 2 frozen is more desirable than a plan that uses 1 fresh and 6 frozen, even though

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1333
neither fully satisfies the preference. This example of course also uncovers a problem that can occur with such counting. If
two meals were being compared with different numbers of ingredients, then to achieve the intended interpretation of the
counting, the count would need to be normalized by the total number of ingredients in each of the two different meals –
something PDDL3 cannot do. Preferences over plan trajectories in PDDL3 can be temporally extended, though unlike L P P ,
PDDL3 does not allow the arbitrary nesting of LTL formulae. It also does not allow for the expression of preferences over
action occurrences, an important feature of L P P . However, PDDL3 has a number of features that L P P does not. In par-
ticular, preferences can be related to specific times (e.g., I would like to eat dinner between 8 PM and 9 PM). There are
also precondition preferences, which are state preferences that are desirable to hold in the state in which an action is being
executed. One could use these to specify a soft precondition, and record the number of times an action is executed without
this preference being satisfied.

Recently PDDL3 was extended to include preferences over decompositions of hierarchical task network (HTN) tasks [56].
This work and its application to web service composition further motivates the conceptually related extension of L P P with
complex actions.

Other
Finally, there has been a variety of work that uses quantitative preferences for planning or temporal reasoning. This

includes Eiter et al.’s work on answer set planning with respect to plan length and numeric action costs [27], work by Rossi
and colleagues on reasoning with temporal soft constraints [65], Haddawy and Hanks’ early work using a decision-theoretic
utility function to guide planning [38], and of course the extensive research on decision-theoretic planning and MDPs [52].
The quantitative nature of these frameworks makes preference elicitation difficult. This is why in our own work we decided
to focus on qualitative preferences, which are more expressive than ordinal preferences yet much easier to elicit than
quantitative preferences. As a useful middle ground, Fritz and McIlraith integrate qualitative and quantitative preferences
within an agent programming framework. The authors express their qualitative preferences in a restricted version of L P P
[31].

7.2. Preference-based planners

The previous subsection noted some efforts to generate preferred plans, related to the specific languages described
above. Here we provide a broad overview of some other noteworthy work in the development of preference-based planners.
Detailed descriptions of many of these planners is provided in a survey article on preference-based planning by Baier and
McIlraith [6]. The interested reader is directed there for further detail.

Work on decision-theoretic planning notwithstanding, one of the first pieces of work on generating preferred plans was
that of Myers and colleagues at SRI on advisable planners. Myers and Lee [50] proposed a means of generating preferred
plans via biases that guided a planner towards plans with certain attributes. This was followed, in and around 2004, by
work on the related problem of partial satisfaction planning (PSP), also called over-subscription planning (e.g., [62,55]).
Kambhampati and colleagues have developed a number of PSP planner including SapaP S [62], AltAltP S [62], YochanP S [9],
and bbop-lp [10]. In these PSP planners, the planning problem is cast as the task of finding a plan of maximal benefit, given
an association of utility to facts, and costs to actions. The planners differ in how they search for such solutions alternatively
using forward-chaining, backward-chaining, and incremental branch-and-bound with linear programming.

As observed in Section 1, in 2006 the biennial International Planning Competition included a track on planning with
preferences specified in PDDL3. This resulted in the development of several highly optimized preference-based planners.
The planners were differentiated with respect to the complexity of the preferences they could handle, starting with final-
state preferences, adding temporally extended preferences, and finally extended to include more complex metric preferences.
Most planners used some form of heuristic search in order to compute preferred plans. The best comparators to PPLAN are
the planners that could plan with temporally extended preferences. HPlan-P by Baier et al. [4] is one such planner. In
HPlan-P, temporally extended preferences are compiled to final-state preferences by representing them as parameterized
nondeterministic finite state automata. Planning is performed via branch and bound search, incrementally generating plans
of increasing quality. HPlan-P uses a portfolio of admissible and inadmissible heuristics to guide search, together with an
admissible heuristic to soundly prune partial plans that were of poorer quality than the plan previously computed. By
pruning the search space, HPlan-P is able, in some cases, to search the space exhaustively and thus guarantee optimality.

Also of note are the two planners by Edelkamp and colleagues: mips-bdd [24] and mips-xxl [25]. The former is an optimal
planner that applies bidirectional breadth-first search, encoding states as binary decision diagrams. The latter is a heuristic
planner based on enforced hill climbing. Both compile temporally extended preferences to grounded Büchi automata so they
can be treated as final-state preferences.

Finally, SGPlan5 [41] is also a search-based planner that can plan with temporally extended preferences. Unlike the
planners described above, SGPlan5 searches for a plan by using constraint partitioning, decomposing the original planning
problem into several sub-problems. This technique stems from treating the preference-based planning problem as a standard
optimization problem, where the objective function is to minimize the makespan of the plan.

We would be remiss not to mention two other related efforts to build preference-based planners – one using a con-
straint satisfaction problem (CSP) solver, and one using a satisfiability (SAT) solver. Like PPLAN, both of these planners are
k-optimal. Similarly, neither of these planners can compete with the above state-of-the-art competition-optimized planners.

1334 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
However, in contrast to PPLAN, neither of these planners can plan with temporally extended preferences. In 2005, Brafman
and Chernyavsky developed PrefPlan, a preference-based planner using a CSP solver [14]. Preferences were specified over
possible goal states using TCP-nets. A TCP-net is a tradeoff-enhanced CP-net, which allows the user to express priorities
between variables. The most notable limitation of TCP-nets relative to L P P is that they cannot express temporal prefer-
ences, and suffer incomparability of states, just as CP-nets do. Their approach to planning is to compile the problem into
an equivalent CSP problem, imposing variable instantiation constraints on the CSP solver, according to the TCP-net. This is a
promising method for planning, though it is not clear how it will extend to temporal preferences.

satplan(P) [35] by Giunchiglia and Maratea is an extension of the award-winning Satplan planner [42] that is able to
plan with final-state preferences by calling an external SAT solver. The approach is similar to PrefPlan in the sense that a
variable ordering is imposed on propositional variables corresponding to final-state preferences in such a way that most-
preferred plans will be explored first by the SAT solver. Preferences in satplan(P) can be defined either in a qualitative or a
quantitative language. In the qualitative language, the preference ordering of plans is induced from a partial order between
properties of the final state. In the quantitative language, on the other hand, each preference on the final state has an
associated weight.

8. Closing remarks

In this paper we addressed the problem of preference-based planning. To this end, we proposed L P P , an expressive
first-order language for specifying domain-specific, qualitative user preferences. L P P supports the expression of temporally
extended preferences over states as well as over actions; the actions can be either primitive or complex, in the form of Golog
complex actions. In contrast to many ordinal or qualitative preference formalisms that yield significant incomparability,
L P P provides a complete ordering over plans, which is computationally advantageous for preference-based planning. L P P
also supports specification of the relative strength of a user’s preferences. This is acknowledged by a number of practitioners
to be a desirable property of preference languages for real-world applications. The semantics of L P P is described in the
situation calculus. In the situation calculus, each executable situation corresponds to a (possible, partial) plan, and since all
executable situations are described within one model of the domain theory, it means that preference for one situation over
another can be expressed within the language. The situation calculus semantics facilitated the extension of L P P to Golog
complex actions.

The L P P language, as proposed in [11], has already begun to garner interest from researchers. For example, Fritz and
McIlraith combined L P P with quantitative preferences represented through utility functions within an agent programming
language [31]. The resulting program then searched for the quantitatively optimal plan within the space of qualitatively
best plans. L P P has also been exploited in diverse applications including the specification of user preferences for the
customization of web service composition where it was integrated with a Golog interpreter by Sohrabi et al. [58], and
the specification of goals for (software) requirements engineering by Liaskos et al. (e.g., [45,46]). Giunchiglia and Maratea
discuss the use of L P P in order to extend their work on preference-based planning in satplan(P) with temporally extended
preferences [35], and Sohrabi and McIlraith integrated L P P into an HTN planner [57]. The extension of L P P to include
preferences over complex actions was not included in any of the above works, but is relevant and would enhance each of
these applications.

In addition to L P P , we proposed an approach to computing preferred plans via bounded best-first search in a forward
chaining planner. Key components of our approach were the exploitation of progression to efficiently evaluate levels of
preference satisfaction with respect to partial plans, and development of an admissible evaluation function that guarantees
the optimality of best-first search. We have implemented our planner, PPLAN, and evaluated it experimentally. PPLAN was
written in Prolog and was not intended to be a state-of-the-art preference-based planner, nor does it perform as one in
terms of planning time. Nevertheless, experimental evaluation demonstrated that our admissible evaluation function was
informative, generally expanding far fewer nodes than breadth first search. Also, in contrast to state-of-the-art IPC planners,
PPLAN always returns an optimal plan.

While PPLAN itself is not a highly optimized planner, aspects of the PPLAN approach are already starting to have some
impact. In particular, the heuristic of our evaluation function (as reported in [11]) has been exploited by HPlan-P, the state-
of-the-art preference-based planner that received distinguished mention at IPC-2006. HPlan-P used our heuristic as one of
a portfolio of different heuristics applied to different IPC domains. No one heuristic strategy worked best for all domains,
but our heuristic was the best in one of six domains, and was used successfully in combination with other inadmissible
heuristics in other domains [4]. Perhaps more importantly, in cases where HPlan-P used a more informative inadmissible
heuristic to guide search, our (admissible) heuristic was used to soundly prune inferior partial plans as part of a branch
and bound search strategy. This enabled HPlan-P to significantly reduce the search space and thus, in some cases, to search
exhaustively for a plan that was provably optimal.

The work presented in this paper provides a formal foundation for specifying and generating preference-based plans.
Although the work has its basis in the situation calculus, the language and the approach to planning are amenable to
integration with several existing planners, and beyond planning can be used to support a diversity of reasoning tasks that
employ preferences.

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1335
Acknowledgements

We gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC)
through its Discovery grant program and its Undergraduate Student Research Award (USRA) program. We would like to
thank the anonymous referees for their detailed and thorough comments, and Jérôme Lang for helpful comments on an
earlier paper describing some of this work. Finally, we gratefully acknowledge Shirin Sohrabi Araghi for her work on the
implementation of PPlan.

Appendix A. Axiomatization of the dinner example

Here we provide a formal axiomatization of the dinner domain as a basic action theory D of the situation calculus.
A STRIPS-style specification of the domain can be found at [12]. Axioms marked with (†) are presented for exposition
purposes only, but were not used in the experiments. Recall that a basic action theory comprises four sets of domain-
dependent axioms: action precondition axioms, Dap , successor state axioms, DSS , axioms describing the initial situation S0,
D S0 , and a set of unique name axioms for actions, Duna . The latter is straightforward to define, and is not shown here.

Action precondition axioms (Dap). These take the form Poss(A(�x), s) ≡ ΠA(�x, s) where ΠA(�x, s) is a formula with free
variables among �x, s. Following the notational convention established by Reiter [53], all free variables in situation calculus
axioms are assumed to be universally quantified from the outside, unless otherwise noted.

Poss
(
drive(x, y), s

) ≡ location(x) ∧ location(y) ∧ x �= y ∧ at(x, s)

(†)Poss
(
walk(x, y), s

) ≡ location(x) ∧ location(y) ∧ x �= y ∧ at(x, s)

Poss
(
cook(x), s

) ≡ meal(x) ∧ knowsHowToMake(x) ∧ at(home, s)

∧ hasIngredients(x, s) ∧ kitchenClean(s)

Poss
(
eat(x), s

) ≡ meal(x) ∧ (∃y
(
at(y, s) ∧ readyToEat(x, y, s)

))
Poss

(
buyIngredients(x), s

) ≡ meal(x) ∧ ¬hasIngredients(x) ∧ at(store, s)

Poss
(
orderTakeout(x, y), s

) ≡ meal(x) ∧ takeOutRest(y) ∧ onMenu(x, y) ∧ at(home, s)

Poss
(
orderRestaurant(x, y), s

) ≡ meal(x) ∧ dineInRest(y) ∧ onMenu(x, y) ∧ at(y, s)

Poss(cleanDishes, s) ≡ at(home, s)

Effect axioms, which can be translated into successor state axioms (DSS) using Reiter’s solution to the frame problem [53,
pp. 30–32]. We provide effect axioms rather than successor state axioms, as they tend to be easier to understand for human
readers. These take either the positive form γ +

F (a, �x, s) → F (�x,do(a, s)), or the negative form γ −
F (a, �x, s) → ¬F (�x,do(a, s)),

where γ + and γ − state the conditions under which action a makes fluent F true, respectively false, when executed from
the situation s.

a = drive(x, y) → at
(

y,do(a, s)
)

a = drive(x, y) → ¬at
(
x,do(a, s)

)
(†)a = walk(x, y) → at

(
y,do(a, s)

)
(†)a = walk(x, y) → ¬at

(
x,do(a, s)

)
(†)isSnowing(s) ∧ a = walk(x, y) → cold

(
do(a, s)

)
a = cook(x) → readyToEat

(
x,home,do(a, s)

)
a = cook(x) → ¬hasIngredients

(
x,do(a, s)

)
a = cook(x) → ¬kitchenClean

(
do(a, s)

)
a = eat(x) → sated

(
do(a, s)

)
at(y, s) ∧ a = eat(x) → ¬readyToEat

(
x, y,do(a, s)

)
a = buyIngredients(x) → hasIngredients

(
x,do(a, s)

)
a = orderTakeout(x, y) → readyToEat

(
x,home,do(a, s)

)
a = orderRestaurant(x, y) → readyToEat

(
x, y,do(a, s)

)
a = cleanDishes → kitchenClean

(
do(a, s)

)

1336 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Initial theory D S0 . Unless otherwise stated in the text, we use the following values of fluents in the initial state (making a
closed world assumption):

at(home, S0) kitchenClean(S0) hasIngredients(crêpes, S0)

In addition, we include in D S0 the following axioms about situation-independent relations:

• Meals

meal(x) ≡ x = pizza ∨ x = tacos ∨ x = fajitas ∨ x = spaghetti

∨ x = sweetsourpork ∨ x = crêpes ∨ x = duck ∨ x = salad

• Types of meals

vegetarian(x) ≡ x = salad

italian(x) ≡ x = spaghetti ∨ x = pizza

mexican(x) ≡ x = tacos ∨ x = fajitas

french(x) ≡ x = crêpes ∨ x = duck

chinese(x) ≡ x = sweetsourpork

• Locations

location(x) ≡ x = home ∨ x = store ∨ x = italianRest

∨ x = frenchRest ∨ x = chineseRest ∨ x = pizzaPlace
(†)close(x, y) ≡ x = home ∧ y = italianRest

• Types of restaurants

takeOutRest(x) ≡ x = chineseRest ∨ x = pizzaPlace

dineInRest(x) ≡ x = italianRest ∨ x = frenchRest

• Restaurant offerings

onMenu(x, y) ≡ y = italianRest ∧ (x = spaghetti ∨ x = pizza)

∨ y = frenchRest ∧ (x = crêpes ∨ x = duck)

∨ y = pizzaPlace ∧ x = pizza

∨ y = chineseRest ∧ x = sweetsourpork

• Knowledge of recipes

knowsHowToMake(x) ≡ x = crêpes ∨ x = spaghetti ∨ x = tacos

∨ x = fajitas ∨ x = salad

Appendix B. Proof of Theorem 4.13

Proof. The proof proceeds by induction on the structural complexity of ϕ . We assume throughout, unless stated otherwise,
that we are given two situations s1 and s2 = do([a1, . . . ,an], s1), where n � 1 and s2 = do(an, s3).

Case 1. ϕ = f ∈ F

D |� f [s1, s2] iff D |� f [s1]
iff ρs1(f) = TRUE

iff ρ∗
s1,s3

(f) = TRUE

iff D |� ρ∗
s ,s (f)[s2, s2]
1 3

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1337
The equivalence in line 1 follows from the semantics of TPFs. For the forward direction of the equivalence between lines 1
to 2, we use Definition 4.8, and for the backwards direction, we use the fact that a progressed fluent equals TRUE only if
the fluent is satisfied in the situation. The forwards directions of the equivalences between lines 2 and 3 and lines 3 and 4
are obvious, whereas for the backwards directions, we use the fact that progressed fluents are either TRUE or FALSE, plus
the fact that TRUE and FALSE are unaffected by progression.

Case 2. ϕ = r ∈ R

D |� r[s1, s2] iff D |� r

iff ρs1(r) = TRUE

iff ρ∗
s1,s3

(r) = TRUE

iff D |� ρ∗
s1,s3

(r)[s2, s2]
For backwards direction, we make use of the fact that non-fluent relations are progressed to either TRUE or FALSE, which
are unaffected by further progression.

Case 3. ϕ = occ(a)

We prove this case in two steps, first for the case where n = 1 and then the case where n � 2.

(a) n = 1

D |� occ(a)[s1, s2] iff s2 = do(a, s1)

iff D |� occLast(a)[s2, s2]
iff D |� ρ∗

s1,s1

(
occ(a)

)[s2, s2]
(b) n � 2

D |� occ(a)[s1, s2] iff D |� do(a, s1) � s2

iff do(a1, s1) = do(a, s1)

iff ∃s′do(a1, s1) = do
(
a, s′)

iff D |� occLast(a)
[
do(a1, s1), s2

]
iff ρdo(a1,s1)

(
occLast(a)

) = TRUE

iff ρdo(a1,s1)

(
ρs1

(
occ(a)

)) = TRUE

iff ρ∗
s1,s3

(
occ(a)

) = TRUE

iff D |� ρ∗
s1,s3

(
occ(a)

)[s2, s2]
For the backwards direction, we make use of the fact that the progression of occ(a) through two situations yields either
TRUE or FALSE, plus the fact that TRUE and FALSE are unchanged by progression.

Case 4. ϕ = occLast(a)

D |� occLast(a)[s1, s2] iff D |� ∃s′s1 = do
(
a, s′)

iff ρs1

(
occLast(a)

) = TRUE

iff ρ∗
s1,s3

(
occLast(a)

) = TRUE

iff D |� ρ∗
s1,s3

(
occLast(a)

)[s2, s2]
For the backwards direction, we utilize the fact that occLast(a) progresses to a Boolean constant TRUE or FALSE, which is
then stable under further progression.

Case 5. ϕ = final(f) for some TPF f ∈ F

D |� final(f)[s1, s2] iff D |� f [s2]
iff D |� final(f)[s2, s2]
iff D |� ρ∗

s1,s3

(
final(f)

)[s2, s2]

1338 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Case 6. ϕ = ¬ψ for some TPF ψ

We assume the result for ψ and show that the result holds for ¬ψ .

D |� ¬ψ[s1, s2] iff D �|� ψ[s1, s2]
iff D �|� ρ∗

s1,s3
(ψ)[s2, s2]

iff D |� ¬ρ∗
s1,s3

(ψ)[s2, s2]
iff D |� ρ∗

s1,s3
(¬ψ)[s2, s2]

For the equivalence in line 1, we make use of the fact that the action theory D provides complete information about the
initial situation, which means in particular that for every situation calculus formula γ , either D |� γ or D |� ¬γ .

Case 7. ϕ = ψ1 ∧ ψ2 for TPFs ψ1 and ψ2
We assume the result for ψ1 and ψ2 and show that the result holds for ψ1 ∧ ψ2.

D |� ψ1 ∧ ψ2[s1, s2] iff D |� ψ1[s1, s2] and D |� ψ2[s1, s2]
iff D |� ρ∗

s1,s3
(ψ1)[s2, s2] and D |� ρ∗

s1,s3
(ψ2)[s2, s2]

iff D |� (
ρ∗

s1,s3
(ψ1) ∧ ρ∗

s1,s3
(ψ2)

)[s2, s2]
iff D |� ρ∗

s1,s3
(ψ1 ∧ ψ2)[s2, s2]

Case 8. ϕ = ψ1 ∨ ψ2. As ψ1 ∨ ψ2 ≡ ¬(¬ψ1 ∧ ¬ψ2), this follows immediately from cases 6 and 7.

Case 9. ϕ = ∃xψ
We assume that the result holds for all TPFs of lower structural complexity than ϕ . In particular this means that we can
assume the result for the TPFs ψc/x .

D |� ∃xψ[s1, s2] iff there exists c ∈ C such that D |� ψc/x[s1, s2]
iff there exists c ∈ C such that D |� ρ∗

s1,s3

(
ψc/x)[s2, s2]

iff D |�
∨
c∈C

ρ∗
s1,s3

(
ψc/x)[s2, s2]

iff D |� ρs3

(
. . . ρdo(a1,s1)

(∨
c∈C

ρs1

(
ψc/x)) . . .

)
[s2, s2]

iff D |� ρs3

(
. . . ρdo(a1,s1)

(
ρs1(∃xψ)

)
. . .

)[s2, s2]
iff D |� ρ∗

s1,s3
(∃xψ)[s2, s2]

Note that the backwards direction of the equivalence between lines 2 and 3 uses the fact that D completely defines the
initial situation.

Case 10. ϕ = ∀xψ . As ∀xψ ≡ ¬∃x¬ψ , this follows directly from Cases 6 and 9.

Case 11. ϕ = next(ψ)

We proceed by induction on n, the difference in length between s1 and s2. Our base case is n = 1, i.e., s2 = do(a1, s1):

D |� next(ψ)
[
s1,do(a1, s1)

]
iff D |� ψ

[
do(a1, s1),do(a1, s1)

]
iff D |� ρ∗

s1,s1

(
next(ψ)

)[
do(a1, s1),do(a1, s1)

]
Next we assume the result for all pairs of situations s1 and s2 = do([a1, . . . ,an], s1) with n < k, and we demonstrate the
result for the case where n = k:

D |� next(ψ)[s1, s2] iff D |� ψ
[
do(a1, s1), s2

]
iff D |� ρ∗

do(a1,s1),s3
(ψ)[s2, s2]

iff D |� ρ∗
do(a1,s1),s3

(
ρs1

(
next(ψ)

))[s2, s2]
iff D |� ρ∗

s1,s3

(
next(ψ)

)[s2, s2]

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1339
Case 12. ϕ = always(ψ)

We assume the result for ψ and prove that the result also holds for always(ψ). The proof proceeds by induction on n, the
difference in length between s1 and s2, with base case n = 1:

D |� always(ψ)
[
s1,do(a1, s1)

]
iff D |� ψ

[
s1,do(a1, s1)

] ∧ ψ
[
do(a1, s1),do(a1, s1)

]
iff D |� ρ∗

s1,s1
(ψ)

[
do(a1, s1),do(a1, s1)

] ∧ ψ
[
do(a1, s1),do(a1, s1)

]
iff D |� (

ρs1(ψ) ∧ always(ψ)
)[

do(a1, s1),do(a1, s1)
]

iff D |� ρ∗
s1,s1

(
always(ψ)

)[
do(a1, s1),do(a1, s1)

]
We now suppose that the theorem holds for n < k, and we show that it is also true when s2 = do([a1, . . . ,ak], s1):

D |� always(ψ)[s1, s2] iff D |� ψ[s1, s2] ∧ always(ψ)
[
do(a1, s1), s2

]
iff D |� ρ∗

s1,s3
(ψ)[s2, s2] ∧ ρ∗

do(a1,s1),s3

(
always(ψ)

)[s2, s2]
iff D |� ρs3

(
. . . ρdo(a1,s1)

(
ρs1(ψ) ∧ always(ψ)

)
. . .

)[s2, s2]
iff D |� ρs3

(
. . . ρdo(a1,s1)

(
ρs1

(
always(ψ)

))
. . .

)[s2, s2]
iff D |� ρ∗

s1,s3

(
always(ψ)

)[s2, s2]
Case 13. ϕ = eventually(ψ). Given that eventually(ψ) can be rewritten as ¬always(¬ψ), this case follows immediately
from cases 6 and 12.

Case 14. ϕ = until(ψ1,ψ2)

We assume the result for ψ1 and ψ2 and prove that the result also holds for until(ψ1,ψ2). We prove this by induction on
n, the difference in length between s1 and s2. Our base case is s2 = do(a1, s1):

D |� until(ψ1,ψ2)
[
s1,do(a1, s1)

]
iff D |� ∃s

(
s1 � s ∧ s � do(a, s1) ∧ ψ2

[
s,do(a, s1)

]
∧ ∀s′((s1 � s′ ∧ s′ � s

) → ψ1
[
s′,do(a, s1)

]))
iff D |� ψ2

[
s1,do(a1, s1)

] ∨ (
ψ1

[
s1,do(a1, s1)

] ∧ ψ2
[
do(a1, s1),do(a1, s1)

])
iff D |� ρ∗

s1,s1
(ψ2)

[
do(a1, s1),do(a1, s1)

] ∨ (
ρ∗

s1,s1
(ψ1)

[
do(a1, s1),do(a1, s1)

]
∧ ψ2

[
do(a1, s1),do(a1, s1)

])
iff D |� (

ρs1(ψ2) ∨ (
ρs1(ψ1) ∧ until(ψ1,ψ2)

))[
do(a1, s1),do(a1, s1)

]
iff D |� ρs1

(
until(ψ1,ψ2)

)[
do(a1, s1),do(a1, s1)

]
iff D |� ρ∗

s1,s1

(
until(ψ1,ψ2)

)[
do(a1, s1),do(a1, s1)

]
For the equivalence above between lines 1 and 2, we use the fact that either s = s1 or s = do(a1, s1). In the former case, the
first line simplifies to ψ2[s1,do(a1, s1)], while in the latter case, we obtain ψ2[do(a1, s1),do(a1, s1)] ∧ ψ1[s1,do(a1, s1)].

We now prove the result for the case where n = k, under the assumption that the result holds in the case where n < k:

D |� until(ψ1,ψ2)[s1, s2] iff D |� ∃s
(
s1 � s ∧ s � s2 ∧ ψ2[s, s2]

∧ ∀s′((s1 � s′ ∧ s′ � s
) → ψ1

[
s′, s2

]))
iff D |� ψ2[s1, s2] ∨ (

ψ1[s1, s2] ∧ until(ψ1,ψ2)
[
do(a1, s1), s2

])
iff D |� ρ∗

s1,s3
(ψ2)[s2, s2]

∨ (
ρ∗

s1,s3
(ψ1)[s2, s2] ∧ ρ∗

do(a1,s1),s3

(
until(ψ1,ψ2)

)[s2, s2]
)

iff D |� ρs3

(
. . . ρdo(a1,s1)

((
ρs1(ψ2) ∧ until(ψ1,ψ2)

) ∨ ρs1(ψ2)
)
. . .

)[s2, s2]
iff D |� ρs3

(
. . . ρs1

(
until(ψ1,ψ2)

)
. . .

)[s2, s2]
iff D |� ρ∗

s1,s3

(
until(ψ1,ψ2)

)[s2, s2]
Note that the equivalence between lines 1 to 2 follows from the fact that either s = s1, in which case line 1 simplifies to
ψ2[s1, s2], or s �= s1 in which case line 1 gives us

∃s
(
do(a1, s1) � s ∧ s � s2 ∧ ψ2[s, s2] ∧ ∀s′((s1 � s′ ∧ s′ � s

) → ψ1
[
s′, s2

]))
which is another way to write ψ1[s1, s2] ∧ until(ψ1,ψ2)[do(a1, s1), s2].

1340 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
Case 15. ϕ = TRUE or ϕ = FALSE
Obvious as D |� TRUE and D �|� FALSE, and TRUE and FALSE are unaffected by progression. �
Appendix C. Proof of Theorem 4.18

Lemma C.1. Let s be any situation, sn = do([a1, . . . ,an], s), n � 0, a collection of situations, and ϕ a TPF. Then for any 0 � i � j � n:
D |� ϕ[s, s j]opt implies D |� ϕ[s, si]opt , and D �|� ϕ[s, s j]pess implies D �|� ϕ[s, si]pess.

Proof. The proof proceeds by induction over the structure of trajectory property formulae. Clearly, for ϕ ∈ F , ϕ ∈ R, and
ϕ = final(ψ) the assumption holds. Also trivial is the case for ϕ = occ(a): if D |� occ(a)[s, s j]opt then either j = 0 which
entails i = 0, or a = a1. In both cases we have D |� occ(a)[s, si]opt . Similarly, for the pessimistic case, if D �|� occ(a)[s, s j]pess

then either j = 0 which entails i = 0, or a �= a1. In both cases we have D �|� occ(a)[s, si]pess .
Now suppose the assumption holds for the TPFs ϕ1,ϕ2. Then

• For conjunction:

D |� (ψ1 ∧ ψ2)[s, s j]opt ⇒ D |� ψ1[s, s j]opt and D |� ψ2[s, s j]opt

i.h.⇒ D |� ψ1[s, si]opt and D |� ψ2[s, si]opt ⇒ D |� (ψ1 ∧ ψ2)[s, si]opt

D �|� (ψ1 ∧ ψ2)[s, s j]pess ⇒ D �|� ψ1[s, s j]pess or D �|� ψ2[s, s j]pess

i.h.⇒ D �|� ψ1[s, si]pess or D �|� ψ2[s, si]pess ⇒ D �|� (ψ1 ∧ ψ2)[s, si]pess

• For disjunctions:

D |� (ψ1 ∨ ψ2)[s, s j]opt ⇒ D |� ψ1[s, s j]opt or D |� ψ2[s, s j]opt

i.h.⇒ D |� ψ1[s, si]opt or D |� ψ2[s, si]opt ⇒ D |� (ψ1 ∨ ψ2)[s, si]opt

D �|� (ψ1 ∨ ψ2)[s, s j]pess ⇒ D �|� ψ1[s, s j]pess and D �|� ψ2[s, s j]pess

i.h.⇒ D �|� ψ1[s, si]pess and D �|� ψ2[s, si]pess ⇒ D �|� (ψ1 ∨ ψ2)[s, si]pess

We remark that the implication from D |� (ψ1 ∨ ψ2)[s, s j]opt to D |� ψ1[s, s j]opt or D |� ψ2[s, s j]opt in line 1 follows
from the fact that D completely defines the initial situation.

• For negation:

D |� ¬ϕ1[s, s j]opt ⇒ D �|� ϕ1[s, s j]pess i.h.⇒ D �|� ϕ1[s, si]pess ⇒ D |� ¬ϕ1[s, si]opt

D �|� ¬ϕ1[s, s j]pess ⇒ D |� ϕ1[s, s j]opt i.h.⇒ D |� ϕ1[s, si]opt ⇒ D �|� ¬ϕ1[s, si]pess

Note that to go from D �|� ¬ϕ1[s, si]pess to D |� ¬ϕ1[s, si]opt in line 1, and from D �|� ¬ϕ1[s, s j]pess to D |� ϕ1[s, s j]opt in
line 2, we leverage the fact that D contains complete information about the initial situation.

• For next:

D |� next(ϕ1)[s, s j]opt ⇒ D |� ϕ1[s1, s j]opt or j = 0

(by i.h. and since i � j) ⇒ D |� ϕ1[s1, si]opt or i = 0 ⇒ D |� next(ϕ1)[s, si]opt

D �|� next(ϕ1)[s, s j]pess ⇒ D �|� ϕ1[s1, s j]pess or j = 0

(by i.h. and since i � j) ⇒ D �|� ϕ1[s1, si]pess or i = 0 ⇒ D �|� next(ϕ1)[s, si]pess

• The cases for always(ϕ), eventually(ϕ), and until(ϕ1,ϕ2) follow by induction hypothesis and the cases for “∧”, “∨”,
and next(ϕ). �

Lemma C.2. Let s be any situation, sn = do([a1, . . . ,an], s), n � 0, a collection of situations, and ϕ a TPF. Then for any 0 � i � j � n:
D |� ϕ[s, s j] implies D |� ϕ[s, si]opt and D �|� ϕ[s, s j] implies D �|� ϕ[s, si]pess.

Proof. The proof of this lemma proceeds analogously to the previous one. Again it is clear that for ϕ ∈ F , ϕ ∈ R, and
ϕ = final(ψ) the assumption holds. Also trivial is the case in which ϕ = occ(a): if D |� occ(a)[s, s j] then a = a1 and thus
D |� occ(a)[s, si]opt . And, for the pessimistic case, if D �|� occ(a)[s, s j] then either j = 0 which entails i = 0, or a �= a1. In
both cases we have D �|� occ(a)[s, si]pess .

Now suppose the assumption holds for TPFs ϕ1,ϕ2. Then

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1341
• For conjunction:

D |� (ψ1 ∧ ψ2)[s, s j] ⇒ D |� ψ1[s, s j] and D |� ψ2[s, s j]
i.h.⇒ D |� ψ1[s, si]opt and D |� ψ2[s, si]opt ⇒ D |� (ψ1 ∧ ψ2)[s, si]opt

D �|� (ψ1 ∧ ψ2)[s, s j] ⇒ D �|� ψ1[s, s j] or D �|� ψ2[s, s j]
i.h.⇒ D �|� ψ1[s, si]pess or D �|� ψ2[s, si]pess ⇒ D �|� (ψ1 ∧ ψ2)[s, si]pess

• For disjunction:

D |� (ψ1 ∨ ψ2)[s, s j] ⇒ D |� ψ1[s, s j] or D |� ψ2[s, s j]
i.h.⇒ D |� ψ1[s, si]opt or D |� ψ2[s, si]opt ⇒ D |� (ψ1 ∨ ψ2)[s, si]opt

D �|� (ψ1 ∨ ψ2)[s, s j] ⇒ D �|� ψ1[s, s j] and D �|� ψ2[s, s j]
i.h.⇒ D �|� ψ1[s, si]pess and D �|� ψ2[s, si]pess ⇒ D �|� (ψ1 ∨ ψ2)[s, si]pess

• For negation:

D |� ¬ϕ1[s, s j] ⇒ D �|� ϕ1[s, s j] i.h.⇒ D �|� ϕ1[s, si]pess ⇒ D |� ¬ϕ1[s, si]opt

D �|� ¬ϕ1[s, s j] ⇒ D |� ϕ1[s, s j] i.h.⇒ D |� ϕ1[s, si]opt ⇒ D �|� ¬ϕ1[s, si]pess

• For next:

D |� next(ϕ1)[s, s j] ⇒ D |� ϕ1[s1, s j] and j � 1

i.h.⇒ D |� ϕ1[s1, si]opt ⇒ D |� next(ϕ1)[s, si]opt

D �|� next(ϕ1)[s, s j] ⇒ D �|� ϕ1[s1, s j] or j = 0

i.h.⇒ D �|� ϕ1[s1, si]pess or i = 0 ⇒ D �|� next(ϕ1)[s, si]pess

• As before, the cases for always(ϕ), eventually(ϕ), and until(ϕ1,ϕ2) follow from the above cases for “∧”, “∨”, and
next(ϕ). �

With these lemmas in hand it is straightforward to show the theorem itself. Again we proceed by induction, over the
structure of general preference formulae.

Proof of Theorem 4.18. The first item of the theorem follows directly from Lemma C.2. For the second item of the theorem,
we consider the component inequalities separately.

Inequalities wopt
si

(Φ) � wopt
s j

(Φ) and wpess
si

(Φ) � wpess
s j

(Φ): Assume wopt
s j

(ϕ0[v0] � ϕ1[v1] � · · · � ϕm[vm]) = vr with all ϕl

trajectory property formulae. Then if r � m we have that D |� ϕr[S0, s j]opt and D �|� ϕl[S0, s j]opt,∀l < r. Thus with
Lemma C.1 we have D |� ϕr[S0, si]opt and thus wopt

si
(ϕ0[v0] � ϕ1[v1] � · · · � ϕm[vm]) � vr . This trivially also

holds for the case where none of the ϕl holds optimistically and hence vr = vmax . For the pessimistic case in turn,
let wpess

s j
(ϕ0[v0] � ϕ1[v1] � · · · � ϕm[vm]) = vr with ϕl trajectory property formulae. Then D �|� ϕl[S0, s j]pess,

∀l < r. Thus by Lemma C.1 we have D �|� ϕl[S0, si]pess,∀l < r and thus wpess
si

(ϕ0[v0] � ϕ1[v1] � · · · � ϕm[vm]) � vr .
Now, for the induction step, suppose the assumption holds for Ψ,Ψi . Then,

• For Φ = γ : Ψ and the optimistic case, there are two possibilities:
– D �|� γ [s, s j]pess and thus wopt

s j
(Φ) = 0. Then from Lemma C.1 we have that also D �|� γ [s, si]pess and thus

wopt
si

(Φ) = 0.

– D |� γ [s, s j]pess and wopt
s j

(Φ) = wopt
s j

(Ψ). From induction hypothesis we know that wopt
si

(Ψ) � wopt
s j

(Ψ) and

thus again wopt
si

(Φ) � wopt
s j

(Φ).
And for the pessimistic case, there are also two possibilities:
– D �|� γ [s, s j]opt and thus wpess

s j
(Φ) = 0 so that immediately wpess

si
(Φ) � wpess

s j
(Φ).

– D |� γ [s, s j]opt and wpess
s j

(Φ) = wpess
s j

(Ψ). Using Lemma C.1 it follows that also D |� γ [s, si]opt and thus

wpess
si

(Φ) = wpess
si

(Ψ) which by induction hypothesis is greater or equal than wpess
s j

(Ψ).

1342 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
• For Φ = Ψ1& . . . &Ψm

wopt
s j

(Ψ1& . . . &Ψm) = max
1�l�m

wopt
s j

(Ψl)

i.h.

� max
1�l�m

wopt
si

(Ψl) = wopt
si

(Ψ1& . . . &Ψm)

and

wpess
s j

(Ψ1& . . . &Ψm) = max
1�l�m

wpess
s j

(Ψl)

i.h.
� max

1�l�m
wpess

si
(Ψl) = wpess

si
(Ψ1& . . . &Ψm)

• For Φ = Ψ1| . . . |Ψm

wopt
s j

(Ψ1| . . . |Ψm) = min
1�l�m

wopt
s j

(Ψl)

i.h.
� min

1�l�m
wopt

si
(Ψl) = wopt

si
(Ψ1| . . . |Ψm)

and

wpess
s j

(Ψ1| . . . |Ψm) = min
1�l�m

wpess
s j

(Ψl)

i.h.
� min

1�l�m
wpess

si
(Ψl) = wpess

si
(Ψ1| . . . |Ψm)

Inequalities wopt
s j

(Φ) � wsk (Φ) and wpess
s j

(Φ) � wsk (Φ): The proof of these two inequalities proceeds in direct analogy to the
previous ones but uses Lemma C.2 instead of Lemma C.1. �

Appendix D. Proof of Corollary 4.20

Proof. The proof proceeds by induction over the structure of ϕ and using Theorem 4.13.

• ϕ = final(ψ): By definition ρ∗
s (final(ψ))[s′, s′] = final(ψ)[s′, s′] and final(ψ)[S0, s′]opt/pess = final(ψ)[s′, s′]opt/pess , hence

the thesis.
• ϕ = occ(a): We have:

D |� occ(a)
[

S0, s′]opt
iff (by definition)

D |� do(a, S0) � s′ ∨ S0 = s′ iff (by assumption n � 1)

D |� do(a, S0) � s′ iff
(
by definition of occ(a) and Theorem 4.13

)
D |� ρ∗

s

(
occ(a)

)[
s′, s′].

Also, by definition: occ(a)[S0, s′]pess = occ(a)[S0, s′] and hence, D |� occ(a)[S0, s′]pess iff D |� ρ∗
s (occ(a))[s′, s′].

Now there are two cases to consider, either ρ∗
s (occ(a))[s′, s′] = occLast(a), in which case the thesis follows by definition

of occLast(a)[s, s′]opt/pess , or ρ∗
s (occ(a))[s′, s′] is equal to a Boolean constant TRUE/FALSE, in which case the thesis

follows trivially.
• ϕ = next(ψ): Again, since we are assuming n � 1 we get that next(ψ)[S0, s′]opt/pess = next(ψ)[S0, s′]. Hence the thesis

follows from Theorem 4.13.
• For the remaining temporal formulae the thesis follows from the induction hypothesis due to their definition in terms

of next. �
Appendix E. Proof of Theorem 6.3

Proof. The theorem is easily proven by extending Lemmas C.1 and C.2 to handle the two new constructs in eTPFs as follows.
With respect to Lemma C.1 we observe:

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1343
• If D |� occC(δ)[s, s j]opt , then, by definition,

D |� (∃s1: s � s1 � s j)∃δ′(Trans∗
(
δ, s, δ′, s1

) ∧ (
s1 �= s j → Final

(
δ′, s1

)))
The chosen s1 is either such that s1 � si or the other way round, si � s1. In the former case it follows that:

D |� (∃s′
1: s � s′

1 � si
)∃δ′(Trans∗

(
δ, s, δ′, s′

1

) ∧ Final
(
δ′, s′

1

))
In the latter case, it follows that:

D |� ∃δ′Trans∗
(
δ, s, δ′, si

)
Hence, together we obtain:

D |� (∃s1: s � s1 � si)∃δ′(Trans∗
(
δ, s, δ′, s1

) ∧ (
s1 �= si → Final

(
δ′, s1

)))
and thus D |� occC(δ)[s, si]opt .
Furthermore: D �|� occC(δ)[s, s j]pess , i.e., by definition, D �|� (∃s1 : s � s1 � s j)Do(δ, s, s1). Since si precedes s j it is obvi-
ous that then also D �|� (∃s1 : s � s1 � si)Do(δ, s, s1) and hence by definition: D �|� occC(δ)[s, si]pess .

• If D |� afterC(δ,ϕ)[s, s j]opt , then, by definition, D |� (∀s1 : s � s1 � s j)Do(δ, s, s1) → ϕ[s1, s j]opt . Since, si precedes s j , it
follows that: D |� ∀s1(s1 � si → s1 � s j), and hence with the above, we derive: D |� (∀s1 : s � s1 � si)(Do(δ, s, s1) →
ϕ[s1, si]opt), i.e., D |� afterC(δ,ϕ)[s, si]opt .
Furthermore: If D �|� afterC(δ,ϕ)[s, s j]pess , then, by definition,

D �|� (∀s1 : s � s1 � s j)Do(δ, s, s1) → ϕ[s1, s j]pess ∧ (
�δ′, s′′)(Trans∗

(
δ, s, δ′, s′′) ∧ s j � s′′)

Hence, either:
1. D |� (∃s1 : s � s1 � s j)(Do(δ, s, s1) ∧ ¬ϕ[s1, s j]pess), or
2. D |� (∃δ′, s′′)(Trans∗(δ, s, δ′, s′′) ∧ s j � s′′).
In the former case, there are again two cases to distinguish: (a) the chosen s1 is such that si � s1 � s j , or (b) s1 � si . In
case (a) it follows that:

D |� ∃δ′∃s′′(Trans∗
(
δ, s, δ′, s′′) ∧ si � s′′)

and in case (b) it follows that:

D |� (∃s1: s � s1 � si)
(
Do(δ, s, s1) ∧ ¬ϕ[s1, si]pess)

using induction hypothesis w.r.t. ϕ .
In the latter case of the enumeration (2.), it follows immediately from the definition of Trans∗ and the fact that si � s j
that

D |� ∃δ′∃s′′(Trans∗
(
δ, s, δ′, s′′) ∧ si � s′′)

Hence, taking all cases together, we get that

D �|� (∀s1: s � s1 � si).Do(δ, s, s1) → ϕ[s1, si]pess ∧ (
�δ′, s′′)(Trans∗

(
δ, s, δ′, s′′) ∧ si � s′′)

i.e, by definition, D �|� afterC(δ,ϕ)[s, si]pess .

With respect to Lemma C.2 we observe:

• If D |� occC(δ)[s, s j], then, by definition,

D |� (∃s1: s � s1 � s j)∃δ′(Trans∗
(
δ, s, δ′, s1

) ∧ Final
(
δ′, s1

))
It then follows from definition of Trans that

D |� (∃s1: s � s1 � si)∃δ′(Trans∗
(
δ, s, δ′, s1

) ∧ (
s1 �= si → Final

(
δ′, s1

)))
i.e., by definition, D |� occC(δ)[s, si]opt .

Furthermore: D �|� occC(δ)[s, s j], i.e., by definition, D �|� (∃s1 : s � s1 � s j)Do(δ, s, s1). Since si precedes s j it is obvious
that then also again D �|� (∃s1 : s � s1 � si)Do(δ, s, s1) and hence by definition: D �|� occC(δ)[s, si]pess .

1344 M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345
• If D |� afterC(δ,ϕ)[s, s j], then, by definition, D |� (∀s1 : s � s1 � s j)(Do(δ, s, s1) → ϕ[s1, s j]). Since, si precedes s j , it
follows that: D |� ∀s1(s1 � si → s1 � s j), and hence with the above and by induction hypothesis w.r.t. ϕ: D |� (∀s1 : s �
s1 � si)(Do(δ, s, s′

1) → ϕ[s1, si]opt), i.e., D |� afterC(δ,ϕ)[s, si]opt .
Furthermore: If D �|� afterC(δ,ϕ)[s, s j], then, D �|� (∀s1 : s � s1 � s j).Do(δ, s, s1) → ϕ[s1, s j]. Hence: D |� (∃s1 : s � s1 �
s j)(Do(δ, s, s1)∧¬ϕ[s1, s j]). There are two cases to distinguish: (a) the chosen s1 is such that si � s1 � s j , or (b) s1 � si .
In case (a) it follows that:

D |� ∃δ′∃s′′(Trans∗
(
δ, s, δ′, s′′) ∧ s1 � s′′)

and in case (b) it follows that:

D |� (∃s1 : s � s1 � si)
(
Do(δ, s, s1) ∧ ¬ϕ[s1, si]pess)

using induction hypothesis w.r.t. ϕ . Hence, taken together we get that

D �|� (∀s1 : s � s1 � si)
(
Do(δ, s, s1) → ϕ[s1, si]pess) ∧ (

�δ′, s′′)(Trans∗
(
δ, s, δ′, s′′) ∧ si � s′′)

i.e, by definition, D �|� afterC(δ,ϕ)[s, si]pess .

With these extensions in place, the proof proceeds analogously to the proof of Theorem 4.18. �
References

[1] F. Bacchus, F. Kabanza, Using temporal logics to express search control knowledge for planning, Artificial Intelligence 16 (2000) 123–191.
[2] J. Baier, S. McIlraith, Planning with first-order temporally extended goals using heuristic search, in: Proceedings of the 21st National Conference on

Artificial Intelligence (AAAI-06), 2006, pp. 788–795.
[3] J.A. Baier, F. Bacchus, S.A. McIlraith, A heuristic search approach to planning with temporally extended preferences, in: Proceedings of the 20th Inter-

national Joint Conference on Artificial Intelligence (IJCAI-07), 2007, pp. 1808–1815.
[4] J.A. Baier, F. Bacchus, S.A. McIlraith, A heuristic search approach to planning with temporally extended preferences, Artificial Intelligence 173 (5–6)

(2009) 593–618.
[5] J.A. Baier, S.A. McIlraith, On domain-independent heuristics for planning with qualitative preferences, in: Proceedings of the 7th Workshop on Non-

monotonic Reasoning, Action and Change (NRAC-07), 2007.
[6] J.A. Baier, S.A. McIlraith, Planning with preferences, AI Magazine 29 (4) (2008) 25–36.
[7] C. Baral, V. Kreinovich, R. Trejo, Computational complexity of planning with temporal goals, in: Proceedings of the 17th International Joint Conference

on Artificial Intelligence (IJCAI-01), 2001, pp. 509–514.
[8] S. Benferhat, D. Dubois, H. Prade, Towards a possibilistic logic handling of preferences, in: Applied Intelligence, vol. 14, Kluwer, 2001, pp. 303–317, .
[9] J. Benton, S. Kambhampati, M.B. Do, YochanPS: PDDL3 simple preferences and partial satisfaction planning, in: Proceedings of the 5th International

Planning Competition Booklet (IPC-06), 2006, pp. 54–57.
[10] J. Benton, M. van den Briel, S. Kambhampati, A hybrid linear programming and relaxed plan heuristic for partial satisfaction problems, in: Proceedings

of the 17th International Conference on Automated Planning and Scheduling (ICAPS-07), 2007, pp. 34–41.
[11] M. Bienvenu, C. Fritz, S. McIlraith, Planning with qualitative temporal preferences, in: Proceedings of the 10th International Conference on Knowledge

Representation and Reasoning (KR-06), 2006, pp. 134–144.
[12] M. Bienvenu, C. Fritz, S. Sohrabi, S. McIlraith, PPLAN: Code, experiments, http://www.cs.toronto.edu/~sheila/PPLAN, 2006.
[13] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, D. Poole, CP-nets: A tool for representing and reasoning about conditional ceteris paribus preference

statements, Journal of Artificial Intelligence Research 21 (2004) 135–191.
[14] R.I. Brafman, Y. Chernyavsky, Planning with goal preferences and constraints, in: Proceedings of the 15th International Conference on Automated

Planning and Scheduling (ICAPS-05), 2005, pp. 182–191.
[15] G. Brewka, Complex preferences for answer set optimization, in: Proceedings of the 9th International Conference on Knowledge Representation and

Reasoning (KR-04), 2004, pp. 213–223.
[16] G. Brewka, A rank based description language for qualitative preferences, in: Proceedings of the 16th European Conference on Artificial Intelligence

(ECAI-04), 2004, pp. 303–307.
[17] G. Brewka, S. Benferhat, D.L. Berre, Qualitative choice logic, Artificial Intelligence 157 (1–2) (2004), Special Issue on Nonmonotonic Reasoning.
[18] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, S. Thrun, Experiences with an interactive museum tour-guide robot,

Artificial Intelligence 114 (1–2) (1999) 3–55.
[19] T. Bylander, The computational complexity of propositional STRIPS planning, Artificial Intelligence 69 (1–2) (1994) 165–204.
[20] S. Coste-Marquis, J. Lang, P. Liberatore, P. Marquis, Expressive power and succinctness of propositional languages for preference representation, in:

Proceedings of the 9th International Conference on Knowledge Representation and Reasoning (KR-04), 2004, pp. 203–212.
[21] G. De Giacomo, Y. Lespérance, H. Levesque, ConGolog, a concurrent programming language based on the situation calculus, Artificial Intelli-

gence 121 (1–2) (2000) 109–169.
[22] J. Delgrande, T. Schaub, H. Tompits, Domain-specific preferences for causual reasoning and planning, in: Proceedings of the 9th International Conference

on Knowledge Representation and Reasoning (KR-04), 2004, pp. 673–682.
[23] J.P. Delgrande, T. Schaub, H. Tompits, A general framework for expressing preferences in causal reasoning and planning, Journal of Logic and Computa-

tion 17 (2007) 871–907.
[24] S. Edelkamp, Optimal symbolic PDDL3 planning with MIPS-BDD, in: Proceedings of the 5th International Planning Competition Booklet (IPC-06), 2006,

pp. 31–33.
[25] S. Edelkamp, S. Jabbar, M. Naizih, Large-scale optimal PDDL3 planning with MIPS-XXL, in: Proceedings of the 5th International Planning Competition

Booklet (IPC-06), 2006, pp. 28–30.
[26] M. Ehrgott, Multicriteria Optimization, Springer, Berlin, 2000.
[27] T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres, Answer set planning under action costs, Journal of Artificial Intelligence Research 19 (2003) 25–71.
[28] K. Erol, D.S. Nau, V.S. Subrahmanian, Complexity, decidability and undecidability results for domain-independent planning, Artificial Intelligence 76 (1–

2) (1995) 75–88.

http://www.cs.toronto.edu/~sheila/PPLAN

M. Bienvenu et al. / Artificial Intelligence 175 (2011) 1308–1345 1345
[29] R. Feldmann, G. Brewka, S. Wenzel, Planning with prioritized goals, in: Proceedings of the 10th International Conference on Knowledge Representation
and Reasoning (KR-06), 2006, pp. 503–514.

[30] A. Ferrein, C. Fritz, G. Lakemeyer, On-line decision-theoretic Golog for unpredictable domains, in: Proceedings of 27th German Conference on AI (KI-04),
2004, pp. 322–336.

[31] C. Fritz, S. McIlraith, Decision-theoretic GOLOG with qualitative preferences, in: Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR-06), 2006, pp. 153–163.

[32] A. Gabaldon, Precondition control and the progression algorithm, in: Proceedings of the 9th International Conference on Knowledge Representation
and Reasoning (KR-04), 2004, pp. 634–643.

[33] A. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Deterministic planning in the fifth international planning competition: PDDL3 and experi-
mental evaluation of the planners, Artificial Intelligence 173 (5–6) (2009) 619–668.

[34] A. Gerevini, D. Long, Plan constraints and preferences in PDDL3: The language of the fifth international planning competition. Tech. Rep., University of
Brescia, 2005.

[35] E. Giunchiglia, M. Maratea, Planning as satisfiability with preferences, in: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI-07), 2007,
pp. 987–992.

[36] J. Goldsmith, J. Ulrich (Eds.), AI Magazine 29 (4) (2008), Winter 2008, Special Issue on Preferences.
[37] C.C. Green, Application of theorem proving to problem solving, in: Proceedings of the 1st International Joint Conference on Artificial Intelligence, 1969,

pp. 219–240.
[38] P. Haddawy, S. Hanks, Representations for decision-theoretic planning: Utility functions for deadline goals, in: Proceedings of the 3rd International

Conference on Knowledge Representation and Reasoning (KR-96), 1992, pp. 71–82.
[39] M. Helmert, Decidability and undecidability results for planning with numerical state variables, in: Proceedings of the Sixth International Conference

on Artificial Intelligence Planning Systems (AIPS-02), 2002, pp. 44–53.
[40] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through heuristic search, Journal of Artificial Intelligence Research 14 (2001)

253–302.
[41] C.-W. Hsu, B. Wah, R. Huang, Y. Chen, Constraint partitioning for solving planning problems with trajectory constraints and goal preferences, in:

Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07), 2007, pp. 1924–1929.
[42] H.A. Kautz, B. Selman, Unifying SAT-based and graph-based planning, in: Proceedings of the 16th International Joint Conference on Artificial Intelligence

(IJCAI-99), 1999, pp. 318–325.
[43] J. Kvarnström, P. Doherty, TALplanner: A temporal logic based forward chaining planner, Annals of Mathematics and Artificial Intelligence 30 (2000)

119–169.
[44] H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, R.B. Scherl, GOLOG: A logic programming language for dynamic domains, Journal of Logic Program-

ming 31 (1–3) (1997) 59–83.
[45] S. Liaskos, Acquiring and reasoning about variability in goal models, PhD in Computer Science, Department of Computer Science, University of Toronto,

Toronto, Canada, 2008.
[46] S. Liaskos, S.A. McIlraith, J. Mylopoulos, Towards augmenting requirements models with preferences, in: Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering (ASE-09), 2009, pp. 565–569.
[47] J. McCarthy, Situations, actions and causal laws. Tech. Rep., Stanford University, 1963.
[48] D.V. McDermott, PDDL—The Planning Domain Definition Language, Tech. Rep. TR-98-003/DCS TR-1165, Yale Center for Computational Vision and

Control, 1998.
[49] S. McIlraith, T. Son, Adapting Golog for composition of semantic web services, in: Proceedings of the 8th International Conference on Knowledge

Representation and Reasoning, 2002, pp. 482–493.
[50] K. Myers, T. Lee, Generating qualitatively different plans through metatheoretic biases, in: Proceedings of the 16th National Conference on Artificial

Intelligence (AAAI-99), 1999, pp. 570–576.
[51] A. Pnueli, The temporal logic of programs, in: Proceedings of the 18th IEEE Symposium on Foundations of Computer Science (FOCS-77), 1977, pp. 46–

57.
[52] M. Puterman, Markov Decision Processes: Discrete Dynamic Programming, Wiley, New York, 1994.
[53] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems, MIT Press, Cambridge, MA, 2001.
[54] A.P. Sistla, E.M. Clarke, The complexity of propositional linear temporal logics, Journal of the ACM 32 (3) (1985) 733–749.
[55] D.E. Smith, Choosing objectives in over-subscription planning, in: Proceedings of the 14th International Conference on Automated Planning and

Scheduling (ICAPS-04), 2004, pp. 393–401.
[56] S. Sohrabi, J.A. Baier, S.A. McIlraith, HTN planning with preferences, in: Proceedings of the 21st International Joint Conference on Artificial Intelligence

(IJCAI-09), 2009, pp. 1790–1797.
[57] S. Sohrabi, S.A. McIlraith, On planning with preferences in HTN, in: Proceedings of the 4th Multidisciplinary Workshop on Advances in Preference

Handling (M-Pref-08) at AAAI-08, 2008, pp. 103–109.
[58] S. Sohrabi, N. Prokoshyna, S. McIlraith, Web service composition via generic procedures and customizing user preferences, in: Proceedings of the 5th

International Semantic Web Conference (ISWC-06), 2006, pp. 597–611.
[59] T.C. Son, E. Pontelli, Planning with preferences using logic programming, in: Proceedings of the 7th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR-04), 2004, pp. 247–260.
[60] T.C. Son, E. Pontelli, Planning with preferences using logic programming, Theory and Practice of Logic Programming 6 (5) (2006) 559–607.
[61] P.H. Tu, T.C. Son, E. Pontelli, CPP: A constraint logic programming based planner with preferences, in: Proceedings of the 9th International Conference

on Logic Programming and Nonmonotonic Reasoning (LPNMR-07), 2007, pp. 290–296.
[62] M. van den Briel, R.S. Nigenda, M.B. Do, S. Kambhambati, Effective approaches for partial satisfaction (oversubscription) planning, in: Proceedings of

the 19th National Conference on Artificial Intelligence (AAAI-04), 2004, pp. 562–569.
[63] J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, 1994.
[64] N. Wilson, Extending CP-Nets with stronger conditional preference statements, in: Proceedings of the 19th National Conference on Artificial Intelligence

(AAAI-04), 2004, pp. 735–741.
[65] N. Yorke-Smith, K.B. Venable, F. Rossi, Temporal reasoning with preferences and uncertainty, in: Proceedings of the 18th International Joint Conference

on Artificial Intelligence (IJCAI-03), 2003, pp. 1385–1390.

	Specifying and computing preferred plans
	Introduction
	Preliminaries
	Preference speciﬁcation
	A ﬁrst-order preference language
	The semantics of our language

	Planning with preferences
	Complexity of preference-based planning
	Progression
	An evaluation function for best-ﬁrst search

	The PPLAN algorithm and implementation
	Experiments
	Beyond PPLAN

	Specifying preferences over complex actions
	Golog
	Preferred programs
	Progressing programs
	Planning with preferred programs

	Related work
	Preference languages
	CP-Nets
	QCL, RKBs, and possibilistic logic
	Planning-oriented preference languages
	PP
	PDDL3
	Other

	Preference-based planners

	Closing remarks
	Acknowledgements
	Axiomatization of the dinner example
	Proof of Theorem 4.13
	Proof of Theorem 4.18
	Proof of Corollary 4.20
	Proof of Theorem 6.3
	References

