While we wait...

- ▶ Are there problems that we can solve in $O(n^2)$ but not O(n)?
- ▶ What about $O(n^3)$ but not $O(n^2)$?
- ▶ What about $O(n^{100})$ but not $O(n^{99})$?
- ▶ What about $O(n^{1.00001})$ but not O(n)?
- ▶ What about $O(n \cdot \log(\log(n)))$ but not O(n)?
- What are some resources other than time that are useful in computation.

CS 463 Tutorial 9: Zooming in on P + a new resource

TA: Harry Sha (shaharry@cs.toronto.edu)

March 16th, 2022

Time is precious

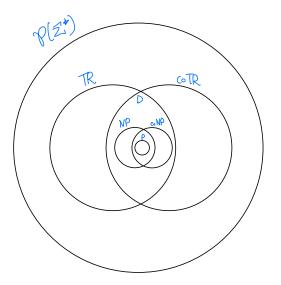
The big question for the first part of today is:

Can I decide strictly more problems given more time, and how much more time do I need?

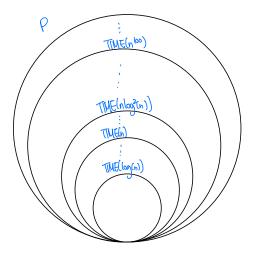
Let $\overline{\text{TIME}}(f(n))$ be the class of decision problems that can be solved in O(f(n)) time on a (deterministic) TM.

Note that using this notation, $P = \bigcup_{c>0} TIME(n^c)$.

The picture



Zoomed in



Time Hierarchy Theorem

The answer to our question is yes (sort of).

Theorem (Time Hierarchy Theorem)

If f, g are functions such that $f(n) \log(f(n)) = o(g(n))$. Then $\mathrm{TIME}(f(n)) \subsetneq \mathrm{TIME}(g(n))$

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem)

If f, g are functions such that $f(n) \log(f(n)) = o(g(n))$. Then $TIME(f(n)) \subseteq TIME(g(n))$

For example, this shows
$$\mathrm{TIME}(n^9) \subsetneq \mathrm{TIME}(n^{10})$$
 since $n^9 \log(n^9) = 9 n^9 \log(n) = o(n^{10})$

Proof of the Time Hierarchy Theorem

Two lemmas

Lemma (Nice representation of TMs)

There is a way to represent TMs such that

- \triangleright Every string in $Σ^*$ corresponds to some TM.
- Every TM is represented infinitely many times.

Lemma (Efficient universal TM)

There is a universal TM U that simulates any TM M on any input x such that if M runs for T steps on x, the simulation runs for $CT \log(T)$ steps.

Proof of the Time Hierarchy Theorem

The plan is to use diagonalization to find some language L st. Le TIME(gm) but L& TIME(fm).

run Ma on w using the universal TM for g(IwI) steps.

if Ma halt:

return the flipped result.

* doe case not importent

Let L = L(D). Note D runs in time O(g(n)). By contradiction, assume there is some O(f(n)) decider M st. L(M) = L

Proof of the Time Hierarchy Theorem

Ter any input of length n, M runs for at most offn) steps. On the universal TM, this takes at most offn) log(fin) steps. Since $f(n) \log(f(n)) + o(g(n))$ by assumption, for larger enough n, $g(n) > o'f(n) \log(f(n))$.

Rick some α such that $|\mathcal{L}| > n$, and $M_{\mathcal{L}} \equiv M$. One exists b/c of lemma I. Now consider number D on α .

Since g(1a1) > c'f(n)log(f(n)), the simulation halts. Then $L(D) \neq L(U_{k})$ since α is in exactly one of them. But the α a contradiction

Corrolaries

- ▶ TIME (n^k) \subseteq TIME $(n^{k+\epsilon})$ for any $k \ge 0$, $\epsilon > 0$
- ▶ $P \subsetneq \text{TIME}(2^n)$

What are some other useful resources for computation?

Randomness

What are some uses of randomness?

Some examples

- Quicksort
- Find an 1 in an length *n* array with half 1s and half 0s.

Probabilistic TMs

Like non-deterministic TMs, except the branching factor is at most

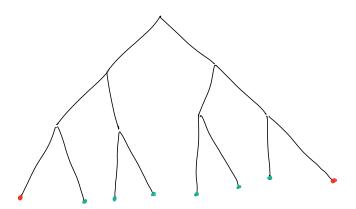
2. When the execution hits a non-deterministic step, the TM flips a fair coin to decide which path to follow.

Note that a branch of height k is taken with probability 2^{-k} .

The probability that a TM, M, accepts w is

$$\sum_{b,b \text{ is an accepting branch}} \Pr[b]$$

Picture



Errors

	zeL	x& L	
Maccepts x	True positive	talse positive	
M rejects x	False neoptive	True negative	

Complexity Classes

Let BPP (bounded-error probabilistic polynomial time) be the set of problems L for which there exists a polynomial time probabilistic TM such that for all $x \in \Sigma^*$, the TM errs on x with probability most 1/3.

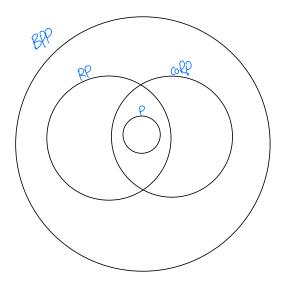
- RP ⊂ BPP is the subset that doesn't allow false positives.
 I.e. for every x ∉ L, the TM rejects with probability 1.
- ▶ $coRP \subset BPP$ is the subset that doesn't allow false negatives. I.e. for every $x \in L$, the TM accepts with probability 1.

Comparison

Class	xe L	2 & _	
BPP RP GRP	≥ ² / ₃ ≥ ² / ₃ = 1	∠ 1/3 = 0 ∠ 1/3	
NP	> 0	= ()	

Accept probability

Picture



FAQ

- 1. How does randomness compare with non-determinism? I.e. what is the relationship between RP and NP or BPP and NP?
- 2. Does having error on both sides help? I.e. is RP = BPP?
- 3. What if we relax the requirement of polytime to expected polynomial time?
- 4. Can we buy accuracy with more randomness and time?
- 5. Does randomness actually help? I.e. does BPP = P? Or how much time does randomness cost?

FAQ answers

- 1. $RP \subset NP$ (see the comparison slide and observe that a RP decider is a NP decider), but the relationship between BPP and NP is unknown. I.e. we don't know if $BPP \subseteq NP$ or the other way around or both.
- 2. Unknown!
- 3. We can relax to this definiton and the classes don't change!
- 4. Yes! Run the algorithm independently many times and output the majority answer
- 5. Unknown! But, surprisingly, currently people believe everything can be derandomized i.e. BPP = P!

There a lot unknown about randomized complexity classes. For all we know right now, it might be the case that BPP = EXP!