
While we wait...

I Are there problems that we can solve in O(n2) but not O(n)?

I What about O(n3) but not O(n2)?

I What about O(n100) but not O(n99)?

I What about O(n1.00001) but not O(n)?

I What about O(n · log(log(n))) but not O(n)?

I What are some resources other than time that are useful in
computation.

CS 463 Tutorial 9: Zooming in on P + a new resource 1 / 20

CS 463 Tutorial 9: Zooming in on P + a new
resource

TA: Harry Sha (shaharry@cs.toronto.edu)

March 16th, 2022

CS 463 Tutorial 9: Zooming in on P + a new resource 2 / 20

Time is precious

The big question for the first part of today is:

Can I decide strictly more problems given more time, and how
much more time do I need?

CS 463 Tutorial 9: Zooming in on P + a new resource 3 / 20

Let TIME(f (n)) be the class of decision problems that can be
solved in O(f (n)) time on a (deterministic) TM.

Note that using this notation, P =
⋃

c≥0TIME(nc).

CS 463 Tutorial 9: Zooming in on P + a new resource 4 / 20

The picture

PED

TR CoTR
D

NP coNP
p

CS 463 Tutorial 9: Zooming in on P + a new resource 5 / 20

Zoomed in

P
TIMEn100

TIMEInlogan

TIME

TIME
Ciogens

CS 463 Tutorial 9: Zooming in on P + a new resource 6 / 20

Time Hierarchy Theorem

The answer to our question is yes (sort of).

Theorem (Time Hierarchy Theorem)

If f , g are functions such that f (n) log(f (n)) = o(g(n)). Then

TIME(f (n)) (TIME(g(n))

CS 463 Tutorial 9: Zooming in on P + a new resource 7 / 20

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem)

If f , g are functions such that f (n) log(f (n)) = o(g(n)). Then

TIME(f (n)) (TIME(g(n))

For example, this shows TIME(n9) (TIME(n10) since

n9 log(n9) = 9n9 log(n) = o(n10)

CS 463 Tutorial 9: Zooming in on P + a new resource 7 / 20

Proof of the Time Hierarchy Theorem

Two lemmas

Lemma (Nice representation of TMs)

There is a way to represent TMs such that

I Every string in Σ∗ corresponds to some TM.

I Every TM is represented infinitely many times.

Lemma (Efficient universal TM)

There is a universal TM U that simulates any TM M on any input
x such that if M runs for T steps on x, the simulation runs for
CT log(T) steps.

CS 463 Tutorial 9: Zooming in on P + a new resource 8 / 20

Proof of the Time Hierarchy Theorem

Theplan is to use diagonalization to find some language L
St Le TIMEgens but 14 TIMEfans

steps on U
notMuDiw

run Mw on w using
the universal TM for gllwl steps

if Mw halts
return the flipped result

else case not important

let L LCD Note Drumsintime Olga By contradiction
assume there is some Offend decider M St LCM L

CS 463 Tutorial 9: Zooming in on P + a new resource 8 / 20

Proof of the Time Hierarchy Theorem

For any input of length n M runs for at mostcfen
steps On the universal TM this takes at most c'fologlfini
steps Since fln log fini e olgin by assumption for
large enough n gon c'fin logfans

Pick some 2 such that 121 n and Ma M One

exists ble of lemma I Now consider running Don 2

Since glial c'faloglfin the simulationhalts Then LCD 4M

since 2 is in exactly one of them Butthis is a contradiction

CS 463 Tutorial 9: Zooming in on P + a new resource 8 / 20

Corrolaries

I TIME(nk) (TIME(nk+ε) for any k ≥ 0, ε > 0

I P (TIME(2n)

CS 463 Tutorial 9: Zooming in on P + a new resource 9 / 20

What are some other useful resources for computation?

CS 463 Tutorial 9: Zooming in on P + a new resource 10 / 20

Randomness

What are some uses of randomness?

CS 463 Tutorial 9: Zooming in on P + a new resource 11 / 20

Some examples

I Quicksort

I Find an 1 in an length n array with half 1s and half 0s.

CS 463 Tutorial 9: Zooming in on P + a new resource 12 / 20

Probabilistic TMs

Like non-deterministic TMs, except the branching factor is at most
2. When the execution hits a non-deterministic step, the TM flips
a fair coin to decide which path to follow.

Note that a branch of height k is taken with probability 2−k .

The probability that a TM, M, accepts w is∑
b,b is an accepting branch

Pr[b]

CS 463 Tutorial 9: Zooming in on P + a new resource 13 / 20

Picture

AA

A
CS 463 Tutorial 9: Zooming in on P + a new resource 14 / 20

Errors

KEL x L

Maccepts x Truepositive False positive

Mrejects a False
negative

Truenegative

CS 463 Tutorial 9: Zooming in on P + a new resource 15 / 20

Complexity Classes

Let BPP (bounded-error probabilistic polynomial time) be the set
of problems L for which there exists a polynomial time probabilistic
TM such that for all x ∈ Σ∗, the TM errs on x with probability
most 1/3.

I RP ⊂ BPP is the subset that doesn’t allow false positives.
I.e. for every x /∈ L, the TM rejects with probability 1.

I coRP ⊂ BPP is the subset that doesn’t allow false negatives.
I.e. for every x ∈ L, the TM accepts with probability 1.

CS 463 Tutorial 9: Zooming in on P + a new resource 16 / 20

Comparison

Class at L x al

BPP 243 E B
RP 2213 0

CORP I E B
NP 0 0

Accept probability

CS 463 Tutorial 9: Zooming in on P + a new resource 17 / 20

Picture

BPP

RP Corp

P

CS 463 Tutorial 9: Zooming in on P + a new resource 18 / 20

FAQ

1. How does randomness compare with non-determinism? I.e.
what is the relationship between RP and NP or BPP and NP?

2. Does having error on both sides help? I.e. is RP = BPP?

3. What if we relax the requirement of polytime to expected
polynomial time?

4. Can we buy accuracy with more randomness and time?

5. Does randomness actually help? I.e. does BPP = P? Or how
much time does randomness cost?

CS 463 Tutorial 9: Zooming in on P + a new resource 19 / 20

FAQ answers

1. RP ⊂ NP (see the comparison slide and observe that a RP
decider is a NP decider), but the relationship between BPP
and NP is unknown. I.e. we don’t know if BPP ⊆ NP or the
other way around or both.

2. Unknown!

3. We can relax to this definiton and the classes don’t change!

4. Yes! Run the algorithm independently many times and output
the majority answer

5. Unknown! But, surprisingly, currently people believe
everything can be derandomized i.e. BPP = P!

There a lot unknown about randomized complexity classes. For all
we know right now, it might be the case that BPP = EXP!

CS 463 Tutorial 9: Zooming in on P + a new resource 20 / 20

