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Abstract

In this paper we provide algorithms for reasoning with partitions of related logical
axioms in propositional and first-order logic (FOL). We also provide a greedy al-
gorithm that automatically decomposes a set of logical axioms into partitions. Our
motivation is two-fold. First, we are concerned with how to reason effectively with
multiple knowledge bases that have overlap in content. Second, we are concerned
with improving the efficiency of reasoning over a set of logical axioms by partition-
ing the set with respect to some detectable structure, and reasoning over individual
partitions.

Many of the reasoning procedures we present are based on the idea of passing
messages between partitions. We present algorithms for reasoning using forward
message-passing and using backward message-passing with partitions of logical ax-
ioms. Associated with each partition is a reasoning procedure. We characterize
a class of reasoning procedures that ensures completeness and soundness of our
message-passing algorithms. We also provide a specialized algorithm for proposi-
tional satisfiability checking with partitions. Craig’s interpolation theorem serves
as a key to proving soundness and completeness of these algorithms. An analysis
of these algorithms emphasizes parameters of partitionings that influence the effi-
ciency of computation. These parameters are the number of symbols shared by a
pair of partitions, the size of each partition, and the topology of the partitioning.
We provide a greedy algorithm that automatically decomposes a given theory into
partitions, exploiting the parameters that influence the efficiency of computation.
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1 Introduction

There is growing interest in building large knowledge bases (KBs) of everyday
knowledge about the world, teamed with theorem provers or other reasoners
to perform inference. Three such systems are Cycorp’s Cyc, and the High Per-
formance Knowledge Base (HPKB) systems developed by Stanford’s Knowl-
edge Systems Lab (KSL) (e.g., [Fikes and Farquhar, 1999]) and by SRI (e.g.,
[Cohen et al., 1998]). These KBs comprise tens/hundreds of thousands of log-
ical axioms. One approach to dealing with the size and complexity of these
KBs is to structure the content in some way, such as into multiple domain- or
task-specific KBs, or into microtheories. In this paper, we investigate how to
reason effectively with partitioned sets of logical axioms that have overlap in
content, and that may even have different reasoning engines. More generally,
we investigate the problem of how to exploit structure inherent in a set of
logical axioms to induce a partitioning of the axioms that will improve the
efficiency of reasoning.

To this end, we propose partition-based logical reasoning algorithms, for rea-
soning with logical theories® that are decomposed into related partitions of
axioms. We provide forward and backward message-passing algorithms, spe-
cialize them for resolution, and provide an algorithm for partition-based propo-
sitional satisfiability. Our message-passing algorithms are designed so that,
without loss of generality, reasoning within a partition can be realized by an ar-
bitrary consequence-finding engine [Lee, 1967]. We characterize a class of rea-
soning procedures that ensures completeness and soundness of our algorithms.
We use Craig’s interpolation theorem [Craig, 1957a] to prove the soundness
and completeness of our algorithms for this class of procedures. It is also used
to prove the soundness and completeness of our propositional satisfiability al-
gorithm. We investigate the impact of these algorithms on resolution-based

inference, and analyze the computational complexity for our partition-based
SAT.

A critical aspect of partition-based logical reasoning is the selection of a good
partitioning of the theory. The computational analysis of our partition-based
reasoning algorithms suggests parameters of partitionings that influence the
computation of our algorithms: the bandwidth of communication between par-
titions, the size of each partition, and the topology of the partitions graph.
These parameters guide us to propose a greedy algorithm for decomposing
logical theories into partitions, trying to optimize these parameters.

Surprisingly, there has been little work on the specific problem of exploiting
structure in theorem proving in the manner we propose. This can largely

3 In this paper, every set of axioms is a theory (and vice versa). Also, unless stated
otherwise, theories, axioms and KBs are in FOL.



be attributed to the fact that theorem proving has traditionally examined
mathematics domains, that do not necessarily have structure that supports
decomposition. Nevertheless, there are many areas of related work, which we
discuss at the end of this paper.

The rest of the paper is organized as follows. Section 2 describes our message-
passing algorithms and sufficient conditions for their soundness and complete-
ness. In Section 3 we specialize these algorithms to theorem proving using
resolution and discuss the efficiency of message-passing. Section 4 offers an
algorithm for propositional satisfiability and analyzes its computational com-
plexity. Section 5 presents an algorithm for decomposing a logical theory. Fi-
nally, Section 6 discusses some related work. Some of the results in this paper
appeared previously in [Amir and Mcllraith, 2000,McIlraith and Amir, 2001].

2 Partition-Based Theorem Proving

In this section we address the problem of how to reason with an already
partitioned propositional or FOL theory using theorem proving. In particular,
we propose forward and backwards message-passing algorithms, in the spirit
of Pearl [Pearl, 1988]. We further identify conditions underwhich partition-
specific theorem proving results in sound and complete partition-based logical
reasoning.
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Fig. 1. A partitioning of A and its intersection graph.



We define the following. {A;}i<, is a partitioning of a logical theory A if
A = U; A;. Each individual A4; is called a partition, L(A;) is its signature (the
set of non-logical symbols), and L(.A4;) is its language (the set of formulae
built with L(A;)). Each partitioning defines a labeled graph G = (V, E, ),
which we call the intersection graph. In the intersection graph, each node
i represents an individual partition A;, (V = {1,...,n}), two nodes i, j are
linked by an edge if L(A;) and L(.A,) have a symbol in common (E = {(¢, j) |
L(A;) N L(A;) # 0}), and the edges are labeled with the set of symbols that
the associated partitions share ({(, j) = L(A;) N L(A,)). We refer to I(4, j) as
the communication language between partitions A; and 4;. We ensure that
the intersection graph is connected by adding a minimal number of edges to
E with empty labels, (7, j) = 0.

We illustrate the notion of a partitioning in terms of the simple propositional
theory A, depicted on the left of Figure 1 (this is the clausal form of the theory
presented with material implication in Figure 2). These axioms capture the
functioning of aspects of an espresso machine. The first four axioms denote
that if the machine pump is OK and the pump is on, then the machine has a
water supply. Alternately, the machine can be filled manually, but it is never
the case that the machine is filled manually while the pump is on. The next
four axioms denote that there is steam if and only if the boiler is OK and is
on, and there is a supply of water. The final three axioms denote that there is
always either coffee or tea, and that steam and coffee (or tea) result in a hot
drink.

ok_pump A on_pump = water man_fill = water
man_fill = —on_pump —man_fill = on_pump
water A ok_boiler A on_boiler = steamn —water = —steam
—ok_boiler = —steam —on_boiler = —steam
steam A cof fee = hot_drink cof feeV teabag

steam A teabag = hot_drink

Fig. 2. Axiomatization of a simplified espresso machine.

The right-hand side of Figure 1 depicts a decomposition of A into three par-
titions A, As, As and its intersection graph. The labels for the edges (1, 2)
and (2, 3) are {water} and {steam}, respectively.

2.1 Forward Message Passing

In this section, we propose a forward message-passing algorithm for reasoning
with partitions of logical axioms. Figure 3 describes our forward message-
passing algorithm, FORWARD-M-P (MP), for finding the truth value of query



formula @ € L(Ag), & < n, given partitioned theory A and graph G =
(V, E,l). G may be the intersection graph of A, but is not always so.

To determine the direction in which messages should be sent in the graph G,
step (1) in MP computes a strict partial order over nodes in the graph using
the partitioning together with a query, Q.

Definition 2.1 (<) Given partitioned theory A = U;<, A, associated graph
G = (V,E,l) and query Q € L(Ay), let dist(i,j) (i,j € V) be the length of
the shortest path between nodes i,j in G. Then i < j iff dist(i, k) < dist(j, k).

PROCEDURE FORWARD-M-P (MP)({A; }i<n, G, Q)
{A;}i<n a partitioning of the theory A, G = (V, E,l) a graph describing the
connections between the partitions, @ a query in L(Ag) (k < n).

(1) Determine < as in Definition 2.1.

(2) Concurrently,

(a) Perform consequence finding in each of the partitions A4;, i < n.

(b) For every (i,5) € E such that i < j, for every consequence ¢ of A;
found (or ¢ in A;), if ¢ € L(I(7,7)), then add ¢ to the set of axioms
of Az

(c) If Q is proven in Ay (we derive a subsuming formula or initially add
=@ to A and derive inconsistency), return YES.

Fig. 3. A forward message-passing algorithm.

This algorithm exploits consequence finding (step (2a)) to perform reasoning in
the individual partitions. Consequence finding was defined by Lee [Lee, 1967]
to be the problem of finding all the logical consequences of a theory or sen-
tences that subsume them. Recall, in clausal FOL, ¢ subsumes v if there is a
substitution € such that @8 C .

Theorem 2.4 proves the soundness and completeness of our MP algorithm. It
requires each of the reasoners in step (2) to be sound and complete.

Definition 2.2 (Completeness for Consequence Finding) Given a set
of formulae A and a reasoning procedure R, R is complete for consequence
finding iff for every clause @, that is a non-tautologous logical consequence of
A, % derives a clause v from A such that ¢ subsumes .

Furthermore, we say that % is complete for consequence finding in FOL (as
opposed to clausal FOL) iff for every non-tautologous logical consequence ¢ of
A, R derives a logical consequence ¥ of A such that ¢ = ¢ and ¥ € L(p).

In Section 3.1 we show that every reasoning procedure that is complete for
consequence finding in clausal FOL can be converted to a reasoning procedure



that is complete for consequence finding in FOL. In propositional logic the two
conditions are identical.

Consequently, we can use any sound and complete consequence-finding algo-
rithm for reasoning within an individual partition in MP. The resolution rule
is complete for clausal consequence finding (e.g., [Lee, 1967,Slagle, 1970]) and
the same is true for several linear resolution variants such as those described
in [Minicozzi and Reiter, 1972,Inoue, 1992]. A weaker version of completeness
for consequence finding is also true for semantic resolution [Slagle et al., 1969
and set-of-support resolution.

We discuss the case of using resolution further in Section 3. In addition, there
are reasoning methods that focus on a given sub-language as discussed in
[Finger and Genesereth, 1985,Bossu and Siegel, 1985,Inoue, 1992, and more
recently in [Dechter and Rish, 1994,del Val, 1999,Lin, 2000,Kohlas et al., 1999],
and in [Marquis, 2000]. An example of such restricted consequence finders is a
prime implicate generator over a sublanguage. (Recall, a clause, ¢, is a prime
implicate of a theory T if T' = ¢ and no formula that subsumes ¢ is entailed
from T.) Such consequence finders are commonly used for prime implicate
generation in applications such as diagnosis and abduction [Mcllraith, 1998].
Consequence finders that focus on a sublanguage can be directly used in MP
for reasoning within partitions. Alternately, they can be used in a batch mode
to generate select consequences in the sublanguage and that are sent as mes-
sages in batch. Figure 4 illustrates an execution of MP using resolution.

Using FORWARD-M-P to prove hot_drink
Partition Resolve Generating
A (2) ,(4) on_pump V water (m1)
A (ml),(1) —ok_pump V water (m2)
A (m2),(12)  water (m3)
=  clause water passed from A; to A,
Ay (m3), (5) ok_boiler A on_boiler D steam (m4)
Ay (m4),(13)  —on_boiler V steam (mb)
Ay (mb),(14)  steam (m6)
—> clause steam passed from Ay to Aj
Az (9) ,(10)  —steam V teabag V hot_drink (m7)
As  (m7),(11)  —steam V hot_drink (m8)
Az (m8),(m6)  hot_drink (m9)

Fig. 4. A proof of hot_drink from A in Figure 1 after asserting ok_pump (12) in A;
and ok_boiler (13), on_boiler (14) in A,.

Given a partitioning whose intersection graph forms an undirected tree, our
MP algorithm is a sound and complete proof procedure. The completeness
relies on Craig’s Interpolation Theorem.



Theorem 2.3 (Craig’s Interpolation Theorem [Craig, 1957a]) If o
B, then there is a formula v involving only symbols common to both o and (3,
such that o=y and v+ (.

Craig’s interpolation theorem is true even if we take a, 3 to be infinite sets
of sentences [Slagle, 1970] and use resolution theorem proving [Slagle, 1970],
[Huang, 1995] with or without equality [Craig, 1957a,Craig, 1957b] (all after
proper reformulation of the theorem).

Theorem 2.4 (Soundness and Completeness) Let A = UJ;,, A; be a par-
titioned theory with the intersection graph G being a tree (i.e., no cycles). Let
k <n and ¢ a sentence in L(Ayg). If the reasoning procedure in each partition
is sound and complete for consequence finding (as defined in Definition 2.2),

then A = ¢ iff MP outputs YES.
PrROOF  See Appendix A.l.

Note that Theorem 2.4 requires the intersection graph of A to be a tree. If
the intersection graph of A is not a tree, and MP uses it as input, then MP
may fail to be a complete proof procedure. Figure 5 illustrates the problem.
The left-hand side of Figure 5 illustrates the intersection graph of partitioning
A, A, Az, Ay of a theory A. If we try to prove s (which follows from 4) from
this partitioning and graph using MP, nothing will be transmitted between
the partitions. For example, we cannot send p = s from A, to A4 because the
graph only allows transmission of sentences containing s.

Fig. 5. An intersection graph before (left) and after (right) applying
BREAK-CYCLES.

Thus, using MP with the left-hand side graph will fail to prove s. In such a
case, we can first syntactically transform the intersection graph into a tree
with enlarged labels, (i.e., an enlarged communication language) and apply
MP to the resultant tree. In particular, we would like the resultant tree to
have a proper labeling for the given partitioning.



Definition 2.5 (Proper Labeling) For a partitioning A = U,<,, A;, we say
that a tree G = (V, E, 1) has a proper labeling, if for all (i,7) € E and By, By,
the two subtheories of A on the two sides of the edge (i, j) in G, it is true that
1(i,4) 2 L(By) 1 L(By).

This property is similar to the running intersection property required of join
trees for inference in Bayes networks [Darwiche, 1996, Becker and Geiger, 1996],
[Shoikhet and Geiger, 1997] and constraint satisfaction problems (CSPs) such
as [Dechter and Pearl, 1989,Gottlob et al., 1999]. The following lemma pro-
vides the main argument behind most of the completeness proofs in this pa-

per.

Lemma 2.6 Let A = U;<, A; be a partitioned theory and assume that the
graph G is a tree that has a proper labeling for the partitioning {Ai}i<n-
Also assume that each of the reasoning procedures used in MP is complete
for consequence finding (as defined in Definition 2.2). Let k < n and let
Q € L(Ar UUwper l(k, 1)) be a sentence. If A= Q, then MP outputs YES.

PROOF  See Appendix A.1.

Algorithm BREAK-CYCLES, shown in Figure 6, performs a transformation
that produces a tree with a proper labeling from any labeled graph. (|X|
denotes the cardinality of a set X.)

PROCEDURE BREAK-CYCLES(G = (V, E, 1))

(1) Find a minimal-length cycle of nodes vy, ...,v. (v1 = v¢) in G. If there are
no cycles, return G.

(2) Select index a s.t. a < cand >, .. |l(vj,vj41) Ul(vq, Va41)| is minimal
(the label of (vg,vg+1) adds a minimal number of symbols to the rest of the
cycle).

(3) For all j <c, j # a, set l(vj,vjt1) < L(vj,v41) Ul(va,Vat1)-

(4) Set E <+ E\ {(va,va+1)}, l(va,vat+1) < 0 and go to (1).

Fig. 6. An algorithm to transform an intersection graph G into a tree.

Using BREAK-CYCLES, we can transform the graph depicted on the left-
hand side of Figure 5, into the tree on its right. First, we identify the minimal
cycle ((1,3),(3,4),(4,1)), remove (4,1) from E and add r to the labels of
(1,3),(3,4). Then, we find the minimal cycle ((2, 3), (3,4), (4,2)) and remove
(2,3) from E (s already appears in the labels of (4,2),(3,4)). Finally, we
identify the minimal cycle ((1, 3), (3,4), (4,2), (2,1)), remove (4,2) and add s
to the rest of the cycle. The proof of s by MP now follows by sending p = s
from A, to Ay, sending ¢ V r V s from A; to Ajs, sending r V s from A3z to A,
and concluding s in A,.



Notice that when executing BREAK-CYCLES, we may remove an edge that
participates in more than one minimal cycle (as is the case when removing
the edge (4, 1)), but its removal influences the labels of only one cycle.

Theorem 2.7 (Soundness and Completeness) Let A = J,;,, A; be a par-
titioned theory with intersection graph G. Let k < n and ¢ a sentence in
L(Ag). If the reasoning procedure in each partition is sound and complete for
consequence finding (as defined in Definition 2.2), then A = ¢ iff applying
BREAK-CYCLES and then MP outputs YES.

PrROOF  See Appendix A.2.

BREAK-CYCLES is a greedy algorithm that has a worst-case complexity of
O(|E|?> * m) (where m is the number of symbols in L(A)). The rationale is
roughly as follows: There are at most |E| cycles that can be broken, step
(1) takes O(|E|) time, step (3) takes O(|E| * m) time, and step (2) can be
implemented to take O(|E|* m) time using dynamic programming.

Other algorithms that we may use in this context are variants on the cutset
method for reasoning with graphs [Becker and Geiger, 1994, Becker et al., 2000].
Darwiche [Darwiche, 1996] used an algorithm that is similar to BREAK-
CYCLES for the problem of creating a join tree. Our algorithm differs from
Darwiche’s in treating an already formed partition and creating the tree in a
greedy way (Darwiche’s method randomly selects a tree).

2.2  Backward Message Passing

Our MP algorithm uses the query @ to induce an ordering on the partitions,
which in turn may guide selective consequence finding for reasoning forward.
Many theorem proving strategies exploit the query more aggressively by rea-
soning backwards from the query. Such strategies have proven effective for a
variety of reasoning problems, such as planning. Indeed, many theorem provers
(e.g., PTTP [Stickel, 1992]) are built as backward reasoners and must have a
query or goal in order to run.

One way to use MP for an analogous backward message-passing scheme is
to assert =) in A, choose a partition .4, that is most distant from .4, in
G (where the distance between 2 nodes in graph G is the number of nodes
comprising the shortest path between the two nodes), and try to prove {}
in A; using MP. If we wish to follow the spirit of backward-reasoning more
closely, we can transform G into a chain in a similar way to our transformation
of G into a tree using BREAK-CYCLES. The resultant chain graph may then
be used for query-driven backward message passing, from A;. We present such
an algorithm, called BACKWARD-M-P (BMP), in Figure 7. BMP takes as



input a partitioned theory A, a graph Gy, and a query, @, and returns YES
if it can prove Q.

PROCEDURE BACKWARD-M-P(BMP)({A; }i<n, Go, Q)
{Ai}i<n a partitioned theory, Gy = (V, E,l) a graph, Q a query in L(Ai) (k < n).

(1) G <~ CHAINIFY(Gy, k). Let 7 < j iff dist(i, k) < dist(j,k) (dist(i, k) is the
number of nodes in G separating nodes i, k).

(2) For all i < n, i # k set goal; < FALSE (the goal of A; is proving FALSE).
Set goal, < Q.

(3) Concurrently,

(a) For each partition A;, 7 < n, attempt to prove goal;.

(b) For every (i,7) € E such that ¢ < j, if we generate a subgoal® ¢ in A;
and ¢ € L(I(,7)), then set® goal; < goal; V ¢.

(c) If goal; is proved in any A;, return YES.

3 In resolution every generated clause can be considered the negation of a sub-
goal.

b Tn resolution refutation the goal is negated, so this step essentially adds —¢ to
the axioms of A,.

Fig. 7. A backward message-passing algorithm.

Procedure CHAINIFY is outlined in Figure 8. It accepts a labeled graph and
returns a transformation of the graph into a chain (changing the labels appro-
priately). Alternately, we can create a chain directly from the partitions and
a total order over them. CHAINIFY ensures that the resulting graph has a
proper labeling. BMP is sound and complete if the reasoning procedure used
in every partition is complete for consequence finding.

Theorem 2.8 (Soundness and Completeness) Let A = U;<,, A; be a par-
titioned theory. Let k < n and ¢ € L(Ay) a sentence. If the reasoning pro-
cedure used in each partition is sound and complete for consequence finding,
then A = ¢ iff applying BMP outputs YES.

PROOF  See Appendix A.3.

Algorithm BMP is presented for the case of subgoal-disjunctive systems, i.e.,
a proof of any subgoal yields a proof of the entire query. This is the case with
resolution and its variants. The intuition behind the algorithm is that when a
partition is supplied a subgoal sentence ¢ from another partition, ¢ is added
to (OR-ed with) to the partition’s goal.

We make G a chain because otherwise subgoals may have to split between par-
titions. Splitting subgoals requires accounting for different preconditions (as

10



PROCEDURE CHAINIFY(G, k)
G = (V, E,l) a graph describing connections between partitions, k < |V|.

(1) Let dist(z,j) (i,7 € V) be the length of the shortest path between 7, j in G.
Let 7 <o j iff dist(i, k) < dist(j,k) (<o is a strict partial order).

(2) Impose a total order < on V' that agree with <¢ (i.e., i <o j = i < j).
(3) Let {va}a<n =V such that vy =k, Va < n vg < vgq1-

(4) Let E' = {(va,va+1)}i<n-

(5) Set l'(i,7) 0 for alli,j € V.

(6)

For all (3,j) € E, for all a < n, if i < v, < j (i.e., v, is between i and j),
then set I'(vg,vgr1) ¢ I'(Va, Var1) UL, 7).

(7) Return G' = (V, E",l').

Fig. 8. A procedure that transforms a graph G into a chain G'.

in natural deduction), which we wish to avoid here, for simplicity of inference.

2.8  Queries Drawn from Multiple Partitions

MP and its variants require that query () be in the language of a single par-
tition, L£(Ag), for some k < n. One way to answer a query () that comprises
symbols drawn from multiple partitions is to add a new partition Ag, with
language L(Ag) = L£(Q), the language of the query. Ag may contain —(Q) or
no axioms. Following addition of this new partition, BREAK-CYCLES must
be run on the new intersection graph to ensure a proper labeling of GG for the
partitioned theory (as discussed in Section 2.1). To prove @ in Ag, we run
MP on the resulting graph.

Alternately, we can decompose the query into the appropriate partitions, fol-
lowing the methods of [Nelson and Oppen, 1979] or [Shostak, 1984]. Since the
issue of decomposing a query is not simple, we describe only the simple case of
a propositional query and leave the first-order case (with literals that contain
symbols from multiple partitions) for future work.

Given a propositional query @, we transform it into the form (Q7 V...V @} ) A
A(Q4V...QL ), where each @ is a formula in the language of a single partition
L(Ag;) (ki is the index of a partition that includes the vocabulary of Q).
For example, if ) is in CNF, it is already in this form. We check a disjunct
Q4 V...V Q. by asserting =@} in Ay,; for all j < r;, and proving FALSE in one
of the partitions. To prove () we check each of the disjunct in its transformed

11



form. It is a valid consequence of A iff all the disjuncts are valid consequences
of A. We discuss this special topic no further here, and assume @ is drawn
from L(Ay), for some k < n.

3 Resolution and Message-Passing

The previous section presented message-passing algorithms with an arbitrary
sound and complete consequence finder. In this section, we specialize our
message-passing algorithms with consequence finders that specifically employ
resolution. We focus on the first-order case of resolution. We also analyze the
effect message passing has on the computational efficiency of resolution-based
inference.

The presentation in this section makes explicit reference to the forward message-
passing algorithm, MP, but we wish to stress that the results in this sec-
tion are equally applicable to other message-passing algorithms introduced
in the previous section. For background material on resolution, the reader is
referred to [Genesereth and Nilsson, 1987, Eisinger and Ohlbach, 1993] as well
as to [Chang and Lee, 1973,Loveland, 1978].

3.1 Resolution Message-Passing

Resolution [Robinson, 1965] is one of the most widely used reasoning meth-
ods for automated deduction, and more specifically for consequence finding.
As noted in Section 2, the resolution rule is complete for clausal consequence
finding. It requires the input formula to be in clausal form, i.e., a conjunction of
disjunctions of unquantified literals. For general first-order formulae, a trans-
formation to clausal form (e.g., [Lloyd and Topor, 1985]) includes Skolemiza-
tion, which eliminates quantifiers and possibly introduces new constant sym-
bols and new function symbols.

We present algorithm RESOLUTION-M-P (RES-MP), which uses resolution
(or resolution strategies), in Figure 9. The rest of this section is devoted to
explaining four different implementations for subroutine RES-SEND(, 7, i),
used by this procedure to send appropriate messages across partitions: the
first implementation is for clausal propositional theories; the second is for
clausal FOL theories, with associated graph G, which is a properly labeled
tree and whose labels include all the function and constant symbols of the
language; the third is also for clausal FOL theories, but it uses unskolemization
and subsequent Skolemization to generate the messages to be passed across
partitions; the fourth is a refinement of the third for the same class of theories

12



that avoids unskolemization.

PROCEDURE RESOLUTION-M-P(RES-MP)({A; }i<n, G, Q)

{Ai}i<n a partitioned theory, G = (V, E,l) a graph, @ a query formula in the
language of L(Ax) (k < n).

(1) Determine < as in Definition 2.1.
(2) Add the clausal form of Q) to Ay.

(3) Concurrently,

(a) Perform resolution in each of the partitions A4;, i < n.

(b) For every (i,5) € E such that ¢ < j, if partition A; includes the clause
¢ (as input or resolvent) and the predicates of ¢ are in L£(I(7, 7)), then
perform RES-SEND(yp, 7, 7).

(c) If Q is proven in Ay, return YES.

Fig. 9. A resolution forward message-passing algorithm.

In the propositional case, subroutine RES-SEND(¢, 7, i) (Implementation 1)
simply adds ¢ to A;, as done in MP. MP is then sound and complete.

In the FOL case, implementing RES-SEND requires more care. To illustrate,
consider the case where resolution generates the clause P(B,x) (B a constant
symbol and z a variable). It also implicitly proves that 3b P(b, z). RES-MP
may need to send 3b P (b, z) from one partition to another, but it cannot send
P(B,z) if B is not in the communication language between partitions (for
ground theories there is no such problem (see [Slagle, 1970])). In the first-
order case, completeness for consequence finding for a clausal first-order logic
language (e.g., Lee’s result for resolution) does not guarantee completeness for
consequence finding for the corresponding full FOL language. This problem is
also reflected in a slightly different statement of Craig’s interpolation theorem
[Craig, 1957a] that applies for resolution [Slagle, 1970].

A simple way of addressing this problem is to add all constant and function
symbols to the communication language between every connected set of parti-
tions. This has the advantage of preserving soundness and completeness, and
is simple to implement. In this case, subroutine RES-SEND(¢, j, i) (Imple-
mentation 2) simply adds ¢ to A;, as done in MP.

In large systems that consist of many partitions, the addition of so many
constant and function symbols to each for the other partitions has the potential
to be computationally inefficient, leading to many unnecessary and irrelevant
deduction steps. Arguably, a more compelling way of addressing the problems
associated with resolution for first-order theories is to infer the existential
formula 3b P(b,z) from P(B,z), send this formula to the proper partition
and Skolemize it there. For example, if ¢ = P(f(g(B)), ) is the clause that
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RES-SEND gets, replacing it with 3b P(b, z) eliminates unnecessary work of
the receiving partition.

The process of conservatively replacing function and constant symbols by exis-
tentially quantified variables is called unskolemization or reverse Skolemization
and is discussed in [Bledsoe and Ballantyne, 1978,Cox and Pietrzykowski, 1984,
as well as [Chadha and Plaisted, 1993|. [Chadha and Plaisted, 1993] presents
an algorithm U that is complete for our purposes and generalizes and simpli-
fies an algorithm of [Cox and Pietrzykowski, 1984]. (Space precludes inclusion
of the algorithm.)

Theorem 3.1 ([Chadha and Plaisted, 1993]) Let V' be a vocabulary and
©, ¥ be formulae such that ¢ € L(V) and ¢ = 1. There exists F € L(V) that
s generated by algorithm U such that F = 1.

Thus, for every reasoning procedure that is complete for clausal consequence
finding, unskolemizing ¢ using procedure U for V = (i, j) and then Skolem-
izing the result gives us a combined procedure for message generation that is
complete for FOL consequence finding. This procedure can then be used read-
ily in RES-MP (or in MP), upholding the soundness and completeness to that
supplied by Lemma 2.6. The subroutine RES-SEND(¢, j, 7) that implements
this approach is presented in Figure 10. It replaces ¢ with a a set of formulae
in L(I(7,7)) that follows from ¢. It then Skolemizes the resulting formulae for
inclusion in A;.

PROCEDURE RES-SEND(yp, j, ©) (Implementation 3)
@ a formula, 7,7 < n.

(1) Unskolemize ¢ into a set of formulae, ® in L(I(7, 7)), treating every symbol
of L(p) \ I(3,7) as a Skolem symbol.

(2) For every pg € @, if ¢y is not subsumed by a clause that is in A;, then add
the Skolemized version of @9 to the set of axioms of A;.

Fig. 10. Subroutine RES-SEND using unskolemization.

Procedure U may generate more than one formula for any given clause . For
example, if ¢ = P(z, f(x),u, g(u)), for I(i,j) = {P}, then we must generate
both Vz3yVudvP(z,y, u,v) and YuFoVz3IyP(z, y, u, v) (¢ entails both quanti-
fied formulae, and there is no one quantified formula that entails both of them).
In our case we can avoid some of these quantified formulae by replacing the
unskolemize and then Skolemize process of RES-SEND (Implementation 3)
with a procedure that produces a set of formulae directly (Implementation 4).
It is presented in Figure 11.

Steps 2 and a of procedure RES-SEND(¢, 7, ¢) (Implementation 4) correspond
to similar steps in procedure U presented in [Chadha and Plaisted, 1993], sim-
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PROCEDURE RES-SEND(¢, j, 1) (Implementation 4)

@ a formula, 7,7 < n.
(1) Set S« L(p) \ (3,7).

(2) For every term instance, t = f(t1,...,1x), in ¢, if f € S and ¢ is not a
subexpression of another term t' = f/(¢},...,¢},) of ¢ with f’ € S, then
replace t with “z < ¢” for some new variable, z (if k£ = 0, ¢ is a constant
symbol).

(3) Nondeterministically #, for every pair of marked arguments “z < o”, “y +
B’ in @, if o, 3 are unifiable, then unify all occurrences of z,y (i.e., unify
aj, B; for all markings ©  «;, y < 5;).

(4) For every marked argument “z < o” in ¢,

(a) Collect all marked arguments with the same variable on the left-hand
side of the “+-” sign. Suppose these are = < a1,...,z .

(b) Let 1, ...,y be all the variables occurring in a4, ..., oq. For every i <[,
replace “z < «;” with f(yi1,...,4,) in @, for a fresh function symbol f
(if r =0, f is a fresh constant symbol).

(5) Add ¢ to A;.
2 Nondeterministically select the set of pairs for which to unify all occurrences
of z,y.

Fig. 11. Subroutine RES-SEND without unskolemization.

plifying where appropriate for our setup. Our procedure differs from unskolem-
izing procedures in Step 4, where it stops short of replacing the Skolem func-
tions and constants with new, existentially quantified variables. Instead, it
replaces them with new functions and constant symbols. The nondeterminism
of Step a is used to add all the possible combinations of unified terms, which
is required to ensure completeness.

For example , if ¢ = P(f(g9(B)),x) and I(i,j) = {P}, then RES-SEND (im-
plementation 4) adds P(A,z) to A;, for a new constant symbol, A. If ¢ =
P(z, f(x),u, g(u)),for (i, j) = { P}, then RES-SEND adds P(z, hi(z), u, he(u))
to A;, for new function symbols hq, he. Finally, if ¢ = P(x, f(x),u, f(g(u))),
then RES-SEND adds P(z, f(z),u, h(u)) and P(hi(u), ha(u), u, ho(u)) to A,
for h, hq, ho new function symbols.

Theorem 3.2 (Soundness & Completeness of RES-MP) Let A = U, A;
be a partitioned theory of propositional or first-order clauses, G a tree that is
properly labeled with respect to A, and @ € L(Ay), k < n, be a sentence that is
the query. A = Q iff applying RES-MP({A;}i<n, G, Q) (with Implementation

4 of RES-SEND) outputs YES.
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PROOF  See Appendix A.4.

3.2 Analysis and Comparison of Resolution-Based Inference

In this final subsection relating to resolution, we analyze the effect of MP
on the computational efficiency of resolution-based inference, and identify
some of the parameters of influence. Current measures for comparing au-
tomated deduction strategies are insufficient for our purposes. Proof length
(e.g., [Tseitin, 1970,Haken, 1985,Urquhart, 1987]) (and see the survey article
[Cook and Mitchell, 1997]) is only marginally relevant. More relevant is com-
paring the sizes of search spaces induced by different strategies (e.g., resolution
of propositional Horn clauses [Plaisted, 1994], and contraction rules for FOL
[Bonacina and Hsiang, 1996]). These measures do not precisely address our
needs, but we use them here, leaving the development of better measures for
comparison to future work.

In a resolution search space, each node in the search space includes a set of
clauses, and properties relevant to the utilized resolution strategy (e.g., clause
parenthood information). Each arc in the search space is a resolution step
allowed by the strategy. In contrast, in an MP resolution search space the
nodes also include partition membership information. Further, each arc is a
resolution step allowed by the utilized resolution strategy that satisfies either
of: (1) the two axioms are in the same partition, or (2) one of the axioms is
in partition A;, the second axiom is drawn from its communication language
l(i,7), and the query-based ordering allows the second axiom to be sent from
A; to A;. Legal sequence of resolutions correspond to paths in these spaces.

Proposition 3.3 Let A = U;<, Ai be a partitioned theory. Any path in the
MP resolution search space of {A;}i<n is also a path in the resolution search
space of the unpartitioned theory A.

Evaluating MP with respect to proof length, it follows that the longest proof
without using MP is as long or longer than the longest MP proof. Unfortu-
nately, the shortest MP proof may be longer than the shortest possible proof
without MP. This observation can be quantified most easily in the simple case
of only two partitions A;, A,. The set of messages that need to be sent from
A; to Ay to prove @ is exactly the interpolant v promised by Theorem 2.3 for
a= A, f=A; = Q. The MP proof has to prove a -~ and v I .

For the propositional case there are several results relating shortest proofs and
proofs using the interpolant. Carbone [Carbone, 1997] showed that, if 7 is a
minimal interpolant, then for many important cases the proof length of o F
together with the proof length of y - 3 is in O(k?) (for sequent calculus with
cuts), where k is the length of the minimal proof of o F § . In some of these
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cases, the minimal interpolant is shown to be of size O(a?), where a is the sum
of lengths of «, 3.

In general, the size of v itself may be large. In fact, in the propositional case it
is an open question whether or not the size of the smallest interpolant can be
polynomially bounded by the size of the two formulae «, 8. A positive answer
to this question would imply an important consequence in complexity theory,
namely that NPNcoNP C P/poly [Boppana and Sipser, 1990]. Nevertheless,
there is a good upper bound on the length of the interpolation formula as a
function of the length of the minimal proof [Krajicek, 1997] : If «, § share [
symbols, and the resolution proof of a - 3 is of length &, then there is an
interpolant v of length min (kI 24).

For the first-order case there are very few results. The best known is by
Meyer [Meyer, 1980] who showed that for the first-order predicate calculus
with equality there is no recursive bound on the length of the smallest inter-
polant as a function of the length of the input axioms. However, there is no
result relating the size of the interpolant with the length of the minimal proof
(in resolution or any other proof system).

The results above suggest that we can guarantee a small interpolant, if we
make sure the communication language is minimal. Unfortunately, we do not
always have control over the communication language. Take, for example, the
case of multiple KBs that have extensive overlap. In such cases, the commu-
nication language between KBs may be large, possibly resulting in a large
interpolant. In Section 5 we provide an algorithm for partitioning theories
that attempts to minimize the communication language between partitions.

4 Partition-Based Propositional Satisfiability

In this section we propose an algorithm for partition-based logical reasoning
based on propositional satisfiability (SAT) search (e.g., DPLL [Davis et al., 1962],
GSAT [Selman et al., 1992] and WALKSAT [Selman et al., 1994]). We show
that the complexity of computation is directly related to the size of the labels

in the intersection graph, i.e., the size of the communication language.

4.1 A Partition-Based SAT Procedure

The algorithm we propose is presented in Figure 12. It uses a SAT procedure as
a subroutine and is backtrack-free. We describe the algorithm using database
notation [Ullman, 1988|. 7, .., T is the projection operation on a relation 7.
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It produces a relation that includes all the rows of 7', but only the columns
named p1, ..., px (suppressing duplicate rows). S X R is the natural join opera-
tion on the relations S and R. It produces the cross product of S, R, selecting
only those entries that are equal between identically named fields (checking
S.A = R.A), and discarding those columns that are now duplicated (e.g., R.A
will be discarded).

The proposed algorithm shares some intuition with prime-implicate genera-
tion (e.g., [Marquis, 1995,Inoue, 1992]). Step (1) of the algorithm converts the
intersection graph of A into a tree. Step (2) computes L(7), the set of symbols
on all of partition A4;’s links, i.e., the union of all the communication languages
connected to partition A;. Step (3 determines which truth values of L(7) are
satisfiable (akin to computing the implicates of each partition in the language
L(L(i))). Finally, the algorithm uses X to combine those values to find out if
there are any models for A.

PROCEDURE LINEAR-PART-SAT({A;}i<n)
{Ai}i<n a partitioning of the theory A,

(1) Go < the intersection graph of {A;}i<n. G < BREAK-CYCLES(G).
(2) For each i <mn,let L(i) = U j)ep 104 4)-

(3) For each i < m, for every truth assignment A to L(i), perform SAT-search
on A; U A, storing the result in a table T;(A).

(4) Determine < as in Definition 2.1.

(5) Iterate over ¢ < n in reverse <-order (the last 7 is 1). For each j < n that
satisfies (i,7) € F and i < j, perform:
o T; < T; X (rpTj) (Join T; with those columns of T that correspond to
L(3)). I T; = 0, return FALSE.

(6) If FALSE has not be returned, return TRUE.

Fig. 12. An algorithm for SAT of a partitioned propositional theory.

This algorithm resembles finding all the models of each partition and then
joining the consistent interpretation fragments into models for A (as done
in [Dechter and Pearl, 1989]). The iterated join that we perform takes time
proportional to the size of the tables involved. In contrast to the approach de-
scribed in [Dechter and Pearl, 1989], we keep table sizes below LG by keep-
ing only the consistent truth assignments for L(¢) (instead of all the models
of A;) and projecting every table before joining it with another table. Figure
13(a) displays the result of applying LINEAR-PART-SAT up to Step (3) to
the partitioned theory and input of Figure 4. Figures 13(b) and 13(c) show
the progression of Step (5) of LINEAR-PART-SAT.

Soundness and completeness follow by an argument similar to that given for
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Fig. 13. Iteratively projecting and joining tables to check satisfiability.
MP.

Theorem 4.1 (Soundness and Completeness) Given a sound and com-
plete SAT-search procedure, LINEAR-PART-SAT is sound and complete for
SAT of partitioned propositional theories.

PROOF  See Appendix A.5.
4.2 Analyzing Satisfiability in LINEAR-PART-SAT

Let A be a partitioned propositional theory with n partitions. Let m = |L(.A)],
L(7) be the set of propositional symbols calculated in Step (2) of LINEAR-
PART-SAT, and m; = |L(A;) \ L(?)| (¢ < n). Let a = | A| and k be the length

of each axiom.

Lemma 4.2 The time taken by LINEAR-PART-SAT to compute SAT for A
18

Time(n,m,my, ..., my,a,k,|L(1)],...,|L(n)|) =
Olaxk? + n*xm + X" 2P0« foar(my))),

where fsar is the time to compute SAT. If the intersection graph Gy is a tree,
the second argument in the summation can be reduced from n* * m to n * m.

PROOF  See Appendix A.6.

Corollary 4.3 Let A be a partitioned propositional theory with n partitions,
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m propositional symbols and intersection graph G = (V,E,l). Let d(v) be
the degree of mode v in the graph G(V,E,l), let d = mazyeyd(v) and let
| = maw; j<n|l(i,7)|. Assume P # NP. If intersection graph G of A is a tree
and all the partitions A; have the same number of propositional symbols, then
the time taken by the LINEAR-PART-SAT procedure to compute SAT for A
is

Time(m,n, 1, d) = O(n+ 2% % fsar(")).
n

For example, if we partition a given theory A into only two partitions (n = 2)
sharing [ propositional symbols, the algorithm will take time O(2" x fsar(Z)).
Assuming P # NP, this is a significant improvement over a simple SAT proce-
dure for every / that is small enough (I < %%, and o < 0.582 [Schiermeyer, 1996,
[Cook and Mitchell, 1997]).

5 Decomposing a Logical Theory

The algorithms presented in previous sections assumed a given partitioning
of theory A. In this section we address the critical problem of automatically
decomposing a set of propositional or FOL clauses into a partitioned theory.
Guided by the results of previous sections, we propose guidelines for achieving
a good partitioning and present a greedy algorithm that decomposes a theory
following these guidelines.

5.1 What is a Good Partitioning?

The analysis done in Section 4.2 does not assume any particular time com-
plexity for fsar(m) (aside from P # NP in the corollary). If we assume
that fsar(m) = ©(2™), then we can conclude that the time for our rea-
soning algorithm is dominated by the largest partition (including its links).
If the largest partition is of size s (i.e., it has s propositional symbols in
its language, link languages included), then the time for the algorithm is
O(n * 2%). This is the analysis done for CSPs and Bayes networks (e.g.,
[Dechter and Pearl, 1989,Dechter and Rish, 1994,Rish and Dechter, 2000], and
[Becker and Geiger, 1996]), where the utilized algorithms do in fact use time
©(2™) for a problem with m variables. For satisfiability the situation is slightly
different. There are known stochastic algorithms (e.g., [Selman et al., 1992],
[Selman et al., 1994]) that perform much better than this pessimistic fore-
cast. These algorithms are not complete, but they can be used in our al-
gorithm, if we are willing to give up completeness. Efficient complete algo-
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rithms also typically exhibit better than worst-case behavior (see the analysis
of [Selman et al., 1997]). All of this suggests that emphasizing link sizes to-
gether with partition sizes is more accurate for the satisfiability problem.

Thus, given a theory, we wish to find a partitioning that minimizes the formula
derived in Lemma 4.2. To that end, assuming P # N P, we want to minimize
the following parameters in roughly the following order. For all 7+ < n:

(1) |L(4)| - the total number of symbols contained in all links to/from node
1. If Gy is already a tree, this is the number of symbols shared between
the partition .4; and the rest of the theory A\ A;.

(2) m; - the number of symbols in a partition, less those in the links, i.e., in
A; but not in L(¢). This number is mostly influenced by the size of the
original partition A;, which in turn is influenced by the number of par-
titions of A, namely, n. Having more partitions will cause m; to become
smaller.

(3) n - the number of partitions.

Also, a simple analysis shows that given fized values for [, d in Corollary 4.3,
the maximal n that maintains /,d such that also n < In2 x a xm (o =
0.582 [Schiermeyer, 1996,Cook and Mitchell, 1997]) yields an optimal bound
for LINEAR-PART-SAT. In Section 3.2 we saw that the same parameters
influence the number of derivations we can perform in MP: |L(7)| influences
the interpolant size and thus the proof length, and m,; influences the number
of deductions/resolutions we can perform. Thus, we would like to minimize
the number of symbols shared between partitions and the number of symbols
in each partition less those in the links.

The question is, how often do we get large n (many partitions), small m;’s
(small partitions) and small |L(7)|’s (weak interactions) in practice. We be-
lieve that in domains that deal with engineered physical systems, many of the
domain axiomatizations have these structural properties. Indeed, design of en-
gineering artifacts encourages modularization, with minimal interconnectivity
(see [Amir, 2000,Lenat, 1995,Cohen et al., 1998]). More generally, we believe
axiomatizers of large corpora of real-world knowledge tend to try to provide
structured representations following some of these principles. Recent experi-
ments with the HPKB knowledge base of SRI and a part of the Cyc knowledge
base support this belief (those experiments are reported elsewhere).

5.2  An Approach to Partitioning Logical Theories

To exploit the partitioning guidelines proposed in Section 5.1, we represent
our theory A using a symbols graph that captures the features we wish to
minimize. G = (V, E) is a symbols graph for theory A such that each vertex
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v € V is a symbol in L(.A), and there is an edge between two vertices if their
associated symbols occur in the same axiom of A , i.e., E = {(a,b) | Ja €
A s.t. a,b appear in «o}.

Fig. 14. Decomposing A’s symbols graph.

Figure 14 (top) illustrates the symbols graph of theory A from Figure 1 and the
connected symbols graphs (bottom) of the individual partitions 4, .4, A4s.
Notice that each axiom creates a clique among its constituent symbols. To
minimize the number of symbols shared between partitions (i.e., |L(7)|), we
must find partitions whose symbols have minimal verter separators in the
symbols graph.

Generally speaking, we decompose theory A by first creating the symbols
graph of A, then partition this graph into partitions (similar to the bottom
part of Figure 1), and finally use the partitioning of the graph to define a
partitioning of the axioms. Section 5.3 presents a complete algorithm for this
task.

Examples of the recursive procedure that we are going to use are presented in
Figure 17 on page 27.
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5.8  Split: Greedy Vertex Min-Cut in the Graph of Symbols

5.3.1 Minimum Vertex Separators

In this section, we briefly describe the notion of a vertex separator. Let G =
(V, E) be an undirected graph. A set S of vertices is called an (a, b)-vertez-
separator if {a,b} C V' \ S and every path connecting a and b in G passes
through at least one vertex contained in S.

Let N(a,b) be the least cardinality of an (a, b)-vertex-separator. The connec-
tivity of the graph G is the minimum N(a,b) for any a,b € V that are not
connected by an edge. An (a,b)-vertex-separator of minimum cardinality is
said to be a minimum (a, b)-vertez-separator. The weaker property of a vertex
separator being minimal requires that no subset of the (a, b)-vertex-separator
is an (a, b)-vertex-separator.

We briefly review an algorithm by Even and Tarjan for finding minimum
vertex separators [Even, 1979 Even and Tarjan, 1975]. This algorithm builds
on [Dantzig and Fulkerson, 1956]. It is shown in Figure 15. The algorithm is
given two vertices, a, b, and an undirected graph, G. It transforms G into a
directed graph, G, that has two vertices (corresponding to input and output)
for each original vertex of G, directed edges connecting the corresponding
input and output vertices, and edges corresponding to those of GG, but only
from output to input vertices. It then runs a max-flow algorithm on G (Steps
(1)-(3)). The produced flow, f, has a throughput of N(a,b). To extract a
minimum separator, it produces a layered network (see [Even, 1979] p.97)
from G and the flow found, f, in Step (5). The layered network includes a
subset of the vertices of G. The set of edges between this set of vertices and
the rest of G corresponds to the separator.

Algorithms for finding maximal flow are abundant in the graph algorithms lit-
erature. Prominent algorithms for max-flow include the Simplex method, Ford
and Fulkerson’s [Ford Jr. and Fulkerson, 1962|, the push-relabel method of
Goldberg and Tarjan [Goldberg and Tarjan, 1988] (time bound of O(|V|- |E|-

log%) and several implementations [Chekassky and Goldberg, 1997]), and
Dinitz’s algorithm [Dinic, 1970]. When Dinitz’s algorithm is used to solve the
network problem, Even and Tarjan’s algorithm has time complexity O(|V |2 |E|)
[Even, 1979]. The unit-capacity network-flow algorithm of [Ahuja and Orlin, 1991]
can also be used here, giving Even and Tarjan’s algorithm time complexity of

O(|V|z|E|) as well.

Another possibility is to use the Ford-Fulkerson flow algorithm as described
in [Ford Jr. and Fulkerson, 1962] (alternatively, see [Cormen et al., 1989]), for
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PROCEDURE MIN-V-SEP-A-B(G = (V, E), a, b)

(1) Construct a digraph G(V, E) as follows. For every v € V put two vertices
o', v" (input/output vertices) in V with an edge e, = (v',v") (internal edge).
For every edge e = (u,v) in G, put two edges ¢’ = (u”,v') and " = (v", v/
in G (ezxternal edges).

(2) Define a network, with digraph G, source a”, sink b’ and unit capacities for
all the edges.

3) Compute the mazimum flow f in the network.

5

(3)

(4) Set the capacities of all the external edges in G to infinity.

(5) Construct the layered network {Vi}i<; from G using f. Let S = Ui<t Vi
(6)

6) Let R={veV|v eS8, v"¢S} Risaminimum (a,b) vertex-separator

in G.

Fig. 15. An algorithm for finding a minimum separator between a and b in G.

computing maximum flow. For an original graph of treewidth® < k this in-
volves finding at most £ augmenting paths of capacity 1. Thus, the combined
algorithm using the Ford-Fulkerson maximum flow algorithm finds a minimum
(a, b)-vertex-separator in time O(k(|V |+ |E|)).

Finally, to compute the vertex connectivity of a graph and a minimum sep-
arator, without being given a pair (a,b), we check the connectivity of any ¢
vertices (¢ being the connectivity of the graph) to all other vertices. When
Dinitz’s algorithm is used as above, this procedure takes time O(c- |V |2 - |E|),
where ¢ > 1 is the connectivity of G. When we use Ford-Fulkerson’s algorithm
for a graph of treewidth k, this procedure takes time O(c- k- |V|- (|V|+|E|)),
where ¢ > 1 is the connectivity of G. For the cases of ¢ = 0,1 there are well
known linear time algorithms. [Even, 1975] also showed a way to test for k
connectivity of a graph using only n + k? pairs of vertices.

5.3.2  Procedure Split

Procedure Split-Thy, presented in Figure 16, uses procedure Split to decom-
pose a theory into a tree of partitions. It is given a theory, A, and limitations
on the partition size (a lower limit, M) and the separators between partitions
(an upper limit, [). Split initially considers the theory as one big partition, and
at every recursive iteration it breaks one of the partitions in two. It represents
the tree structure of the partitions in a global variable, GG,.. This tree struc-
ture and the set of partitions, {4, }i<,, is returned as the result of Split-Thy.

4 The treewidth of a graph plus one is the minimum, over all triangulations of this
graph, of the size of the largest clique in the triangulation (see [Kloks, 1994]).
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An example of the input and the output is shown in Figure 1.

PROCEDURE Split-Thy(A, M, [)
A is a theory. M limits the number of symbols in a partition from below. [ limits
the number of symbols shared between partitions.

Let G(V, E) be an undirected graph with V' = L(A) and E = {(l1,l2) | 3C €
A ll,lg € L(C)}

Let Gstr (Vstr, Esyr) be an undirected graph with Vg, = {{V'}} and Eg, = 0.
Run Split(G, M, [, nil, nil).

For every v € Vi, let A, = {C € A| L(C) C v}. Return {A,}yev,, and
Gstr-

(1)
(2)

PROCEDURE Split(G, M, [, a, b)
G = (V,E) is an undirected graph. M, [ as above. a,b are in V or are nil

If |V| < M, then return V.

(a) If @, b=mnil, find a minimum vertex separator, R, in G. (b) Otherwise, if
b=mnil, find a minimum vertex separator, R, of ¢ in G. (c) Otherwise, find
minimum vertex separators, R, of ¢ in G, and Ry of b in G. Let R be the
smaller of R, R.

If R=V or |R| > then return V.

Let G1,G9 be the two subgraphs of G separated by R, with R included in
both subgraphs.

Let Vi = Vier \ {{V}} U{{Vi},{Vo}} and Eg < Egr U{({V1},{Vo})}.
Change the edges that connected to {V'} to connect to one of {Vi},{Va2}.

Create G, G, from G1, G2, respectively, by aggregating the vertices in R
into a single vertex r, removing all self edges and connecting r with edges
to all the vertices connected by edges to some vertices in R.

Run Split2(G, M,l,r,a), Split2(GY, M,l,r,b). Replace r in the nodes of
Vst by the members of R.

Fig. 16. An algorithm for generating partitions of axioms.

Split partitions the theory A by taking as input its symbols graph, G = (V, E),
the two limiting parameters, M and [, and nodes a,b € V that are initially
set to nil. Split updates the global variable G, to represent the progressing
decomposition. In each recursive call, Split finds a minimum vertex separator
of a,b in G (i.e., a minimum-size set of vertices that crosses every path be-
tween a, b). If one of a,b or both are nil, it finds the overall minimum vertex
separator between all vertices and the non-nil vertex (or all other vertices).
This separator splits G into two graphs, G, G5, and the process continues
recursively. An example of the progress made on the input graph G is shown
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in Figure 17.

Different variants of the algorithm yield different structures for the intersection
graph of the resulting partitioning. As is, Split returns sets of symbols that
result in a chain of partitions. We obtain arbitrary trees, if we change step
3(c) to find a minimum separator that does not include a, b (not required to
separate a,b). We obtain arbitrary graphs, if in addition we do not aggregate
R into r in step 6.

Proposition 5.1 Procedure Split takes time O(\V\g * |E).

PROOF  See Appendix A.7.

5.3.8  Fine-Tuning Split

Since fsar(m) is not known, and the time for reasoning with FOL theories in
MP is not bounded, it is not clear what is an optimal decomposition. Never-
theless, the analyses done throughout this paper suggests minimizing the pa-
rameters mentioned in the last section. If we assume that fgar(m) = ©(2°™),
then the problem of finding an optimal partition for LINEAR-PART-SAT is
equivalent to finding triangulations of minimum clique number (a.k.a. finding
treewidth). With this assumption, M should be chosen to be 1, [ should be
chosen to be m, and the algorithm will stop the recursive decomposition only
when reaching a graph that is a clique. This is justified by the observation that
any further decomposition can only decrease the size of the maximum partition
(including the links). Thus, Assuming fear(m) = ©(2*™), further decompo-
sitions only decrease the asymptotic time function of LINEAR-PART-SAT.

For reasoning with FOL theories it may sometimes be useful to choose M
(the limit on the number of symbols in a partition) to be large, so that sen-
tences are aggregated more closely to topics. This can be useful for manag-
ing large axiom sets as well as for applying specialized reasoning algorithms
for each partition. This can be combined with replacing our vertex separa-
tor algorithm with a balanced separator algorithm. A balanced separator is
a vertex separator that separates the graph such that the separated sub-
graphs are of comparable sizes (typically, they are chosen to be no larger
than a constant times the size of the original graph). The problem of find-
ing balanced separators is NP-hard, but several approximations exist (e.g.,
[Leighton and Rao, 1988,Klein et al., 1993,Feige and Krauthgamer, 2000]).

Our time bound for Split is lower than ©(2°™) when | < 2m—ami—lm (j —
argmaz;m;). In particular, if [ > %, a standard deterministic SAT procedure
will be better (compared to the best time bound known for SAT procedures

[Schiermeyer, 1996,Cook and Mitchell, 1997]).
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(E) (F)

(GQ) (H)

) (J)

Fig. 17. Recursive use of Split by aggregating minimal separators into single nodes.
Only the larger side of the leftover graph is shown after each split.
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All the observations above are predicated on the assumption the A is propo-
sitional and that fsar(n) = O(2*"), for some « > 0 constant. If our theory is
in FOL, or we drop the assumption on fg4r, then there is no clear good way
to choose M, [. In those circumstances, [ and M are perhaps best determined
experimentally.

5.8.4  Other Decomposition Approaches

There are many possible approaches to decomposing a set of logical axioms.
One complementary approach that we have briefly experimented with is a
normalized cut algorithm [Shi and Malik, 1997], using the dual graph of the
theory. The dual graph represents each axiom, rather than each symbol, as a
node in the graph to be split. The possible advantage of this approach is that
it preserves the distinction of an axiom. Also, since the min-cut algorithm
is normalized, it helps preclude the creation of small isolated partitions by
both maximizing the similarity within partitions and minimizing the similarity
between partitions.

A different decomposition is conceived from a semantic approach. Our rea-
soning algorithms and our computational analysis suggested a syntactic ap-
proach to decomposition. Semantic approaches are also possible along lines
similar to [Slaney and Surendonk, 1996] or to [Chang and Lee, 1973] (Chapter
on semantic resolution). Such decomposition approaches may require different
reasoning algorithms to be computationally useful.

6 Related Work

The work related to ours is vast. We divide it into three parts. First is the
work on automated decomposition; second is the use of decompositions for
propositional reasoning; and third is the work that relates to FOL theorem
proving.

6.1 Automated Decomposition

Decomposition techniques for CSPs, Bayes nets and other NP-hard problems
are most relevant to our work on automated decomposition. These typically
look for a separation vertex [Dechter, 1990], use various heuristics to order
symbols (that translate to a decomposition of the graph) [Dechter and Pearl, 1989],
[Selman and Kautz, 1993,Dechter and Rish, 1994], and use approximations for
tree decomposition of minimum width (equivalent to finding triangulations
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of minimum clique number, computing treewidth, and finding optimal clique
trees) [Robertson and Seymour, 1986,Robertson and Seymour, 1995,Kloks, 1994],
[Becker and Geiger, 1996,Shoikhet and Geiger, 1997, Amir, 2001].

The last approach is applicable to our setup, if we assume that fsar(m) =
©(2*™). In contrast to our SPLIT, these algorithms find weak approximations
(factor O(log n)) to the optimal in polynomial time and constant-factor ap-
proximations or optimal results in quasi-polynomial time (polynomial time,
assuming the treewidth is bounded by a constant, and exponential time oth-
erwise). Furthermore, work on implementing SAT and automated deduction
strongly suggests that the assumption of fsar(m) = ©(2*™) is overly pes-
simistic. For this reason we prefer to minimize the links first, and then look
at minimizing the partitions, leading to our proposed algorithm.

Cut-set conditioning such as [Pearl, 1988, Dechter, 1990,Becker and Geiger, 1994,
and [Becker et al., 2000] and hypertree decompositions of CSPs such as the
work of [Gottlob et al., 1999] are other methods for using decompositions, that
are fairly different from the one we use in this paper.

6.2 Use of Decompositions in Propositional SAT

With respect to propositional SAT problems, perhaps the most relevant pre-
vious work is that of Dechter and Pearl [Dechter and Pearl, 1989], which pre-
sented algorithms for reasoning with decomposed CSPs. These can be used
for SAT under a given decomposition. In comparison, the algorithm we pre-
sented for partition-based SAT does not produce all the models possible in
each partition, as proposed in [Dechter and Pearl, 1989]. Instead, it finds the
truth values for propositions on the links that are extendible to a satisfying
truth assignment for the whole partition. This reduces our computation time
and makes it more dependent on the links’ sizes rather than on partition sizes.

Other SAT uses of SAT decomposition include [Park and Gelder, 1996] which
proposed a decomposition procedure that represents the theory as a hyper-
graph of clauses and divides the propositional theory into two partitions
(heuristically minimizing the number of hyperedges). It finds the set of pos-
sible truth-value assignments to the propositions associated with the hyper-
edges and tests them recursively for the two partitions. Cowen and Wyatt
[Cowen and Wyatt, 1993] developed an algorithm that partitions a proposi-
tional CNF theory into connected components that can be tested for satisfia-
bility individually. Their partitioning algorithm is an adaptation of a best first
search as used to find components in a graph, or strongly connected compo-
nents in a digraph. The authors tested their decomposition algorithm together
with a SAT solver, demonstrating a dramatic decrease in the runtime of the

29



SAT solver on the decomposed theories described in the paper.

Prior to [Amir and Mcllraith, 2000] there has been no work on using decom-
positions for automated deduction in propositional logic in the manner we pro-
pose. Concurrently to this work, Rish and Dechter [Rish and Dechter, 2000]
proposed an algorithm similar to our MP algorithm for the case of proposi-
tional ordered resolution. However, their work looks at a limited case (ordered
resolution, propositional logic), and they allow excessive computation by per-
forming all possible resolutions in each partition, twice. Our MP algorithm is
opportunistic in the sense that it does not wait for each partition to perform
all of the possible resolutions. (In FOL this is not possible at all.) Thus, Rish
and Dechter’s algorithm may use exponential amounts of space and time over
and above MP in the same settings.

6.3 Use of Decompositions in FOL Theorem Provers

Surprisingly, there has been little work on the specific problem of exploiting
structure in theorem proving in the manner we propose in this paper. We
conjecture that this can largely be attributed to the fact that theorem proving
has traditionally examined mathematics domains, that do not necessarily have
structure that supports decomposition. Nevertheless, there is related work
both in the parallel theorem proving community, and in the work on combining
logical systems.

The majority of work on parallel theorem proving implementations followed
decomposition of the search space [Conry et al., 1990,Ertel, 1992 Sutcliffe, 1992,
[Cowen and Wyatt, 1993, Bonacina and Hsiang, 1996,Suttner, 1997], or allowed
messages to be sent between the different provers working in parallel, using
heuristics to decide on what messages are relevant to each prover [Denzinger, 1995,
[Denzinger et al., 1997,Denzinger and Fuchs, 1999] (surveys can be found in
[Bonacina and Hsiang, 1994,Denzinger and Dahn, 1998]). Both approaches typ-
ically look at decompositions into very few sub-problems (typically less than
ten). In addition, the first approach typically requires complete independence
of the sub-spaces or the search is repeated on much of the space by several
reasoners. The second approach is more similar to ours, but there are some
major differences still. First, there is no clear methodology for deciding what
messages should be sent from one partition to another, or which partitions
should receive messages from which other partitions. Second, there are no
clear criteria for decomposing a theory into sub-problems.

Another related line of work focuses on combining logical systems, including

the work of [Nelson and Oppen, 1979,Shostak, 1984 Baader and Schulz, 1992],
[Ringeissen, 1996, Tinelli and Harandi, 1996]. Here, the computational focus
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has been on treating combinations of signature-disjoint theories (allowing the
queries to include symbols from all signatures), e.g. [Baader and Schulz, 1992].
Recent work introduced sharing function symbols between two theories (e.g.,
[Ringeissen, 1996]), but no algorithm allowed any sharing of relation sym-
bols. All approaches either nondeterministically instantiate the (newly cre-
ated) variables connecting the theories (e.g., [Tinelli and Harandi, 1996]), or
restrict the theories to be convex (disjunctions are intuitionistic) and have
information flowing back and forth between the theories. In contrast, we focus
on the structure of interactions between theories with signatures that share
symbols and the efficiency of reasoning with consequence finders, theorem
provers and SAT procedures. We do not have any restrictions on the language
besides finiteness.

Finally, work on formalizing and reasoning with context, including the work
of [McCarthy and Buvag¢, 1998 Akman and Surav, 1996]), can be related to
partition-based logical reasoning by viewing the contextual theories as inter-
acting sets of theories. Unfortunately, to introduce explicit contexts, a lan-
guage that is more expressive than FOL is needed. Consequently, a number
of researchers have focused on context for propositional logic, while much
of the reasoning work has focused on proof checking. Examples include GET-
FOL [Giunchiglia and Traverso, 1995,Giunchiglia, 1994]. There have been few
reported successes with automated reasoning; [Bonzon, 1997] presents one ex-
ample.

7 Conclusions

In this paper we have shown that decomposing theories into partitions and
reasoning over those partitions has potential computational advantages for
theorem provers and SAT solvers. Theorem proving strategies, such as reso-
lution, can use such decompositions to constrain search. Partition-based rea-
soning will improve the efficiency of propositional SAT solvers if the theory is
decomposable into partitions that share only small numbers of symbols.

We have provided sound and complete algorithms for reasoning with partitions
of related logical axioms, both in propositional logic and in FOL. Different
reasoning algorithms can be plugged-in for different partitions in these algo-
rithms. We gave conditions on those reasoners that ensure that the combined
reasoning procedure is sound and complete. Specialized versions of these algo-
rithms for resolution strategies in FOL were provided. We showed that some of
these algorithms simulate some order-based resolution strategies, while order-
based strategies may simulate some of our algorithms in restricted cases. All
our reasoning algorithms are suited for parallel processing.
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We examined the efficiency of our theorem-proving algorithms and our SAT
algorithm. Guided by both analyses, we suggested guidelines for achieving a
good partitioning and proposed an algorithm for the automatic decomposition
of theories that tries to minimize identified parameters. This algorithm gen-
eralizes previous algorithms used to decompose CSPs by finding single-vertex
separators.

Our work was motivated in part by the problem of reasoning with large mul-
tiple KBs that have overlap in content. The results in this paper address some
of the theoretical principles that underly such partition-based reasoning. We
are currently performing experimental analysis of Stanford KSL’s and SRI’s
KBs to analyze structure in these KBs, to test the effectiveness of our auto-
matic partitioning algorithms, and to investigate the effectiveness of proposed
partition-based reasoning algorithms. We are also involved in further theoret-
ical investigation.

A Proofs

A.1 FORWARD-M-P (MP) is Sound and Complete

First, notice that soundness is immediate because the only rules used in deriv-
ing consequences are those used in our chosen consequence-finding procedure
(of which rules are sound). In all that follows, we assume A is finite. The
infinite case follows by the compactness of FOL.

Lemma A.1 Let A = A; U Ay be a partitioned theory. Let ¢ € L(Ay). If
A @, then Ay = ¢ or there is a sentence ¥ € L(A;) N L(As) such that
A F 1 and Ay -9 = .

Proof of Lemma A.1. We use Craig’s interpolation theorem (Theorem 2.3),
taking @ = A; and § = Ay = ¢. Since a - § (by the deduction theorem for
FOL), there is a formula ¢ € L(a) N L(B) such that o F ¢ and ¢ + 3. By
the deduction theorem for FOL, we get that A; F ¢ and ¢ A Ay F ¢. Since
v € L(A;) N L(As) by the way we constructed «, 3, we are done. =

Definition A.2 (Definition 2.5) For a partitioning A = U;<, Ai, we say
that a tree G = (V, E,l) has a proper labeling, if for all (i,j) € E and By, By
the two subtheories of A on the two sides of the edge (i,j) in G, it is true that
L(1(3, 7)) 2 L(B1) N L(Bo).

We will show that all intersection graphs have a proper labeling. First, the
following lemma provides the main argument behind all of the completeness
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proofs in this paper.

Lemma A.3 (Lemma 2.6) Let A = U;<, Ai be a partitioned theory and
assume that the graph G is a tree that has a proper labeling for the partitioning
{Aiticn- Letk < n and let Q € L(AUU ek l(k, 7)) be a sentence. If A = Q,
then MP will find a consequence of Ay, that subsumes Q.

Proof of Lemma 2.6. We prove the lemma by induction on the number
of partitions in the logical theory. For |[V| = 1 (a single partition), A = A,
and the proof is immediate, as the reasoning procedure for A; is complete for
consequence finding. Assume that we proved the lemma for |V| < n —1 and
we prove the lemma for |V| = n.

In G, k has ¢ neighbors, i1, ..., 4. (k,i1) separates two parts of the tree G:
G1 (includes 1) and Gy (includes k). Let By, By be the subtheories of A that
correspond to (G, 9, respectively.

Notice that @ € L(Bs). By Lemma A.1, either By F @ or there is ¢ €
L(B1) N L(By) such that B; - ¢ and By F ¢ = Q. If By F @, then we are
done, by the induction hypothesis applied to the partitioning {A; | i € V3}
(V3 includes the vertices of G3) and G5 (notice that <’ used for Gy, @ agrees
with < used for G).

Otherwise, let 1 be a sentence as above. U, jyer,jzk (i1,5) 2 L(By U Aiy) N
L(B1\ A;,) because the set of edges (i1, j) separates two subgraphs correspond-
ing to the theories B; \ A;, and By U A;,, and G has a proper labeling our par-
titioning. Thus, since ¢ € L(B;) we get that ¢ € L(Ai, UU, jyer, 2k L(i1,7))-
By the induction hypothesis for G, By, at some point a sentence v’ that sub-
sumes 1 will be proved in A;, (after some formulae were sent to it from the
other partitions in Gy, By).

At this point, our algorithm will send 9 to Ay, because ¢' € L(I(k, 7)) because
G has a proper labeling for A, G. Since B, F ' = @, then by the induction
hypothesis applied to G, By (v = Q € L(Ak U )er I(k,7))) at some point
a sentence subsuming ¢ = @ will be generated in A, (after some message
passing). Thus, at some point a sentence subsuming ) will be generated in

.Ak. |

Proof of Theorem 2.4. All we are left to prove is that the intersection graph
G has a proper labeling. But if GG is the intersection graph of the partitioning
{A}icn then Ui, j) = L(A) 0 L(Ay). It for (i,5) € B L{(i,5)) 2 L(By)
L(B,), with By, B, the theories on the two sides of (7,7) in the tree G, then
there are A, A, in By, By, respectively, such that (z,y) € E and = # ¢ or
y # j. Since G is connected (it is a single tree), this means there is a cycle in
G, contradicting G being a tree. Thus L(I(7,5)) D L(B;) N L(B,) and G has a
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proper labeling. The proof follows from Lemma 2.6. =

A.2 FORWARD-M-P with BREAK-CYCLES is Sound and Complete

Soundness is immediate, using the same argument as for Theorem 2.4. For
completeness, first notice that the graph output by BREAK-CYCLES is al-
ways a tree, because BREAK-CYCLES will not terminate if there is still a
cycle in G. Now, we need the following lemma.

Lemma A.4 Let G' = (V, E',l') be a tree resulting from applying BREAK-
CYCLES to G = (V, E,l) and {A;}i<n. Then G' has a proper labeling for this

partitioning.

Proof of Lemma A.4. Assume there is a symbol p in L(B;) N L(B,) that
is not in (7, 7), and let A, A, be partitions on the two sides of (7, ) that
include sentences with the symbol p. We will prove that throughout the run of
the BREAK-CYCLES algorithm there is always a path in G’ (we start with
G' = G) between A, A, that has p showing on all the edge labels. Call such
a path a good path.

Obviously we have a good path in G, because we have (z,y) € E and p €
I(z,y) (because G is the intersection graph of Ay, ..., A,). Let us stop the algo-
rithm at the first step in which G’ does not have a good path (assuming there
is no such path, or otherwise we are done). In the last step we must have re-
moved an arc (a, b) (which was on a good path) to cause G’ to not have a good
path. Since p € I(a,b) and (a, b) is in a cycle {(b, a1), (a1, a2), .., (a¢, @), (a, b))
(this is the only reason we removed (a,b)), we added [(a,b) to the labels of
the rest of this cycle. In particular, now the labels of (b, a1), (a1, az), ..., (¢c, @)
include p. Replacing (a, b) in the previous good path by this sequence, we find
a path in the new G’ that satisfies our required property. This is a contradic-
tion to having assumed that there is no such path at this step. Thus, there is
no such p as mentioned above and L(I(7,j)) 2 L(By) N L(B2). =

Proof of Theorem 2.7. The proof of Theorem 2.7 follows immediately from
Lemma 2.6 and Lemma A.4. m

A.83 BACKWARD-M-P (BMP) is Sound and Complete

Proof of Theorem 2.8. Notice that for a prover 7 to have a goal (); means
that it needs to prove that the theory A; U{—@Q);} is inconsistent. ¢ is a subgoal
in a subgoal-disjunctive system if {¢} U A; F @;. For a series of subgoals
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Y1, ..., ¥, in partition A;, {11 V...V } UA; F Q. Also, if A, is the partition
to whom A; sends its subgoals, then ();, the goal of partition A, is ¢1 V...V,
at this point in time.

Let ¢ be a subgoal of A;. This means that A4; U {-Q;} F —¢. Thus, our BMP
algorithm readily reduces to MP, as —¢ would be sent from A; to A; in MP
while ¢ would be disjoined with the goal of 4; in BMP, and both need to
prove inconsistency of A; U{—-Q; A —¢}, when Q; is the goal of A; before the
arrival of . ;From the soundness and completeness of MP for graphs that are
trees, we get soundness and completeness for BMP. m

A.4  Theorem 3.2: RESOLUTION-M-P (RES-MP) is Sound and Complete

Theorem A.5 ([Lee, 1967]) For every non-tautologous clause D following
from a given clause set A, a clause C is derivable by the resolution rule such
that D is obtained from C by instantiation and addition of further literals (i.e.,
C C-subsumes D).

Proof of Theorem 3.2. Soundness and completeness of the algorithm follow
from that of MP, if we show that RES-SEND (Implementation 4) adds enough
sentences (implying completeness) to .4; that are implied by ¢ (thus sound)
in the restricted language L£(1(1, j)).

If we add all sentences ¢ that are submitted to RES-SEND to A; without any
translation, then our soundness and completeness result for MP applies (this
is the case where we add all the constant and function symbols to all I(z, 7)).

We use Theorem 3.1 to prove that we add enough sentences to A;. Let @y be
a quantified formula that is the result of applying algorithm U to ¢. Then, (9
results from a clause C' generated in step 4 of algorithm U (respectively, Step a
in RES-SEND). In algorithm U, for each variable z, the markings “z < «;” in
C are converted to a new variable that is existentially quantified immediately
to the right of the quantification of the variables y1,...,y,. o is a result of
ordering the quantifiers in a consistent manner to this rule (this process is
done in steps 56 of algorithm U).

Step 4 of RES-SEND performs the same kind of replacement that algorithm U
performs, but uses new function symbols instead of new quantified variables.
Since each new quantified variable in 5 is to the right of the variables on which
it depends, and our new function uses exactly those variables as arguments,
then Step 4 generates a clause C’' from C that entails ¢y. Thus, the clauses
added to A; by RES-SEND entail all the clauses generated by unskolemizing ¢
using U. From Theorem 3.1, these clauses entail all the sentences in L£(I(¢, 7))
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that are implied by ¢.

To see that the result is still sound, notice that the set of clauses that we add
to A; has the same consequences as ¢ in L(I(7, 7)) (i.e., if we add those clauses
to A; we get a conservative extension of A;). =

A.5 LINEAR-PART-SAT is Sound and Complete

Proof of Theorem 4.1. For each partition A;,i < n, lines 1 — 3 perform the
equivalent of finding all the models of A; and storing their truth assignments
to the symbols of L(L(7)) in T;. (L(7) specifies the columns, thus each row
corresponds to a truth assignment.) This is equivalent to finding the implicates
of the theory A; in the sublanguage £(L(%)). Thus, if A; is the DNF of the set
of implicates (a1 (pj,; -, Pji,) V - V @, (Pjy, -, Py, ), then T; initially includes
the set of models of A; in the sublanguage £(L(z)), namely, [A;]z(r))-

The natural join operation (X) then creates all the consistent combinations of
models from [A;] .y and [A;]zz(j))- This set of consistent combinations is
the set of models of Az U AJ ThllS, T; X ’_TJ = I[(Az U AJ)]IE(L(z)UL(]))

Finally, the projection operation restricts the models to the sublanguage £(L(7)),
getting rid of duplicates in the sublanguage. This is equivalent to finding all
the implicates of A; A A; in the sublanguage £(L(3)). Thus, 77 (T; X T;) =
[{e € L(L()) | Ai U Aj = o}leway-

To see that the algorithm is sound and complete, notice that the it does the
analogous operations to our forward message-passing algorithm MP (Figure
3). We break the cycles in Gy (creating GG) and perform forward reasoning as
in MP, using the set of implicates instead of online reasoning in each partition:
instruction 2b in MP is our projection (“A; = ¢ and ¢ € L(I(7,7))”) and then
join (“add ¢ to the set of axioms of A;”). Since T; X T; = [(A;UA))] ciyur))
joining corresponds to sending all the messages together. Since ) (T; X
T;) = [{¢ € L(L(2)) | A;UA; E ¢}y, projection corresponds to sending
only those sentences that are allowed by the labels.

By Theorem 2.7, LINEAR-PART-SAT is sound and complete for satisfiability
of 4. m
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A.6  Time Complexity of LINEAR-PART-SAT

Proof of Lemma 4.2. Let A be a partitioned propositional theory with n
partitions. Let m be the total number of propositional symbols in A, L(i) the
set of propositional symbols calculated in step 2 of LINEAR-PART-SAT, and
m; the number of propositional symbols mentioned in A; \ L(7) ( < n). Let us
examine procedure LINEAR-PART-SAT (Figure 12) step by step, computing
the time needed for computation.

Computing the intersection graph takes O(a * k?) time, where k is the number
of propositional symbol in each axiom (for 3SAT, that is 3), because we check
and add k? edges to G for each axiom.

BREAK-CYCLES’ loop starts by finding a minimal-length cycle, which takes
time O(n) (BFS traversal of n vertices). Finding the optimal a in line 2 takes
time O((cxm)*c), where c is the length of the cycle found (union of two labels
takes at most O(m) time). Finally, since a tree always satisfies |E| = |V| — 1,
breaking all the cycles will require us to remove |E| — (|V| — 1) edges. Thus,
the loop will run |E| — (]V| — 1) times (assuming the graph Gy is connected).
An upper bound on this algorithm’s performance is then O(n? x (n? * m)) =
O(n* ¥ m) (because ¢ < n and and |E| < [V |2 = n?).

Step 2 of LINEAR-PART-SAT takes time O(n *m), since there are a total of
n — 1 edges in the graph G (G is a tree with n vertices) and every label is of
length at most m.

Checking the truth assignments in step 3 takes time Y7, 21X@) per satisfiabil-
ity check of A; U A, because there are 2/X0)| truth assignments for each i < n.
Since A; U A has only m; free propositional variables, (A is an assignment
of truth values to |L(7)| variables), A; U A is reducible (in time O(|A|)) to a
theory of smaller size with only m; propositional variables. If the time needed
for a satisfiability check of a theory with m variables is O(fsar(m)), then the
time for step 3 is

n

O (2"« four(my)))

=1

Finding the relation < takes O(n) as it is easily generated by a BFS through
the tree.

Instruction 5 performs a projection and join, which takes time O(2/X®)) (the
maximal size of the table). Since the number of iterations over i < n and j
being a child of ¢ is n — 1 (there are only n — 1 edges), we get that the total
time for this step is O(X7, 2/XO)),
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Summing up, the worst-case time used by the algorithm is

Time(n, m,my, ..., My, a, k, L(1), ..., L(n)) =
Ola*xk®> + ntxm + nxm +

Y 2Ok foar(mi)) + o+ XL, 2P0 =
Olaxk® + n*sm + X1, (250 fsar(my))).

We can reduce the second argument (in the last formula) from n* *m to nxm,
if the intersection graph Gy is already a tree. =

A.7 Time Complexity for SPLIT

Proof of Proposition 5.1. Finding a minimum vertex separator R in G takes
time O(c % |V|2 % | E|). Finding a minimum separator that does not include s
is equivalent to having s be the only source with which we check connectivity
(in Even’s algorithm). Thus, this can be done in time O(|V|2 % |E|). Finding
a minimum separator that separates s from ¢ takes time O(|V|2  |E|). In
the worst case, each time we look for a minimum s-separator (¢t = nil), we
get a very small partition, and a very large one. Thus, we can apply this
procedure O(|V|) times. Summing up the time taken for each application of
the procedure yields O(|V|* [V|2 % |E| + ¢ |V|2 * |E|) = O([V|>  |[E|). =
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