
Planning with Temporally Extended Goals using Heuristic Search

Jorge A. Baier and Sheila McIlraith
Deptartment of Computer Science, University of Toronto,

Toronto, ON, M5S 3H5, Canada
Abstract

Temporally extended goals (TEGs) refer to properties that
must hold over intermediate and/or final states of a plan. Cur-
rent planners for TEGs prune the search space during plan-
ning via goal progression. However, the fastest classical
domain-independent planners rely on heuristic search. In this
paper we propose a method for planning with propositional
TEGs using heuristic search. To this end, we translate an in-
stance of a planning problem with TEGs into an equivalent
classical planning problem. With this translation in hand, we
exploit heuristic search to determine a plan. We represent
TEGs using propositional linear temporal logic which is in-
terpreted over finite sequences of states. Our translation is
based on the construction of a nondeterministic finite automa-
ton for the TEG. We prove the correctness of our algorithm
and analyze the complexity of the resulting representation.
The translator is fully implemented and available. Our ap-
proach consistently outperforms existing approaches to plan-
ning with TEGs, often by orders of magnitute.

1 Introduction
In this paper we address the problem of generating finite
plans for temporally extended goals (TEGs) using heuristic
search. TEGs refer to properties that must hold over inter-
mediate and/or final states of a plan. From a practical per-
spective, TEGs are compelling because they encode many
realistic but complex goals that involve properties other than
those concerning the final state. Examples include achieving
several goals in sequence (e.g., book flight after confirming
hotel availability), safety goals (e.g., the door must always
be open), and achieving a goal within some number of steps
(e.g., at most 3 states after lifting a heavy object, the robot
must recharge its batteries).

Planning with TEGs is fundamentally different from us-
ing temporally extended domain control knowledge to guide
search (e.g., TLPLAN [1], and TALPLAN [11]). TEGs ex-
press properties of the plan we want to generate, whereas do-
main control knowledge expresses general properties of the
search for a class of plans [10]. As a consequence, domain
control knowledge is generally associated with an additional
final-state goal.

A strategy for planning with TEGs, as exemplified by
TLPLAN, is to use some sort of blind search on a search
space that is constantly pruned by the progression of the
temporal goal formula. This works well for safety-oriented
goals (e.g., ¤open(door)) because it prunes those actions
that falsify the goal. Nevertheless, it is less effective with re-
spect to liveness properties such as ♦at(Robot,Home). Our

objective is to exploit heuristic search to efficiently generate
plans with TEGs.

To achieve this, we convert a TEG planning problem into
a classical planning problem where the goal is expressed in
terms of the final state, and then we use existing heuristic
search techniques. An advantage of this approach is that we
can use any heuristic planner with the resulting problem.

In contrast to previous approaches, we propose to repre-
sent TEGs in f-LTL, a version of propositional linear tempo-
ral logic (LTL) [14] which can only be interpreted by finite
computations, and is more natural for expressing properties
of finite plans. To convert a TEG to a classical planning
problem we provide a translation of f-LTL formulae to non-
deterministic finite automata (NFA). We prove the correct-
ness of our algorithm. We analyze the space complexity of
our translations and suggest techniques to reduce space.

Our translator is fully implemented and available on the
Web. It outputs PDDL problem descriptions, which makes
our approach amenable to use with a variety of classical
planners. We have experimented with the heuristic planner
FF [9]. Our experimental results illustrate the significant
power heuristic search brings to planning with TEGs. In
almost all of our experiments, we outperform existing (non-
heuristic) techniques for planning with TEGs.

There are several papers that addressed related issues.
First is work that compiles TEGs into classical planning
problems such as that of Rintanen [15], and Cresswell and
Coddington [3]. Second is work that exploits automata rep-
resentations of TEGs in order to plan with TEGs, such as
Kabanza and Thiébaux’s work on TLPLAN [10] and work
by Pistore and colleagues [12]. We discuss this work in the
final section of this paper.

2 Preliminaries
We represent TEGs using f-LTL logic, a variant of a propo-
sitional LTL [14] which we define over finite rather than in-
finite sequences of states. f-LTL formulae augment LTL for-
mulae with the propositional constant final, which is only
true in final states of computation. An f-LTL formula over
a set P of propositions is (1) final, true, false, or p, for any
p∈P; or (2) ¬ψ , ψ∧χ , ©ψ , or ψ Uχ , if ψ and χ are f-LTL
formulae.

The semantics of an f-LTL formula over P is defined over
finite sequences of states σ = s0s1 · · ·sn, such that si ⊆P , for
each i ∈ {0, . . . ,n}. We denote the suffix si · · ·sn of σ by σi.
Let ϕ be an f-LTL formula. We say that σ |= ϕ iff σ0 |= ϕ .
Furthermore,
• σi |= final iff i = n, σi |= true, σi 6|= false, and σi |= p iff p ∈ si

• σi |= ¬ϕ iff σi 6|= ϕ , and σi |= ψ ∧ χ iff σi |= ψ and σi |= χ .
• σi |= ©ϕ iff i < n and σi+1 |= ϕ .
• σi |= ψ Uχ iff there exists a j ∈ {i, . . . ,n} such that σ j |= χ and

for every k ∈ {i, . . . , j−1}, σk |= ψ .

Standard temporal operators such as always (¤), eventu-
ally (♦), and release (R), and additional binary connectives
such as ∨, ⊃ and ≡ can be defined in terms of the basic

elements of the language (e.g., ψ Rχ def
= ¬(¬ψ U¬χ)).

As in LTL, we can rewrite formulae containing U and R

in terms of what has to hold true in the “current” state and
what has to hold true in the “next” state. The following
f-LTL identities are the basis for our translation algorithm.
1. ψ Uχ ≡ χ ∨ψ ∧©(ψ Uχ). 3. ¬©ϕ ≡ final∨©¬ϕ .
2. ψ Rχ ≡ χ ∧ (final∨ψ ∨©(ψ Rχ)).

Identities 2 and 3 explicitly mention the constant final.
Those familiar with LTL, will note that identity 3 replaces
LTL’s equivalence ¬©ϕ ≡ ©¬ϕ . In f-LTL ©ϕ is true in a
state iff there exists a next state that satisfies ϕ . Since our
logic is finite, the last state of each model has no successor,
and therefore in such states ¬©ϕ holds for every ϕ .

The expressive power of f-LTL is similar to that of LTL
when describing TEGs. Indeed, f-LTL has the advantage
that it is tailored to refer to finite plans, and therefore we
can express goals that cannot be expressed with LTL. Some
examples of TEGs follow.
• ¤(final⊃ at(Robot,R1)): In the final state, at(Robot,R1)

must hold. This is one way of encoding final-state goals.
• ♦(p∧©©final): p must hold true two states before the

plan ends. This is an example of a goal that cannot be
expressed in LTL, since it does not have the final constant.

Planning Problems A planning problem is a tuple
〈I,D,G〉, where set I is the initial state, composed by first-
order (ground) positive facts; D is the domain description;
G is a TEG in f-LTL.

A domain description is a tuple D = 〈C,R〉, where C is
a set of causal rules, and R a set of action precondition
rules. Intuitively, a causal rule defines when a fluent lit-
eral becomes true after performing an action. We represent
causal rules by the triple 〈a(~x),c(~x), `(~x)〉, where a(~x) is an
action term, `(~x) is a fluent literal, and c(~x) is a first-order
formula, each of them with free variables among those in
~x. Intuitively, 〈a(~x),c(~x), `(~x)〉 expresses that `(~x) becomes
true after performing action a(~x) in the current state if con-
dition c(~x) holds true. As with ADL operators, the condition
c(~x), can contain quantified first-order subformulae. More-
over, ADL operators can be constructed from causal rules
and vice versa [13]. Finally, we assume that for each action
term and fluent term, there exists at most one positive and
one negative causal rule in C. All free variables in rules of C
or R are regarded as universally quantified.
Regression The causal rules of a domain describe the dy-
namics of individual fluents. However, to model an NFA in
a planning domain, we need also know the dynamics of arbi-
trary complex formulae, such as for example, the causal rule
for at(o,R1)∧ holding(o). This is normally accomplished
by goal regression [18, 13]. For example, if the following
are causal rules for fluents α and β :

〈a,Φ+
a,α ,α〉, 〈a,Φ−

a,α ,¬α〉, 〈a,Φ+
a,β ,β 〉 〈a,Φ−

a,β ,¬β 〉,
we would add the causal rule 〈a,Φ+,α∧β 〉 for α∧β , where
Φ+ = {Φ+

a,α ∧Φ+
a,β}∨{α ∧¬Φ−

a,α ∧Φ+
a,β}∨{β ∧¬Φ−

a,β ∧Φ+
a,α}

The size of the resulting causal rule (before simplification)
for a boolean combination of fluents can grow exponentially:
Proposition 1 Let ϕ = f0∧ f1∧ . . .∧ fn. Then, assuming no
simplifications are made, |Φ+

a,ϕ | = Ω(3n(m+ +m−)), where
m+ = mini |Φ+

a, fi
|, and m− = mini |Φ−

a, fi
|.

Moreover, the simplification of a boolean formula is also ex-
ponential in the size of the formula. Despite this bad news,
below we present a technique to reduce the size of the re-
sulting translation for formulae like these.

3 Translating f-LTL to NFA
It is well-known that for every LTL formula ϕ , there exists
a Büchi automaton Aϕ , such that it accepts an infinite state
sequence σ iff σ |= ϕ [17, 16]. To our knowledge, there
exists no pragmatic algorithm for translating a finite version
of LTL such as the one we use here1. To this end, we have
designed an algorithm based on the one proposed by Gerth
et al. [7]. The automaton generated is a state-labeled NFA
(SLNFA), i.e. an NFA where states are labeled with formu-
lae. Given a finite state sequence σ = s0 . . .sn, the automaton
goes through a path of states q0 . . .qn iff the formula label of
qi is true in si. The automaton accepts σ iff qn is final.

Space precludes displaying the complete algorithm. Nev-
ertheless, the code is downloadable from the Web2, and the
algorithm is described in detail in [2]. Briefly, there are three
main modifications to the algorithm of Gerth et al [7]. First,
the generation of successors now takes into account the final

constant. Second, the splitting of the nodes is done consid-
ering f-LTL identities in Section 2 instead of standard LTL
identities. Third, the acceptance condition of the automaton
is defined using the constant final and the fact that the logic
is interpreted over finite sequences of states. We prove that
our algorithm is correct:
Theorem 1 Let Aϕ be the automaton built by the algorithm
from ϕ . Then Aϕ accepts exactly the set of computations that
satisfy ϕ .

Simplifying SLNFAs into NFAs Our algorithm often pro-
duces automata that are much bigger than the optimal. To
simplify it, we have used a modification of the algorithm
presented in [5]. This algorithm uses a simulation technique
to simplify the automaton. In experiments in [6], it was
shown to be slightly better than LTL2AUT [4] at simplify-
ing Büchi automata. The resulting automaton is an NFA, as
the ones shown in Figure 1. In contrast to SLNFA, in NFA
transitions are labeled with formulae.
Size complexity of the NFA Although simplifications
normally reduce the number of states of the NFA signif-
icantly, the resulting automaton can be exponential in the
size of the formula in the worst case. E.g., for the formula
♦p1 ∧♦p2 ∧ . . .∧♦pn, the resulting NFA has 2n states. Be-
low, we see that this is not a limitation in practice.

1In [8], finite automata are built for a ©-free subset of LTL, that
does not include the final constant.

2http://www.cs.toronto.edu/˜jabaier/planning teg/

{¬p,¬q}

{¬p,¬q}

q0 q1

q0 q2

q1

{}

{closed(D1),
¬at(Robot, R1),

at(O1 , R4)}

{¬at(Robot, R1),

at(O1 , R4)}

{}

{closed(D1),
¬at(Robot, R1)}

{¬at(Robot, R1)}

(a) (b)

Figure 1: Simplified NFA for (a) ¤(p ⊃©q)∧¤(q ⊃ ©p),
and (b) ¤(at(Robot,R1) ⊃ ©♦closed(D1))∧♦¤at(O1,R4).

4 Compiling NFAs into a Planning Domain

Now that we are able to represent TEGs as NFAs, we show
how the NFA can be encoded into a planning problem. Once
the NFA is modeled inside the domain, the temporal goal in
the newly generated domain in reduced to a property of the
final state alone. Intuitively, this property corresponds to the
accepting condition of the automaton.

In the rest of the section, we assume the following. We
start with a planning problem L = 〈I,D,G〉, where G is a
TEG in f-LTL. The NFA AG = (Q,Σ,δ ,Q0,F) is built for
G. We denote by λp,q the formula

∨
(q,L,p)∈δ

∧
L. E.g., in

Fig. 1(b), λq1,q0 = closed(D1)∧¬at(Robot,R1). Finally,
we denote by Pred(q) the states that are predecessors of q.

In the planning domain, each state of the NFA is repre-
sented by a fluent. For each state q we add to the domain
a new fluent Eq. The translation is such that if sequence of
actions a1a2 · · ·an is performed in state s0, generating the
succession of states σ = s0s1 . . .sn, then Eq is true in sn if
and only if there is a run of AG on σ that ends in state q.

For each fluent Eq we generate a new set of causal rules.
New rules are added to the set C ′, which is initialized to ∅.

For each action a, we add to C ′ the causal rules
〈a,Φ+

a,Eq
,Eq〉 and 〈a,Φ−

a,Eq
,¬Eq〉 where:

Φ+
a,Eq

=
∨

p∈Pred(q)\{q} Ep ∧ (Φ+
a,λp,q

∨ (λp,q ∧¬Φ−
a,λp,q

)),

Φ−
a,Eq

= ¬Φ+
a,Eq

∧¬(Φ+
q,λq,q

∨λq,q ∧¬Φ−
a,λq,q

).

where Φ+
a,λp,q

(resp. Φ−
a,λp,q

) is the condition under which

a makes λp,q true (resp. false). Both formulae must be
obtained via regression. Formula λq,q is false if there is no
self transition in q.

The initial state must give an account of which fluents Eq
are initially true. The new set of facts I ′ is the following
I ′ = {Eq |(p,L,q) ∈ δ , p ∈ Q0,L ⊆ I}.

Intuitively, the automaton AG accepts iff the temporally
extended goal G is satisfied. Therefore, the new goal, G′ =∨

p∈F Ep, is defined according to the acceptance condition
of the NFA. The final planning problem L′ is 〈I ∪ I ′,C ∪
C′,R,G′〉.
Size complexity The size of the translated domain has
a direct influence on how hard it is to plan with that do-
main. We can prove that the size of the translated domain
is O(n|Q|2`), where ` is the maximum size of a transition in
AG , n is the number of action terms in the domain, and |Q|
is the number of states of the automaton.

Prb. Comp. No. |G| FF TLPLAN
time Sts. t ` t t-ctrl `
1 .02 2 6 .02 6 .07 .01 6
2 .02 2 6 .02 8 .04 .03 8
3 .09 15 21 .04 10 .20 .02 10
4 .06 5 12 .03 6 .38 .10 6
5 .07 6 21 .04 15 .5 .19 13
6 .49 37 71 .19 16 .51 .17 18
7 .05 6 21 .05 9 .96 .31 10
8 .07 15 9 .05 10 1.40 .04 10
9 .01 4 11 .03 18 13.90 .15 14

10 .04 6 12 .07 32 17.52 .40 14
11 .08 5 23 .06 22 m m –
12 .09 5 25 .50 25 m m –
13 .09 6 15 m – m m –
14 .32 5 31 m – m m –
15 .07 5 18 .11 31 m m –
16 .09 10 22 m – m m –

(a)

Prb. FF TPBA+c
t ` t `

1 0.02 2 0.24 2
2 0.02 5 0.96 5
3 0.01 5 1.3 5
4 0.02 7 3.29 7
5 0.02 10 11.66 10
6 0.02 12 28.87 12
7 0.02 15 82.57 15
8 0.02 19 35.69 17
9 0.02 21 13.37 20

10 0.23 52 126.25 35
11 0.07 54 m –
12 0.23 47 m –
13 0.54 72 m –
14 4.03 82 m –
15 11.19 95 m –

(b)

Table 1: Our approach compared to TLPLAN (a) and search
control with Büchi automata (b)

Reducing |Q| We previously saw that |Q| can be expo-
nential in the size of the formula. Fortunately, there is a
workaround. Consider for example the formula ϕ = ♦p1 ∧
. . .∧♦pn, which we know has an exponential NFA. ϕ is sat-
isfied if each of the conjuncts♦pi is satisfied. Instead of gen-
erating a unique NFA for ϕ we generate different NFA for
each ♦pi. Then we plan for a goal equivalent to the conjunc-
tion of the acceptance conditions of each of those automata.
This generalizes to any combination of boolean formulae.

5 Implementation and Experiments
We implemented a compiler that given a domain and a f-
LTL TEG, generates a classical planning problem following
Section 4. The compiler can further convert the new problem
into a PDDL domain/problem, thereby enabling its use with
a variety of available planners.

We conducted several experiments in the Robots Domain
[1] to test the effectiveness of our approach. In each ex-
periment, we compiled the planning problem to PDDL. To
evaluate the translation we used the FF planner.

Table 1(a) presents results obtained for various temporal
goals by our translation and TLPLAN. The second column
shows the time taken by the translation, the third shows the
number of states of the automata representing the goal, and
the fourth shows the size of the goal formula, |G|. The rest
of the columns show the time (t) and length (`) of the plans
for each approach. In the case of the TLPLAN, two times
are presented. In the first (t) no additional search control
was added to the planner, i.e. the planner was using only
the goal to prune the search space. In the second (t-ctrl)
we added (by hand) additional control information to “help”
TLPLAN do a better search. The character ‘m’ stands for
ran out of memory.

Our approach significantly outperformed TLPLAN.
TLPLAN is only competitive in very simple cases. In most
cases, our approach is one or two orders of magnitude faster
than TLPLAN. Moreover, the number of automata states is
comparable to the size of the goal formula, which illustrates
that our approach does not blow up easily for natural TEGs.
We also observe that FF cannot solve all problems. This is
because FF transforms the domain to a STRIPS problem, and
tends to blow up when conditional effects contain large for-

mulae. This problem, can be overcome if one uses derived
predicates in the translation as proposed in [2].

Table 1(b) compares our approach’s performance to that
of the planner presented in [10] (henceforth, TPBA), which
uses Büchi automata to control search. In this case we used
goals of the form ♦(p1 ∧©(♦p2 ∧ . . .∧©♦pn) . . .), which
is one of the four goal templates supported by this planner.
Again, our approach significantly outperforms TPBA, even
in the presence of extra control information added by hand
(this is indicated by the ‘+c’ in the table).

The results presented above are not surprising. None of
the planners we have compared to uses heuristic search,
which means they may not have enough information to de-
termine which action to choose during search. The TLPLAN
family of planners is particularly efficient when control in-
formation is added to the planner. Usually this information
is added by an expert in the planning domain. However, con-
trol information, while natural for classical goals, may be
hard to write for temporally extended goals. The advantage
of our approach is that we do not need to write this informa-
tion to be efficient. Moreover, control information can also
be added in the context of our approach by integrating it into
the goal formula.

6 Discussion and Related Work
In this paper we proposed a method to generate plans for
TEGs using heuristic search. We proposed a translation
method that takes as input a planning problem with an f-LTL
TEG and produces a classical planning problem. Experi-
mental results demonstrate that our approach outperforms—
often by several orders of magnitude—existing (non-
heuristic) planners for TEGs in the Robots Domain. [2]. Our
approach is limited to propositional TEGs. In [2] we show
how we can extend it to capture a compelling subset of first-
order f-LTL. We also provide analogous performance results
on multiple domains.

There are several notable pieces of related work. TPBA,
the temporal extension of TLPLAN that uses search control,
and that we use in our experiments [10], constructs a Büchi
automaton to represent the goal. It then uses the automaton
to guide planning by following a path in its graph from an
initial to final state, setting transition labels as subgoals, and
backtracking as necessary.

Approaches for planning as symbolic model checking
have also used automata to encode the goals (e.g. [12]).
These approaches use different languages for extended
goals, and are not heuristic.

In [3] a translation of LTL formulae to PDDL has been
proposed. They translate LTL formulae to a deterministic fi-
nite state machine (FSM). The FSM is generated by succes-
sive applications of the progress operator of [1] to the TEG.
The use of deterministic automata makes it prone to expo-
nential blowup even with simple goals, e.g., ♦(p ∧ ©nq).
The authors’ code was unavailable for comparison with our
work. Nevertheless, they report that their technique is no
more efficient than TLPLAN, so we infer that our approach
has better performance.

Finally, [15] proposes a translation of a subset of LTL into
a set of ADL operators. Their translation does not use au-

tomata, and therefore is limited to a small subset of LTL.

Acknowledgments We are extremely grateful to Frodu-
ald Kabanza, who provided the TPBA code for comparison.
We also wish to thank Sylvie Thiébaux, Fahiem Bacchus,
and the anonymous reviewers for insightful comments on
this work. Finally, we gratefully acknowledge funding from
NSERC Research Grant 229717-04.

References
[1] F. Bacchus and F. Kabanza. Planning for temporally extended

goals. Ann. of Math Art. Int., 22(1-2):5–27, 1998.

[2] J. A. Baier and S. McIlraith. Planning with first-order tempo-
rally extended goals using heuristic search. Forthcoming.

[3] S. Cresswell and A. Coddington. Compilation of LTL goal
formulas into PDDL. In ECAI-04, pages 985–986, 2004.

[4] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved au-
tomata generation for linear temporal logic. In Proc. CAV-99,
volume 1633 of LNCS, pages 249–260, Trento, Italy, 1999.

[5] K. Etessami and G. J. Holzmann. Optimizing büchi automata.
In Proc. CONCUR-2000, pages 153–167, 2000.

[6] C. Fritz. Constructing Büchi automata from ltl using simula-
tion relations for alternating büchi automata. In Proc. CIAA
2003, volume 2759 of LNCS, pages 35–48, 2003.

[7] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In
PSTV-95, pages 3–18, 1995.

[8] Dimitra Giannakopoulou and Klaus Havelund. Automata-
based verification of temporal properties on running pro-
grams. In Proc. ASE-01, pages 412–416, 2001.

[9] J. Hoffmann and B. Nebel. The FF planning system: Fast
plan generation through heuristic search. Journal of Art. Int.
Research, 14:253–302, 2001.

[10] F. Kabanza and S. Thiébaux. Search control in planning for
temporally extended goals. In Proc. ICAPS-05, 2005.

[11] J. Kvarnström and P. Doherty. Talplanner: A temporal logic
based forward chaining planner. Ann. of Math Art. Int., 30(1-
4):119–169, 2000.

[12] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a
language for extended goals. In Proc. AAAI/IAAI, pages 447–
454, 2002.

[13] E. P. D. Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proc. KR-89,
pages 324–332, 1989.

[14] A. Pnueli. The temporal logic of programs. In Proc. FOCS-
77, pages 46–57, 1977.

[15] J. Rintanen. Incorporation of temporal logic control into plan
operators. In Proc. ECAI-00, pages 526–530, 2000.

[16] M. Y. Vardi. An automata-theoretic approach to linear tem-
poral logic. In Banff Higher Order Workshop, volume 1043
of LNCS, pages 238–266. Springer, 1995.

[17] M. Y. Vardi and Pierre Wolper. Reasoning about infinite com-
putations. Information and Computation, 115(1):1–37, 1994.

[18] R. Waldinger. Achieving several goals simultaneously. In
Mach. Intel. 8, pages 94–136. Ellis Horwood, 1977.

