
Decision-Theoretic GOLOG with Qualitative Preferences

Christian Fritz and Sheila A. McIlraith
Department of Computer Science, University of Toronto, Toronto, Ontario. Canada.

{fritz,sheila}@cs.toronto.edu

Abstract
Personalization is becoming increasingly important in agent
programming, particularly as it relates to the Web. We
propose to develop underspecified, task-specific agent pro-
grams, and to automatically personalize them to the pref-
erences of individual users. To this end, we propose a
framework for agent programming that integrates rich, non-
Markovian, qualitative user preferences expressed in a lin-
ear temporal logic with quantitative Markovian reward func-
tions. We begin with DTGOLOG, a first-order, decision-
theoretic agent programming language in the situation calcu-
lus. We present an algorithm that compiles qualitative pref-
erences into GOLOG programs and prove it sound and com-
plete with respect to the space of solutions. To integrate these
preferences into DTGOLOG we introduce the notion of multi-
program synchronization and restate the semantics of the lan-
guage as a transition semantics. We demonstrate the utility
of this framework with an application to personalized travel
planning over the Web. To the best of our knowledge this is
the first work to combine qualitative and quantitative prefer-
ences for agent programming. Further, while the focus of this
paper is on the integration of qualitative and quantitative pref-
erences, a side effect of this work is realization of the simpler
task of integrating qualitative preferences alone into agent
programming as well as the generation of GOLOG programs
from LTL formulae.

1 Introduction
Personalization is becoming increasingly important to agent
programming. Service-sector agent programs such as per-
sonal assistants or travel planners are often characterized by
a relatively well-defined but under-specified set of tasks that
can be realized in a variety of different ways. As with an of-
fice admin assistant or a travel agent, these high-level tasks
are commissioned by numerous different customers/users.
A good agent program, like a good office assistant or travel
planner must be able to personalize the service they provide
to meet the preferences and constraints of the individual.

Consider the oft-used example of travel planning:
Example 1. Fiona would like to book a trip from Toronto,
Canada to Edinburgh, Scotland for work. She’d like to de-
part between July 25 and 28, returning no sooner than Au-
gust 5, but no later than August 8. She would prefer not to

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

connect through London Heathrow, as she had a bad expe-
rience being stuck at Heathrow when air traffic controllers
went on strike last year. She’ll need a hotel in Edinburgh,
preferably close to the castle but if the plane arrives late at
night, she’d prefer a hotel close to the airport. Fiona needs
to economize, so she’d like the cheapest flights and hotel ac-
commodations possible. Nevertheless, she’s willing to pay
$100 more to get a direct flight. Finally, she has to work
July 29 – August 5, so she’s willing to spend up to $200
more to maximize sightseeing days before July 29 and/or af-
ter August 5.

This, presumably realistic setting, displays three types
of constraints or preferences that are commonplace in
many planning and agent programming application do-
mains: hard constraints (when to go and where), qualita-
tive preferences (airport and hotel preferences), and quan-
titative preferences (financial restrictions).

In this paper, we develop a system that allows the user
to express all these kinds of constraints and preferences.
In particular we address the problem of combining non-
Markovian qualitative preferences, expressed in first-order
temporal logic, with quantitative decision-theoretic reward
functions and hard symbolic constraints in agent program-
ming. Then, parameterized, task-specific, non-deterministic
agent programs can be developed for performing standard
tasks, like travel planning over the Web, and we can person-
alize them with the proposed kinds of preferences and con-
straints. We do so by compiling qualitative temporal prefer-
ences into (extended-)DTGOLOG programs (Boutilier et al.
2000), a decision-theoretic variant of the agent program-
ming language GOLOG. The resultant program maximizes
the users expected utility within the set of most qualitatively
preferred plans. We prove the soundness and completeness
of our compilation algorithm.

To the best of our knowledge, this is the first work to
combine qualitative and quantitative preferences in an agent
programming setting. There is of course extensive work
on reasoning with quantitative dynamical preferences as ex-
emplified by Markov Decision Processes (MDPs). There
has also been significant work on static qualitative prefer-
ences, exemplified by the popular ceteris paribus CP-nets
formalism (e.g., (Boutilier et al. 2004; Domshlak et al.
2003)). In contrast to our preference language, this lan-
guage only deals with static preferences and does not yield



a total order over preferences as our preference language
does. There has been relatively little work on the incorpora-
tion of qualitative preferences into dynamical systems (e.g.,
(Bienvenu, Fritz, & McIlraith 2006; Son & Pontelli 2004;
Delgrande, Schaub, & Tompits 2004)).

In the next section we review the situation calculus and
GOLOG. This is followed by a description of the preference
language we use. In Section 4, we present our approach to
integrating qualitative preferences into DTGOLOG. It com-
prises three steps: compilation of non-Markovian qualita-
tive preferences into GOLOG programs; combining the re-
sulting GOLOG programs with an existing GOLOG pro-
gram via synchronization; and given this newly synchro-
nized program, a means of expressing preferences over dif-
ferent possible subprograms. Included are a soundness and
completeness result relating to our compilation, and a new
transition semantics for DTGOLOG. We have implemented
our approach as an extension to READYLOG(Ferrein, Fritz,
& Lakemeyer 2004), an existing on-line decision-theoretic
GOLOG interpreter. We demonstrate its utility with an ap-
plication to personalized travel planning over the Web in
Section 5. Prior to concluding, we discuss some related
work.

2 Situation Calculus and GOLOG

The situation calculus is a logical language for specifying
and reasoning about dynamical systems (Reiter 2001). In
the situation calculus, the state of the world is expressed
in terms of functions and relations (fluents) relativized to
a particular situation s, e.g., F (~x, s). In this paper, we dis-
tinguish between the set of fluent predicates, F , and the set
of non-fluent predicates, R, representing properties that do
not change over time. A situation s is a history of the prim-
itive actions, a ∈ A, performed from a distinguished initial
situation S0. The function do(a, s) maps a situation and an
action into a new situation thus inducing a tree of situations
rooted in S0. Following convention we will generally re-
fer to fluents in situation-suppressed form, e.g., at(toronto)
rather than at(toronto, s).

A basic action theory in the situation calculus, D, com-
prises four domain-independent foundational axioms, and a
set of domain-dependent axioms. The foundational axioms
Σ define the situations, their branching structure and the sit-
uation predecessor relation @. s @ s′ states that situation
s precedes situation s′ in the situation tree. Details of the
form of these axioms can be found in (Reiter 2001).

GOLOG (Levesque et al. 1997) is a high-level logic pro-
gramming language for the specification and execution of
complex actions in dynamical domains. It builds on top of
the situation calculus by providing Algol-inspired extralogi-
cal constructs for assembling primitive situation calculus ac-
tions into complex actions (programs) δ. Constructs include:

a — primitive actions
δ1; δ2 — sequences
φ? — tests
(πx)δ(x) — nondeterministic choice of arguments
δ∗ — nondeterministic iteration

ndet(L) – nondeterministic choice of sub-program in list, L
if φ then δ1 else δ2 endIf – conditionals
proc P (~v) δ endProc — procedure

These constructs can be used to write programs in the lan-
guage of a domain theory, e.g.,

buyAirTicket(~x);
if far then rentCar(~y) else bookTaxi(~y) endIf.

There are two popular semantics for GOLOG programs:
the original evaluation semantics (Reiter 2001) and a re-
lated single-step transition semantics that was proposed for
on-line execution (De Giacomo, Lespérance, & Levesque
2000). Following the evaluation semantics, complex ac-
tions are macros that expand to situation calculus formu-
lae. The abbreviation Do(δ, S0, do(~a, S0)) denotes that the
GOLOG program δ, starting execution in S0 will legally ter-
minate in situation do(a1, do(a2, . . . , do(an, S0)))

1. The fol-
lowing are some example macro expansions.
Do(a, s, s′)

def
= Poss(a[s], s) ∧ s′ = do(a[s], s)2

Do(?(ϕ), s, s′)
def
= ϕ[s] ∧ s = s′.

Do(ndet([δ1|δ̄], s, s′)
def
= Do(δ1, s, s

′) ∨Do(ndet(δ̄), s, s′)3

Do(ndet([], s, s′) def
= s = s′

Given a domain theory, D and GOLOG program δ, pro-
gram execution must find a sequence of actions ~a such
that: D |= Do(δ, S0, do(~a, S0)). Recall that D induces a
tree of situations rooted at S0. Requiring that D entails
Do(δ, S0, do(~a, S0)) serves to constrain the situations in the
tree to only those situations that are consistent with the ex-
pansion of δ.

These hard constraints can reduce the problem size by or-
ders of magnitude. Consider the following estimate of our
travel planning example. The full grounded search space in-
volves 3652 date combinations and 1901 airports. Assuming
10 available flights for every combination, there are more
than 4.8 · 1012 flights. Optimistically assuming that at each
destination there are only 10 hotels with 5 room types each,
the total number of possible action combinations increases
to 6.2 · 1021. Using a DTGOLOG procedure such as the one
that follows reduces the number of alternatives to approxi-
mately 3 · 3 · 10 · 50 = 4500 cases that are relevant to Fiona.
Such reductions are of particular importance for agent pro-
gramming on the Web, where the vastness of information
creates enormous search spaces.

In this paper we build upon a decision-theoretic variant
of GOLOG called DTGOLOG (Boutilier et al. 2000), which
extends GOLOG to deal with uncertainty in action outcomes
and general reward functions. DTGOLOG can be viewed al-
ternatively as an extension to GOLOG, or as a means to give
“advice” to a decision-theoretic planner that maximizes ex-
pected utility. In particular we are using an on-line inter-
preter called READYLOG, which combines the advantages
of several previous extensions and implementations. As
with other on-line interpreters, READYLOG offers a special
search-construct that invokes a switch to an off-line plan-
ning mode. This off-line planning determines the optimal

1which we abbreviate to do(~a, S0) or do([a1, . . . , an], S0)
2a[s] denotes the re-insertion of s into fluent arguments of a
3[a|r] denotes a list with first element a, and remaining list r



policy (conditional plan) for a given non-deterministic pro-
gram, i.e. it makes the non-deterministic choices based on
the expected utility of the alternatives. The policy is then
executed in the real world.

As an example, our travel planning problem could be de-
scribed by the following READYLOG procedure:

proc( travel_planner,

[ pickBest( depart_dt, [726..728],

pickBest( return_dt, [805..807],

[ searchFlight("YYZ", "EDI", depart_dt, return_dt),

searchHotel("EDI", depart_dt, return_dt),

pickBest( bestF, foundFlights, bookFlight(bestF)),

pickBest( bestH, foundHotels, bookHotel(bestH)) ]))]).

We use airport codes to represent locations: YYZ – Toronto,
LHR – London Heathrow, EDI – Edinburgh. If enclosed
in the above mentioned search-construct, the interpreter
first finds the best conditional plan for the procedure, and
then executes it in the real world. Note the extensive use
of the READYLOG construct pickBest( Value, Range,
Program) which picks the best value for Program from the
range of possibilities Range relating to Value, a variable
appearing in the program. E.g., our program picks the best
departure and return dates from the specified ranges (726
denotes July 26, etc.), and so on. In this framework the util-
ity theory is specified by action costs (e.g., the cost of pur-
chasing an airline ticket) and Markovian reward functions
assigning real-valued rewards to situations. E.g.,
reward(v, s) ≡

(at(EDI, s) ∧ date(s) < 729 ∨ date(s) > 805) ∧ v = 200) ∨
(¬ (at(EDI, s) ∧ (date(s) < 729 ∨ date(s) > 805)) ∧ v = 0)

This says that the reward v is 200 if we are in Edinburgh
before July 29 or after August 5, and 0 otherwise.

But we cannot realistically expect the customers of a
travel agency to provide us with all their preferences in this
Markovian and numeric form. It seems more natural to also
elicit qualitative preferences with temporal extent, as we ex-
emplified in our earlier example. We will start by defining a
suitable language for this purpose.

3 Preference Language
To personalize agent programs, we use a rich first-order lan-
guage for expressing qualitative, non-Markovian user pref-
erences. Our language is a subset of the preference language
we proposed in (Bienvenu, Fritz, & McIlraith 2006), which
is a modification and extension of Son and Pontelli’s PP lan-
guage (Son & Pontelli 2004). The semantics of this lan-
guage is defined in the situation calculus.

3.1 Syntax
Constraints on the properties of situations are expressed by
basic desire formulae (BDF):
Definition 1 (Basic Desire Formula (BDF)). A basic desire
formula is a sentence drawn from the smallest set B where:
1. F ∪ R ⊂ B, where F is the set of fluents and R is the set of

non-fluent relations;
2. If a ∈ A, the set of primitive actions, then occ(a) ∈ B, stating

that action a occurs;
3. If f ∈ F , then final(f) ∈ B;

4. If ψ,ψ1, ψ2 are in B, then so are ¬ψ, ψ1 ∧ ψ2, ψ1 ∨ ψ2,
ψ1 → ψ2[≡ ¬ψ1 ∨ ψ2; conditional], (∃x)ψ, (∀x)ψ, next(ψ),
always(ψ), eventually(ψ), and until(ψ1, ψ2).

BDFs establish desired properties of situations, which are
action histories. The first three BDF forms are evaluated
with respect to the initial situation unless embedded in a
temporal connective. By combining BDFs using boolean
and temporal connectives, we are able to express a variety
of properties of situations. In our travel example:

always
ˆ
(∃y, z)((flight(y) ∧ arrivesLate(y) ∧
¬closeToAirport(z)) → ¬occ(bookhotel(z))) (̃1)

always(¬ at(LHR)) (2)

Again, BDFs enable a user to define preferred situations. To
express preferences among alternatives, we define the notion
of qualitative preference formulae.

Definition 2 (Qualitative Preference Formula 4 (QPF)). Ψ
is a qualitative preference formula if one of the following
holds:

• Ψ is a Basic Desire Formula

• Ψ = ψ ~&Ψ′, with ψ a BDF and Ψ′ another Qualitative
Preference Formula.

~& is an Ordered And preference. We wish to satisfy both
ψ and Ψ′, but if that is not possible, we prefer to satisfy ψ
over Ψ′. Note that this is enough to also express conditional
preferences of the form “if a then I prefer b over c”, as this
can be represented by (a → b) ~&(a → c) which has the
intended semantics.

Note that every QPF can be expanded to the ordered-and
of its BDFs: Ψ = ψ1

~&ψ2
~& . . . ~&ψn.

Throughout this paper we will follow the notational conven-
tions of using the symbol ψ for BDFs, Ψ for QPFs, and δ for
GOLOG programs.

3.2 Semantics

Following recent work (Bienvenu, Fritz, & McIlraith 2006),
preference formulae are interpreted as situation calculus for-
mulae and are evaluated relative to an action theoryD. Since
BDFs may refer to properties that hold over fragments of a
situation history, we use the notation ψ[s, s′], proposed in
(Gabaldon 2004), to explicitly denote that ψ holds on the
sequence of situations originating in s and terminating in
s′ = do(~a, s). Note that this does not say that ψ holds on
all situations in this interval, nor that it only holds in one. It
says that all temporal expressions occurring in ψ are limited
to this interval. If no temporal expressions are used, then
that means that ψ holds on the first situation s.

As noted previously, fluents are represented in situation-
suppressed form and f [s] denotes the re-insertion of situa-
tion terms s in fluent f . BDFs are interpreted in the situation
calculus as follows:

4Subsequently referred to as preference formulae.



ψ ∈ F , ψ[s, s′]
def
= ψ[s]

ψ ∈ R, ψ[s, s′]
def
= ψ

final(ψ)[s, s′]
def
= ψ[s′]

occ(a)[s, s′] def
= do(a, s) v s′

eventually(ψ)[s, s′]
def
= (∃s1 : s v s1 v s′)ψ[s1, s

′]5

always(ψ)[s, s′]
def
= (∀s1 : s v s1 v s′)ψ[s1, s

′]

next(ψ)[s, s′]
def
= (∃a).do(a, s) v s′ ∧ ψ[do(a, s), s′]

until(ψ1, ψ2)[s, s
′]

def
= (∃s2 : s v s2 v s′).

ψ2[s2, s
′] ∧ (∀s1 : s v s1 @ s2)ψ1[s1, s

′]

The boolean connectives are already defined in the situation
calculus. Since each BDF is shorthand for a situation calcu-
lus expression, a simple model-theoretic semantics follows.
Definition 3. Let D be an action theory, and let s and s′ be
two feasible situations (all contained actions are possible)
such that s v s′. A BDF ψ is satisfied on the interval of
situations s to s′ if and only if D |= ψ[s, s′]. We say ψ is
satisfied by situation s if it is satisfied on [S0, s].

Semantics of Qualitative Preference Formulae
Let Ψ = ψ1

~&ψ2
~& . . . ~&ψn be a qualitative preference

formula, ψi be BDFs, and let indexs([ψ1, .., ψn]) denote
the index of the first BDF in ψ1, .., ψn that is not satisfied
by situation s or n+ 1 if no such index exists. Situation s is
preferred to situation s′ w.r.t. to Ψ iff indexs([ψ1, .., ψn]) >
indexs′([ψ1, .., ψn]), or indexs([ψ1, .., ψn]) =
indexs′([ψ1, .., ψn]) = i and s is preferred to s′ with
respect to Ψ′ = ψi+1

~& . . . ~&ψn. That is, we aim to satisfy
the longest possible prefix of BDFs composing Ψ.

4 Adding Preferences to DTGOLOG

Recall that BDFs are the building blocks of our qualitative
preference formulae. Further note that BDFs impose con-
straints on situations just as GOLOG programs do. Thus,
to integrate a QPF into a DTGOLOG program, we will first
transform its constituent BDFs into small GOLOG programs
and combine them back together to reflect the preference se-
mantics of the QPF. To combine multiple GOLOG programs,
we define the notion of multi-program synchronization, and
to reflect the relative preference of one GOLOG program
over another, we define their strict preference in DTGOLOG.

Synchronization of preference-induced GOLOG pro-
grams with DTGOLOG programs results in a natural inte-
gration of agent programming under both qualitative pref-
erences and quantitative utility theory.

Since qualitative and quantitative expressions of prefer-
ence are not immediately comparable, one has to decide how
to rank them in case they are contradictory, i.e. favour differ-
ent plans. In this paper we rank qualitative preferences over

5We use the following abbreviations (Gabaldon 2004):
(∃s1 : s v s1 v s′)Φ ≡ (∃s1){s v s1 ∧ s1 v s′ ∧ Φ} and
(∀s1 : s v s1 v s′)Φ ≡ (∀s1){[s v s1 ∧ s1 v s′] ⊃ Φ}

quantitative ones. As a result, we try to find the quantita-
tively best plan within the set of most qualitatively preferred
plans, and only if no such plan exists, broaden our scope to
less qualitatively preferred plans. Nevertheless, a different
ordering or even several ’layers’ would be easy to realize in
the presented framework.

The outline of our approach is as follows:
1. We compile each of the BDFs comprising our QPF into

a GOLOG program such that any successful execution of
the resulting program will result in a situation that satisfies
the BDF that generated it;

2. We then define multi-program synchronization to couple
the execution of multiple programs so as to intersect the
sets of situations the programs describe;

3. Based on this, we define preferences over different sub-
programs both to rank several preferences and to add de-
feasible preferences to a given program.

4.1 Compiling BDFs into GOLOG programs
This section describes how we compile BDFs, the building
blocks of our QPF into GOLOG programs. The compilation
works by progression up to a given horizon. At each pro-
gression step, the mechanism produces a set of tuples con-
sisting of 1) a program step that can be performed without
violating the BDF, and 2) the BDF that remains to be sat-
isfied. We continue to progress the latter until we arrive at
the trivial BDF (TRUE) or reach the compilation horizon.
As a progression step may produce more than one program-
step/remaining-formula combination, (branch), compilation
produces a tree. The branches are linked using nondetermin-
istic choice. This tree describes the set of all situations that
satisfy the BDF under the given domain theory.
Example 2. Consider the BDF

always(¬at(LHR)) ∧ eventually(occ(sight-seeing))
and assume A is the list of all primitive actions in our do-
main theory. Then the following program describes all pos-
sible sequences of length ≤ 2 that satisfy this BDF:

δ2ψ = ndet
` ˆ
¬at(LHR)?; sight-seeing;¬at(LHR)?;

ndet([ nil, ndet(A);¬at(LHR)? ]),

¬at(LHR)?; ndet(A);¬at(LHR)?;
sight-seeing;¬at(LHR)?

˜ ´
That is, either I check that I am not at London Heathrow,

then do sight-seeing and then either stop (nil) or do any
other action, repeatedly verifying that I am still not at
Heathrow. Or, again testing that I am never at Heathrow,
I do any action and then go sight-seeing. Any successful
execution of this GOLOG program will satisfy the BDF.

Again, BDFs define desired properties of situations. As
such, the maintenance of BDFs restricts the set of actions
that may be taken in a situation. This insight is key to our
compilation approach. We call the constraints required to
enforce our BDFs situation constraints. We express a situ-
ation constraint in GOLOG by a test ϕ? that enforces a for-
mula, and/or a nondeterministic choice of the actions allow-
able in the current situation. In many cases, this is the set of
all actions A.



Recall that in GOLOG ϕ? states that the formula ϕ has
to hold in the current situation and that ndet(L) is the non-
deterministic choice among the elements of the list L. For
example, the only possible next steps for ndet([a, b]) are
taking action a or taking action b. Thus, assuming the cur-
rent situation is s, the set of possible successor situations
is restricted to {do(a, s), do(b, s)}. The scope of situation
constraints can be expanded over several situations by us-
ing temporal expressions. In the example, the constraint of
never being at Heathrow is extended over all situations using
always. Observe that by this several BDFs are contributing
situation constraints to the same situation. To combine these
coinciding situation constraints we define the function χ as

χ(ϕ1?, ϕ2?) = (ϕ1 ∧ ϕ2)?

χ(ϕ?, ndet(l)) = ϕ?; ndet(l)
χ(ndet(l1), ndet(l2)) = ndet(l1 ∩ l2)
χ(ϕ1?; ndet(l1), ϕ2?; ndet(l2)) = (ϕ1 ∧ ϕ2)?; ndet(l1 ∩ l2)

plus its reflexive completion, where the ϕ’s are formu-
lae of the situation calculus and the l’s are lists of actions.
In our example, the temporal extent of always(¬at(LHR))
and eventually(occ(sight-seeing)) overlap. In these situ-
ations, the imposed situation constraints (¬at(LHR)? and
sight-seeing) are combined, in this case by simple sequenc-
ing (second rule above).

Formally the compilation of a basic desire formula ψ is
defined using the predicate C: C(ψ, sc, ψ′) holds iff sc is a
situation constraint whose execution will not violate BDF ψ,
and further ψ′ is the progressed BDF that needs to be satis-
fied in the future. Note that BDFs are treated as syntactic
entities in the context of our compilation and accordingly
are only syntactically manipulated. In the following we use
STOP as a shorthand for 6 ∃a.occ(a). C is defined through the
following set of axioms:

C(f, f?,TRUE), ∀f ∈ F ∪R
C(occ(a), ndet([a]),TRUE), ∀a ∈ A
C(final(f), sc, ψ′) ≡ (sc = f?; ndet([]) ∧ ψ′ = STOP)

∨ (sc = ndet(A) ∧ ψ′ = final(f))

C(ψ1 ∧ ψ2, sc, ψ
′) ≡ C(ψ1, sc1, ψ

′
1) ∧ C(ψ2, sc2, ψ

′
2)∧

sc = χ(sc1, sc2) ∧ ψ′ = (ψ′1 ∧ ψ′2)
C(ψ1 ∨ ψ2, sc, ψ

′) ≡ C(ψ1, sc, ψ
′) ∨ C(ψ2, sc, ψ

′)

C(ψ1 → ψ2, sc, ψ
′) ≡ C((ψ1 ∧ ψ2) ∨ ¬ψ1, sc, ψ

′)

C(next(ψ), ndet(A), ψ)

C(always(ψ), sc, ψ′) ≡
(C(ψ, sc, ψ′′) ∧ ψ′=STOP ∧ (ψ′′=STOP ∨ ψ′′=TRUE))

∨ (C(ψ ∧ next(always(ψ)), sc, ψ′)

C(eventually(ψ), sc, ψ′) ≡ C(ψ ∨ next(eventually(ψ)), sc, ψ′)

C(until(ψ1, ψ2), sc, ψ
′) ≡

C(ψ2 ∨ (ψ1 ∧ next(until(ψ1, ψ2))), sc, ψ
′)

C(TRUE, sc,TRUE) ≡ sc = ndet([]) ∨ sc = ndet(A)

The situation constraint ndet([ ]) states that no action may
be taken. This enforces that the program, that we are gen-
erating, terminates, or, speaking in terms of situations, that
situations grow no longer.

Further we allow negation of BDFs, ¬ψ, but this requires
special treatment: GOLOG finds situations, i.e. action se-
quences, that satisfy a program, but for negation it is not

obvious how the complement, that is the set of situations
that do not satisfy the program, would be computed. We ad-
dress this by pushing the negation down to the atomic level
(fluents and action occurrence), thereby avoiding the above
problem. For parsimony we only show some less obvious
cases:

C(¬f,¬f?,TRUE), ∀f ∈ F ∪R
C(¬occ(a), sc, ψ′) ≡ (sc = ndet([]) ∧ ψ′ = STOP)

∨ (sc = ndet(A \ {a}) ∧ ψ′ = TRUE), ∀a ∈ A
C(¬always(ψ), sc, ψ′) ≡ C(eventually(¬ψ), sc, ψ′)

C(¬until(ψ1, ψ2), sc, ψ
′) ≡

C((¬ψ2 ∧ (¬ψ1 ∨ next(¬until(ψ1, ψ2))))

∨ always(¬ψ2), sc, ψ
′)

The actual compilation then proceeds by repeatedly apply-
ing these axioms to a given BDF, ψ, obtaining situation con-
straints that, when taken together, form a GOLOG program
δhψ , that exactly describes the same set of situations as the
BDF. Non-determinism in above definitions directly trans-
lates into non-determinism in GOLOG:

Compile(ψ, h, δhψ) ≡
∃l.∀δ′(δ′ ∈ l⇔ Prog(ψ, h, δ′)) ∧ δhψ = ndet(l)

Prog(ψ, 0, δ) ≡ ∃x.C(ψ, δ, x) ∧ δ = ϕ?

Prog(STOP, h, nil)
Prog(TRUE, h, ndet(A))

Prog(ψ, h, δ) ≡ h 6= 0 ∧ ψ 6= STOP ∧
C(ψ, sc, ψ′) ∧ Compile(ψ′, h− 1, δ′) ∧ δ = sc; δ′

These definitions can be directly implemented in Prolog,
where ∀ is realized using findall/3. Then for a given BDF
ψ and horizon h the query Compile(ψ, h, δhψ) produces the
GOLOG program δhψ with the desired properties. Some op-
timization of the generated code is advisable, but for parsi-
mony we omit these rather technical details here.

Recall thatD denotes an action theory in the situation calcu-
lus and that Do(δ, s, s′) states that GOLOG program δ start-
ing in situation s can successfully terminate in situation s′.
We prove the soundness and completeness of our compila-
tion method with respect to the semantics stated above:

Theorem 1. (Soundness) Let ψ be a basic desire for-
mula and δhψ be the corresponding program for hori-
zon h (i.e. Compile(ψ, h, δhψ)). Then for any situation
sn = do([a1, a2, . . . , an], s) with n ≤ h such that D |=
Do(δhψ, s, sn), it holds that D |= ψ[s, sn].

Theorem 2. (Completeness) Let ψ be a basic desire for-
mula and δhψ be the corresponding program for horizon h.
Then for any situation sn = do([a1, a2, . . . , an], s) with n ≤
h such that D |= ψ[s, sn] it holds that D |= Do(δhψ, s, sn).

The proofs for both theorems can be found in the Ap-
pendix. Intuitively, soundness states that any program exe-
cution will result in a situation that also satisfies the BDF,
while completeness establishes that all situations that satisfy
the BDF are preserved.



4.2 Multi-Program Synchronization
Now that we have GOLOG programs that enforce satisfac-
tion of each of the BDFs in our QPF, we want to combine
these together with a pre-existing agent program to eventu-
ally provide a semantics for qualitative preference formulae.
To this end, we define multi-program synchronization.

Roughly, we understand two programs to execute syn-
chronously if they traverse the same sequence of situations.
Thus, at each step we need to find a common successor sit-
uation for both programs. This can be done efficiently by
determining the successors of both individually and then in-
tersecting the results. It is however not efficient if both pro-
grams are evaluated completely first. This motivates the use
of a transition semantics as opposed to the evaluation seman-
tics originally used to define DTGOLOG.

A transition semantics for GOLOG was first introduced in
(De Giacomo, Lespérance, & Levesque 2000) where, for the
same reasons as above, it was used to define the concurrent
execution of two programs. Roughly, a transition semantics
is axiomatized through two predicates Trans(δ, s, δ′, s′) and
Final(δ, s). Given an action theory, a program δ and a situ-
ation s, Trans defines the set of possible successor configu-
rations (δ′, s′) according to the action theory. Final defines
whether a program is final, i.e. successfully terminated, in a
certain situation.

For instance, for the program a1; a2, that is the
sequence of actions a1 and a2, and a situation s,
Trans(a1; a2, a, a2, do(a1, s)) describes the only possible
transition that is possible if the action a1 is possible in situa-
tion s according to the action theory. do(a1, s) is the transi-
tion and a2 is the remaining program to be executed. Using
the transitive closure of Trans, denoted Trans∗, one can de-
fine a new Do predicate as follows:
Do(δ, s, s′)

def
= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′).

As is shown in (De Giacomo, Lespérance, & Levesque
2000), this definition is equivalent to the original Do.

Using the transition semantics we can formally define
the synchronization of two programs δ1, δ2 by a new
GOLOG construct sync(δ1, δ2):

Trans( sync(δ1, δ2), s, sync(δ′1, δ
′
2), s

′ ) ≡
(Trans(δ1, s, δ′1, s

′) ∧ Trans(δ2, s, δ′2, s
′))

∨
`
s′ = s ∧ ( (Trans(δ1, s, δ′1, s) ∧ δ′2 = δ2)

∨(δ′1 = δ1 ∧ Trans(δ2, s, δ′2, s)) )
´

Final( sync(δ1, δ2), s ) ≡ Final(δ1, s) ∧ Final(δ2, s)

That is the program sync(δ1, δ2) can perform a transition in
a situation s to a new situation s′ iff both programs δ1 and δ2
can perform a transition to s′ or when s′ = s and one of δ1
and δ2 can do a transition that does not affect the situation,
for example evaluating a test. In both cases, the program
that remains to be run will be the synchronous execution
of the two remaining subprograms (δ′1, δ

′
2). To synchronize

more than two programs we can use nesting, so for instance
sync(δ1, sync(δ2, δ3)) would synchronize three programs.

The following theorem follows immediately from the
above definitions.

Theorem 3. Let δa, δb be two GOLOG programs. Then for
any situation S, D |= Do(δa, S0, S) and D |= Do(δb, S0, S) if
and only if D |= Do(sync(δa, δb), S0, S).

The theorem states that a situation S describes a legal ex-
ecution for both programs, if and only if it describes a legal
execution of the synchronization. Thus, synchronizing two
programs intersects the sets of situations they describe.

A Decision-Theoretic Transition Semantics As stated
above, DTGOLOG is defined using an evaluation semantics
and that does not suit our requirements. Thus, we have re-
defined DTGOLOG in an equivalent transition semantics, or,
seen differently, extended the existing GOLOG transition se-
mantics to decision-theoretic planning.

A thorough presentation of DTGOLOG and the complete
set of definitions of our transition semantics is out of the
scope of this paper. This, rather technical, section is thus
intended for the benefit of readers familiar with the original
DTGOLOG work as described in (Boutilier et al. 2000) and
only provides an overview of the necessary changes.

The transition semantics is defined via the predicate
BestTrans(δ, s, d, (π, v, prob),N ,D), where δ is a program,
s a situation, d an integer indicating the current depth in the
search tree, π, v, and prob the optimal policy, the expected
utility, and the termination probability respectively, and N ,
D are lists of nodes and decisions. The latter two lists con-
stitute the fundamental difference between the evaluation se-
mantics and the transition semantics. In an evaluation se-
mantics the interpreter traverses the tree of possible action-
and action-outcome sequences, called the decision-tree, in
a depth-first manner: nodes are expanded right when they
are created and local decisions can be made directly follow-
ing the expansion of all sub-nodes. In contrast, transition
semantics does not force any particular expansion strategy.
Instead, nodes can be expanded in an arbitrary order. Thus,
we need to do some bookkeeping of unexpanded nodes (of-
ten called frontier) and the open decisions, which are to be
made once all sub-nodes have been expanded. The two list
(N ,D) mentioned above serve this purpose.

For example a transition over a non-deterministic choice
among sub-programs is then defined as follows:

BestTrans( ndet([δ]); δ′, s, d, (π, v, prob),N ,D) ≡
N = [ (δ; δ′, s, d, (π, v, prob)) ] ∧ D = []

BestTrans( ndet([δ1 | δ2]); δ′, s, d, (π, v, prob),N ,D) ≡
∃(π1, v1, prob1, π2, v2, prob2).

BestTrans( ndet(δ2); δ′, s, d, (π2, v2, prob2),N2,D2) ∧
N = [ (δ1; δ

′, s, d, (π1, v1, prob1)) | N2] ∧
D = [max((π1, v1, prob1), (π2, v2, prob2), (π, v, prob))|D2]

where N is the list of possible successor configurations
(nodes) and D the list of decisions to be made once the val-
ues of all sub-nodes have been determined.

Roughly, the expression max((π1, v1, prob1),
(π2, v2, prob2), (π, v, prob)) states that (π, v, prob) is equal
to the ’maximum’ of (π1, v1, prob1) and (π2, v2, prob2),
where the ordering is defined by a mixture of termination
probability (prob) and value (v) as in (Boutilier et al. 2000).
However, at the time of expansion of the node these values



are not yet known and thus the decision has to be delayed
until all sub-nodes have been expanded, i.e. in all sub-trees
the horizon has been reached and the actual values have
been propagated back.

The definitions for the other program constructs (loops,
conditionals etc.) are rather straightforward so we omit them
here for reasons of space.

4.3 Expressing Preference in DTGOLOG

So far we have shown how to compile BDFs into hard con-
straints, realized as GOLOG programs. By this we achieve
what TLPlan (Bacchus & Kabanza 2000) does for classi-
cal planning and Gabaldon (Gabaldon 2004) does in the sit-
uation calculus, namely the integration of domain control
knowledge to prune the search space. To make these con-
straints soft and to rank them to express ordered preferences
we need to introduce yet another construct into GOLOG:
lex(δ1, δ2) states that program δ1 is (lexicographically) pre-
ferred to δ2. This is implemented, roughly, by first trying δ1
and only if it fails6 the second program, δ2, is considered.
Formally this intuition is captured by extending the just in-
troduced predicate BestTrans so that it defines clusters of
nodes (and corresponding decisions) of equal degree of pref-
erence. Recall that a node is a tuple (δ, s, d, (π, v, prob))
where δ is the remaining GOLOG program, s the current
situation, d the current search depth, π a policy (variable),
v the value (variable), and prob the termination (variable).
The former three (δ, s, d) are always instantiated (input),
whereas (π, v, prob) get instantiated only when the corre-
sponding branch of the search tree ends (output). Decisions
consist of asserting which tuple (π, v, prob) to choose at
choice points (cf. previous section). All previously seen
GOLOG constructs return exactly one cluster of (possibly
multiple) nodes and the above construct returns two clusters:

BestTrans( [lex(δ1, δ2) | δ′], s, d, π, v, prob, [C1, C2], [[ ], [ ]]) ≡
C1 = [ ([δ1 | δ′], s, d, (π, v, prob)) ] ∧
C2 = [ ([δ2 | δ′], s, d, (π, v, prob)) ]

So what used to be a (flat) list of nodes N is now a list of
lists of nodes, sorted by qualitative preference. The pref-
erence for earlier clusters is formally defined in the evalua-
tion strategy of clusters and nodes. These definitions form
the main loop for planning by decision-tree search under the
newly introduced transition semantics:

Recall the following notation: N denotes a node, N a list
of nodes, and ~N denotes a cluster (list) of lists of nodes.

BestTrans∗(N,h) ≡ nodes

N = (δ, s, d, (π, v, prob)) ∧`
∃N ,D.d ≤ h ∧ BestTrans(δ, s, d, (π, v, prob), ~N , ~D) ∧

BestTrans∗quali( ~N , ~D, prob, h)
´

∨ (d > h ∧ π = nil ∧Reward(v)[s] ∧ prob = 1)

6Note that we have not defined ’failure’ of a program. For this
application we understand a program in READYLOG to fail if its
termination probability is zero. But more conservative standpoints,
for example requiring the probability to be above a certain thresh-
old, could be easily realized.

BestTrans∗quali([N ], [D], prob, h) ≡ clusters
BestTrans∗quanti(N , h) ∧MakeDecisions(D)

BestTrans∗quali([N | ~N ], [D | ~D], prob, h) ≡
(BestTrans∗quanti(N , h) ∧MakeDecisions(D) ∧ prob > 0) ∨

BestTrans∗quali( ~N , ~D, prob, h)
BestTrans∗quanti([], h) ≡ TRUE node-lists
BestTrans∗quanti([N1|N ], h) ≡ BestTrans∗(N1, h)∧

BestTrans∗quanti(N , h)

In BestTrans∗quali the clusters are evaluated starting with the
first and proceeding with the next only if the termination
probability prob for the first cluster is zero. Thus, we first
explore only that partition of the situation space that is most
preferred and only if within this partition no valid plan is
found, are less preferred partitions considered. The predi-
cate MakeDecisions(D) makes decisions as described above,
once all variables in D have been instantiated, i.e. when all
associated sub-nodes have been processed.

To compile a qualitative preference formula Ψ = ψ ~&Ψ′ we
first compile the sub-formulae ψ,Ψ′ into programs δhψ and
δhΨ′ and then combine them into:

δhΨ = lex(sync(δhψ, δ
h
Ψ′), lex(δhψ, δ

h
Ψ′))

That is, it is most preferred to perform the synchronized exe-
cution of both programs, which corresponds to the satisfac-
tion of both sub-formulae. If that is not possible, the for-
mer program is preferred over the latter. This reflects the
intended semantics of our QPFs.
Example 3. Consider the following GOLOG program for
determining transportation: δ = ndet([drive, fly]) and the
preference Ψ = ¬final(poor) ~& always(¬(occ(drive))). Com-
pilation with horizon one of this QPFs provides us with the
following GOLOG program δ1Ψ assuming that the only ac-
tion available in our domain are fly, drive, and walk:
lex( sync( ndet([¬poor?, ndet([fly, drive, walk]);¬poor?]),

ndet([nil, ndet([fly, walk])]) ),
lex( ndet([¬poor?, ndet([fly, drive, walk]);¬poor?]),

ndet([nil, ndet([fly, walk])])))
This will be combined with the original GOLOG pro-
gram δ, the rough planning problem to be addressed, by
lex(sync(δ, δ1Ψ), δ). When fed into our interpreter this will
produce different clusters of decreasing preference, which
will be explored for a solution one at a time. The most
preferred contains the program:
sync( ndet([drive, fly]),

sync( ndet([[¬poor?], [ndet([fly, drive, walk]),¬poor?]]),
ndet([nil, ndet([fly, walk])])))

Let’s assume that driving and walking are the only afford-
able means of transportation. Then obviously we cannot
satisfy both desires and in fact after the only possible
synchronized transition, doing fly, the test ¬poor? fails.
We thus move on to the next best cluster:
sync(ndet([fly, drive]),

ndet([[¬poor?], [ndet([fly, drive, walk]),¬poor?]])).
There are two possible synchronized transitions here, either
doing fly or drive, however, only the second will make the
second test of ¬poor? succeed and will thus be chosen.



The following corollary follows from Theorems 2 and 3, and
the correctness of our decision-theoretic transition seman-
tics.
Corollary 1. Let δ be an arbitrary DTGOLOG program, Ψ
a Qualitative Preference Formula, and h ∈ IN a horizon.
Further, let δhΨ be the compilation of Ψ for horizon h. Then
a constructive proof of
D |= ∃π, v, prob.

BestTrans∗
“`

lex(sync(δ, δhΨ), δ), S0, 0, (π, v, prob)
´
, h

”
as a side-effect produces a policy7 π which has the follow-

ing properties:
i) any successful execution of π leads to a situation that is

most preferred among all possible situations, which is the
set of situations of length ≤ h which describe a legal ex-
ecution trace for δ according to the action theory D;

ii) π maximizes the expected reward within this partition of
the situation space according to the utility theory.

In other words, π is the best we can do with respect to sat-
isfying the hard constraints in the first place, generating the
most qualitatively preferred plan in second place, and finally
maximizing the quantitative expected reward in third place.

5 Implementation and Application
As noted previously, we have implemented the approach re-
ported in this paper as an extension to READYLOG (Ferrein,
Fritz, & Lakemeyer 2004). We have also turned our travel
agency example into a working application by creating
wrappers for the flight and hotel pages of Yahoo!-Travel.
Recall the planning procedure from page 3. The actions
searchFlight(From, To, OutDate, ReturnDate)
and searchHotel(Destination, CheckinDate,
CheckoutDate) realize the querying and wrapping of the
relevant Web pages8.

With respect to the quality of the results generated from
our implementation, our theoretical results and correctness
of the implementation (which we do not prove) ensure that
the travel plan generated is optimized with respect to a user’s
quantitative preferences, within the best realization of their
qualitative preferences. No benchmarks exist for the em-
pirical evaluation of our system, nor was it our objective to
optimize our implementation. Nevertheless, as an illustra-
tion of the power of our system, we argue that our imple-
mentation enables a level of customization of travel plan-
ning (and more generally, agent programming) heretofore
unattainable in an automated system. For example, in the
described case, for each of the 9 date combinations there are
over 90 hotels with about 5 room types each and 9 flights.
To gather all relevant information, the system issues more
than 800 queries to Yahoo!-Travel, considers 36450 combi-
nations, and returns the most preferred travel plan. Manually
this would not be feasible and existing systems, although al-
lowing customization to a certain extent, cannot account for
the complex preferences a customer may have.

7a DTGOLOG program without any non-deterministic choices
8Technically speaking these are so-called sensing actions, but

space precludes a thorough discussion of this issue. The interested
reader is referred to the literature, e.g. (Reiter 2001).

6 Related Work
Arguably, the most widely accepted formalism for express-
ing and reasoning about qualitative user preferences within
the field of artificial intelligence is CP-nets (Boutilier et al.
2004; Domshlak et al. 2003). The purpose of this work is
to reason about user preferences when only ceteris paribus
statements of preference over the values of domain features
are available, i.e. statements of the form “a red car is better
than a blue car” assuming that all other domain features stay
the same for either choice. Generally, this does not produce
a full ordering of configurations which makes it impractical
for our purposes. Further it is not clear how this static ap-
proach could be incorporated efficiently into a planning, i.e.
a dynamic task.

In (Domshlak et al. 2003) Domshlak et al. integrate
quantitative soft constraints and qualitative preferences ex-
pressed using the CP-nets formalism. They approach the
problem by approximating the CP-net with soft constraints
expressed in a semi-ring formalism. Nevertheless, their fo-
cus is on reasoning about preferences, i.e. deciding on an
ordering of possible world states, and it is not obvious how
their approach applies to planning or agent programming. In
particular, the language they use for specifying preferences
does not enable the expression of temporally extended pref-
erences, which we believe are essential to agent program-
ming.

Recently, Brafman et al. (Brafman & Chernyavsky 2005)
presented an approach to planning with goal preferences and
constraints where they use TCP-nets to rank possible goal
states. A TCP-net is a tradeoff-enhanced CP-net, which al-
lows the user to express priority of preferences over some
variables relative to those over others. They approach the
planning problem by compiling it into an equivalent CSP
problem and imposing variable instantiation constraints on
the CSP solver, according to the TCP-net. Our work differs
from theirs largely by the fact that we explicitly deal with
temporal preferences, as opposed to just static preferences
over solely the goal state. Going back to our introductory
travel example, Brafman’s approach would, for instance, not
be able to handle the preference of never being at London
Heathrow.

Our work is related to that of Gabaldon (Gabaldon 2004)
who, following previous work by Bacchus and Kabanza
(Bacchus & Kabanza 2000) and Doherty and Kvarnström
(Doherty & Kvarnström 2001), compiles temporal logic for-
mulae into preconditions of actions in the situation calculus.
There, the temporal formulae are hard constraints that serve
to reduce the search space and thus cannot serve as defea-
sible preferences. Also, it is not obvious how several pref-
erences could be combined in Gabaldon’s approach, a task
that we easily solve at the level of programs in Section 4.

Also related is the work of Sardina and Shapiro (Sar-
dina & Shapiro 2003) who integrate qualitatively prioritized
goals into the IndiGolog programming language. Our ap-
proach differs from theirs in several ways: our qualitative
preference language is richer than their specification of pri-
oritized goals; we compile preferences into a GOLOG pro-
gram which is more efficient from a computational perspec-
tive; and we enable the integration of both qualitative and



quantitative constraints.
In (Bienvenu, Fritz, & McIlraith 2006) the authors deal

with the problem of classical planning with qualitative tem-
poral preferences only, but with a richer language, which
subsumes ours. The planning is realized as heuristic search.
To that end the authors propose an admissible evaluation
function and a best-first search algorithm that optimally sat-
isfies the user’s preferences. Through the specification of a
semantic preserving progression of preference formulae, the
evaluation necessary at each step of the search is drastically
reduced.

7 Summary and Discussion
Motivated by the need to personalize agent programs to
meet individual users’ preferences and constraints, we ad-
dressed the problem of integrating non-Markovian quali-
tative user preferences with quantitative decision-theoretic
planning in GOLOG. We approached the problem by com-
piling preferences into GOLOG programs. This required the
definition of multi-program synchronization and the redef-
inition of DTGOLOG in a transition semantics. We proved
the soundness and completeness of our compilation. The
resulting system is able to perform planning under hard con-
straints, Markovian quantitative, and non-Markovian qual-
itative preferences and in so doing is, to the best of our
knowledge, the first system to integrate qualitative and quan-
titative preferences into agent programming. We imple-
mented our approach and as a demonstration of its utility
developed a customizable travel planner for the Web. The
results in this paper are applicable to both symbolic and
decision-theoretic agent programming systems, and may be
used not only for the personalization of agent programs, but
also for the realization of defeasible control strategies for
planning.

A Proofs
In the following proofs we use the evaluation semantics of
GOLOG as defined in (Levesque et al. 1997). Further we
use ?h as a shorthand for the non-deterministic repetition of
ndet(A) with a maximum of h repetitions. If h is omitted,
the repetition is of arbitrary length. Let S be the set of all
situations in a given action theory. In the proofs we will
exploit the following property of the BDF semantics.

Lemma 1. Let ψ1, ψ2 be two BDFs and let S1(s), S2(s) be
two sets of situations such that Si(s) = {s′ ∈ S | D |=
ψi[s, s

′]}, i.e. the set of all situations that, rooting in s, sat-
isfy the BDF. Then for any situation s′D |= (ψ1 ∧ ψ2)[s, s

′]
iff s′ ∈ S1(s) ∩ S2(s).

A.1 Soundness
Proof of Theorem 1: The proof proceeds by double in-
duction over the structure of basic desire formulae and the
length of the situation term. The base cases are as follows:

• For the structural induction:

– f ∈ F ∪ R: as we have C(f, ?(f),TRUE) thus
δhψ =?(f); ?h and by assumption know that D |=

Do(δhψ, s, sn) it follows from the definition of Do that
D |= f [s] and thus D |= f [s, sn];

– occ(a): With C(occ(a), ndet([a]),TRUE) we have δhψ =

ndet([a]); ?h−1 which enforces that a1 = a and thus
D |= occ(a)[s, sn];

– ¬f ∈ F ∪ R: similar to above we have
C(f, (¬f)?,TRUE) and by hypothesis know that D |=
Do(δhψ, s, sn) thus it follows from the definition of Do
that D |= ¬f [s] and thus D |= ¬f [s, sn];

– ¬occ(a): C(¬occ(a), sc, ψ′) ≡ (sc = ndet([]) ∧ ψ′ =
STOP) ∨ (sc = ndet(A \ {a}) ∧ ψ′ = TRUE), ∀a ∈ A,
enforces that either n = 0, i.e. no action happens, or
a1 6= a. In both cases a does not happen and thus
D |= ¬occ(a)[s, sn];

As these cases are independent of the situation s they
equally hold for all si, 0 ≤ i ≤ n.

• For the induction over the situation term the base case is
defined for the final situation sn: Since no further actions
occur from sn, we need only look at the case of horizon
zero. The definition of Prog(ψ, h, δ) for h = 0 has three
possible cases:

Prog(ψ, 0, δ) ≡ ∃x.C(ψ, δ, x) ∧ δ = ϕ?

Prog(STOP, h, nil)
Prog(TRUE, h, ndet(A))

– The first case follows from the base case of the struc-
tural induction.

– For ψ = STOP = 6 ∃a.occ(a) we have as a tautology D |= 6
∃a.occ(a)[s, s] for all situations s.

– For ψ = TRUE we have trivially D |= TRUE[s, s] for all
situations s.

For the induction step we assume the theorem holds for
f, occ(a),¬f, and ¬occ(a) for any situation s, as well as over
all intervals of situations [sm, sn], j ≤ m ≤ n, for a certain
j, 0 < j ≤ n. We show the step from atomic formulae (only
comprised of f ∈ F ∪ R and occ(a) and their negation) to
general BDFs and from situation sj to sj−1.

For a BDF ψ let scψ be the situation constraint and ψ′
the remaining formula as defined by C(ψ, scψ, ψ′). Then the
induction step

• ψ = final(f): then scψ = f?; ndet([ ]) ∧ ψ′ = STOP or
scψ = ndet(A)∧ψ′ = final(f). AsDo(ndet([]), s, sn) holds
only for s = sn this can only be the case for j − 1 = n
for which the proposition immediately holds by induction
hypothesis. In the second case, no situation constraints
are raised for sj−1 and ψ′ holds on [sj , sn] by induction
hypothesis.

• ψ = ψ1 ∧ ψ2: then scψ = χ(scψ1 , scψ2) and by con-
struction of χ and by induction hypothesis it follows that
D |= ψ1[sj−1, sn] and D |= ψ2[sj−1, sn] and with Lemma
1 also D |= ψ[sj−1, sn].

• ψ = ψ1 ∨ ψ2: then scψ = scψ1 or scψ = scψ2 . By in-
duction hypothesis it follows that D |= ψ1[sj−1, sn] or
D |= ψ2[sj−1, sn] and thus the proposition.

• ψ = next(ϕ): scψ = ndet(A) and ψ′ = next(ϕ). The
proposition follows by induction hypothesis.



• ψ = always(ϕ): then either C(ϕ, sc, ψ′′)∧ψ′=STOP∧ (ψ′′=
STOP ∨ ψ′′=TRUE) or C(ϕ ∧ next(always(ϕ)), sc, ψ′). In
the former case we know from C(ϕ, sc, ψ′′) together with
induction hypothesis that D |= ϕ[sj−1, sj ] and from ψ′=
STOP that j = n. Thus it follows that D |= ψ[sj−1, sn].
In the latter case by induction hypothesis we have D |=
ϕ[sj−1, sn] and D |= always(ϕ)[sj , sn]. It follows D |=
(∀s1 : sj−1 v s1 v sn)ϕ[s1, sn].

• ψ = eventually(ϕ): from C(ϕ ∨ next(eventually(ϕ)), sc, ψ′)
we have together with induction hypothesis that either
D |= ϕ[sj−1, sn] or D |= eventually(ϕ)[sj , sn]. In either
case we have D |= (∃s1 : sj−1 v s1 v sn)ϕ[s1, sn]

• ψ = until(ψ1, ψ2): thus either C(ψ2, sc, ψ
′) or C(ψ1 ∧

next(until(ψ1, ψ2)), sc, ψ
′). In the former case we know

from induction hypothesis that D |= ψ2[sj−1, sn] and thus
D |= (∃s2 : sj−1 v s2 v sn){ψ[s2, sn] ∧ (∀s1 : sj−1 v
s1 @ s2)ϕ[s1, sn]} holds with s2 = sj−1. In the latter
case we get D |= ψ1[sj−1, sn] and by induction hypothesis
D |= until(ψ1, ψ2)[sj , sn]. Thus it follows that D |= (∃s2 :
s v s2 v s′){ψ[s2, s

′] ∧ (∀s1 : s v s1 @ s2)ϕ[s1, s]}.

Quantifiers and conditional are macros, defined based on the
above constructs. For these the theorem follows from the
equivalence in their definition in the preference semantics.

2

A.2 Completeness
Proof of Theorem 2: The proof is again established
by induction over the structure of BDFs. First note
that D |= Do(?, s, sn) holds for any situation sn =
do([a1, a2, . . . , an], s), n ≥ 0 of arbitrary actions ai, where
for n = 0 we understand s0 = s. The base cases for the
induction are:

• f ∈ F ∪ R: By assumption we have D |= f [s, sn]
and thus by definition D |= f [s]. Also by defini-
tion of Prog and C we have δhψ = f?; ?. Further
Do(f?; ?, s, sn)

def
= ∃s∗.Do(f?, s, s∗) ∧Do(?, s∗, sn) is sat-

isfied with s∗ = s.

• occ(a): The assumption together with the definition of the
semantics of BDFs entail do(a, s) v sn∧Poss(a[s], s) and
from compilation δhψ = ndet([a]); ? which is equivalent
to δhψ = a; ?. Again Do(a; ?, s, sn)

def
= ∃s∗.Do(a, s, s∗) ∧

Do(?, s∗, sn) is satisfied with s∗ = s1 = do(a, s).

• ¬f ∈ F ∪ R: similar to above we have by assumption
that D |= ¬f [s, sn] and by definition D |= ¬f [s]. Also
by definition of Prog and C we have δhψ = ¬f?; ?. Fur-
therDo(¬f?; ?, s, sn)

def
= ∃s∗.Do(¬f?, s, s∗)∧Do(?, s∗, sn)

is satisfied with s∗ = s.

• ¬occ(a): By definition we have do(a, s) 6v sn ∨
¬Poss(a[s], s) and either δhψ = ndet(A \ {a}); ?
or δhψ = ndet([ ]);nil. For the former case
Do(ndet(A\{a}); ?, s, sn)

def
= ∃s∗.Do(ndet(A\{a}), s, s∗)∧

Do(?, s∗, sn) is satisfied for any s∗ = s1 = do(b, s) with
b 6= a. The latter case is true for n = 0.

The induction step is as follows:

• ψ = final(f): The program as described by compilation is
of the form:
δhψ = ndet([ [f?; ndet([ ])],

[ndet(A); ndet([ [f?; ndet([ ])],
[ndet(A); . . . ] ]) ] ])

By assumption we know that D |= f [sn] and from above
we have that for any n ≤ h there is an alternative δn =
[ndet(A); . . . ; ndet(A)| {z }

n

; f?; ndet([ ])] in δhψ. In combination

this implies D |= Do(δn, s, sn) and further, by definition
of Do(ndet(. . . ), s, s′), D |= Do(δhψ, s, sn).

• ψ = ψ1 ∧ ψ2: From induction hypothesis we know the
proposition holds for ψ1 and ψ2, i.e. for any situation sn
as above such that D |= ψi[s, sn] it also holds that for the
corresponding program δhψi

we have D |= Do(δhψi
, s, sn).

We can think of a program generated from our compi-
lation as a tree whose nodes are situation constraints and
any successful execution of the program is a path from the
root to one of the leaves and describes a situation. Follow-
ing Lemma 1, we are interested in the intersection of the
sets of situations that describe successful executions of the
individual programs δhψ1 , δ

h
ψ2 . This set can be described by

the conjunction of above mentioned trees. That is, start-
ing at the root, we combine the situation constraints of the
individual programs in all possible ways, thus creating a
new tree. Any path from the root to one of the leaves in
the new tree, will describe a situation which satisfies the
conjunction of the two BDFs ψ1, ψ2.
Using Lemma 1 and induction hypothesis it is sufficient to
show that any situation sn which is a successful execution
of both programs δhψ1 , δ

h
ψ2 is also a successful execution of

the combined program δhψ . The axiom for compiling con-
junction combines the situation constraints sc1, sc2 raised
by compiling the two sub-formulae using the function χ
and conjoining the remaining BDFs ψ′1, ψ

′
2. By case dis-

tinction, we show that if sn satisfies the individual situa-
tion constrains, i.e. D |= ∃s′.Do(sci, s, s′) ∧ s′ v sn, i ∈
{1, 2}, then it also satisfies the combined one:
– χ(ψ1?, ψ2?) = (ψ1∧ψ2)?: By assumption we haveD |=
∃s′.Do(ψ1?, s, s

′)∧s′ v sn andD |= ∃s′.Do(ψ2?, s, s
′)∧

s′ v sn. In both cases, by definition of Do, s′ = s,
which as a whole implies D |= ∃s′.Do(ψ1?, s, s

′) ∧
Do(ψ2?, s, s

′) ∧ s′ v sn and thus again by definition
of Do : D |= ∃s′.Do((ψ1 ∧ ψ2)?, s, s

′) ∧ s′ v sn.
– χ(ψ?, ndet(L)) = ψ?; ndet(L): By assumption we

know D |= ∃s′.Do(ψ?, s, s′) ∧ s′ v sn and D |=
∃s′′.Do(ndet(L), s, s′′) ∧ s′′ v sn. From the definition
of Do we know that s′ = s. Thus D |= Do(ψ?, s, s) ∧
∃s′′.Do(ndet(L), s, s′′) ∧ s′′ v sn which is equivalent to
∃s′′.Do([ψ?; ndet(L)], s, s′′) ∧ s′′ v sn, the proposition.

– χ(ndet(L1), ndet(L2)) = ndet(L1 ∩ L2): By assump-
tion D |= ∃s′.Do(ndet(L1), s, s

′) ∧ s′ v sn and D |=
∃s′′.Do(ndet(L2), s, s

′′)∧ s′′ v sn. Sure enough there is
only one s′ = do(a, s) such that s′ v sn. Thus s′ and
s′′ have to be identical and further a has to be in both
L1 and L2. Thus we have that D |= ∃s′.Do(ndet(L1 ∩
L2), s, s

′) ∧ s′ v sn.



– χ((ψ1?; ndet(L1)), (ψ2?; ndet(L2))) = ((ψ1 ∧
ψ2)?; ndet(L1 ∩ L2)): See last item.

As we know sn is a path in both trees, for δhψ1 and δhψ2 ,
we can take the corresponding situation constraints along
these paths and combine them as above. The combination
will, as shown above, be satisfied by sn and will be a path
in the combined tree. It follows the proposition: D |=
Do(δhψ, s, sn).

• ψ = ψ1 ∨ ψ2: By induction hypothesis we
know that either D |= Do(δhψ1 , s, sn) or D |=
Do(δhψ2 , s, sn). ThusD |= Do(δhψ1 , s, sn)∨Do(δhψ2 , s, sn) ≡
Do(ndet([δhψ1 , δ

h
ψ2 ]), s, sn). With ndet([δhψ1 , δ

h
ψ2 ]) being the

compilation of ψ we get the proposition.

• ψ = next(ϕ): By assumption we have that D |=
next(ϕ)[s, sn]. From the semantics of next we fur-
ther know: next(ϕ)[s, sn]

def
= (∃a ∈ A).do(a, s) v

sn ∧ ϕ[do(a, s), sn]. By induction hypothesis we
can assume D |= Do(δh−1

ϕ , do(a, s), sn). The com-
pilation of ψ is defined as δhψ = ndet(A); δh−1

ϕ .
Clearly D |= Do(ndet(A), s, do(a, s)) for some ac-
tion a ∈ A. We thus get the proposition: D |=
∃a ∈ A.Do(ndet(A), s, do(a, s))∧Do(δh−1

ϕ , do(a, s), sn) ≡
Do(ndet(A); δh−1

ϕ , s, sn) ≡ Do(δhψ, s, sn).

• ψ = always(ϕ): By assumption we know
always(ϕ)[s, sn]

def
= (∀s′ : s v s′ v sn)ϕ[s′, sn]. This

is equivalent to ϕ[s, sn] ∧ ϕ[s1, sn] ∧ · · · ∧ ϕ[sn, sn]
with si v sn. This in turn is equivalent to (ϕ[s, sn] ∧
next(always(ϕ))[s, sn]) ∨ (ϕ[s, s] ∧ ¬∃a.occ(a)[s, sn]),
where in the latter disjunct we have as a consequence
s = sn. The compilation is defined as δhψ = ndet([δh1 , δh2 ])

with δh1 the compilation of ϕ[s, sn]∧next(always(ϕ))[s, sn]
and δh2 the compilation of ϕ[s, s] ∧ ¬∃a.occ(a)[s, sn]. The
proposition follows by induction hypothesis.

• ψ = eventually(ϕ): By assumption we have D |=
eventually(ϕ)[s, sn]

def
= (∃s1 : s v s1 v sn)ϕ[s1, sn] ≡

ϕ[s, sn] ∨ next(eventually(ϕ))[s, sn]. The compilation
of eventually(ϕ) is defined as the compilation of ϕ ∨
next(eventually(ϕ)). The proposition follows by induction
hypothesis.

• ψ = until(ψ1, ψ2): By assumption we have D |=
until(ψ1, ψ2)[s, sn] which by definition is (∃s2 : s v
s2 v sn){ψ2[s2, sn] ∧ (∀s1 : s v s1 @ s2)ψ1[s1, s]} ≡
ψ2[s, sn]∨(ψ1[s, sn]∧next(until(ψ1, ψ2))[s, sn]). The com-
pilation of until(ψ1, ψ2) is defined as the compilation of
ψ2 ∨ (ψ1 ∧ next(until(ψ1, ψ2))). The proposition follows
by induction hypothesis.

This completes our proof of completeness. 2

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 16:123–191.
Bienvenu, M.; Fritz, C.; and McIlraith, S. 2006. Plan-
ning with qualitative temporal preferences. In Proceed-
ings of the 10th International Conference on Principles of

Knowledge Representation and Reasoning, Lake District,
UK, June.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun,
S. 2000. Decision-theoretic, high-level agent program-
ming in the situation calculus. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), Austin, TX, 355–362.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. In Journal of Artificial Intelligence Research (JAIR)
21, 135–191.
Brafman, R. I., and Chernyavsky, Y. 2005. Planning
with goal preferences and constraints. In Proceedings of
the International Conference on Automated Planning and
Scheduling.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121:109–169.
Delgrande, J.; Schaub, T.; and Tompits, H. 2004. Domain-
specific preferences for causal reasoning and planning. In
Proceedings of the 9th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’04)
Whistler, BC, Canada, 673–682.
Doherty, P., and Kvarnström, J. 2001. TALplanner: A
temporal logic based planner. AI Magazine. Fall Issue.
Domshlak, C.; Rossi, F.; Venable, B.; and Walsh, T. 2003.
Reasoning about soft constraints and conditional prefer-
ences: complexity results and approximation techniques.
In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, August.
Ferrein, A.; Fritz, C.; and Lakemeyer, G. 2004. On-line
decision-theoretic Golog for unpredictable domains. In
Proceedings of the 27th German Conference on Artificial
Intelligence.
Gabaldon, A. 2004. Precondition control and the pro-
gression algorithm. In Proceedings of the 9th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR) Whistler, BC, Canada, 634–643.
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1-3):59–83.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: MIT Press.
Sardina, S., and Shapiro, S. 2003. Rational action in
agent programs with prioritized goals. In Proceedings of
Autonomous Agents and Multi-Agent Systems Conference
(AAMAS), Melbourne, Australia. July, 417–424.
Son, T., and Pontelli, E. 2004. Planning with pref-
erences using logic programming. In Lifschitz, V., and
Niemela, I., eds., Proceedings of the 7th International Con-
ference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR-2004), number 2923 in Lecture Notes in
Computer Science. Springer. 247–260.


