
High Rate Polynomial 
Evaluation Codes

Swastik Kopparty, Mrinal Kumar, and Harry Sha



Error Correcting Codes 

• Goal: Want to encode messages into codewords such that even if there are some 
corruptions, we can still recover the original message.  

• This corresponds to the mathematical problem of finding a subset , such 
that for every distinct ,  and  are far in the Hamming distance (differ in 
many coordinates). 

C ⊆ Σn

x, y ∈ C x y
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Tradeoffs



Parameters

•  = message length (dimension) 

•  = codeword length 

• , rate 

•  = minimum (Hamming) distance between two codewords 

• , relative distance

k = log|Σ|( |C | )
n
R = k/n
d
δ = d/n



What we want from codes

• High rate (low overhead)  

• High distance (robust to many errors) 

• Efficient decoding/encoding algorithms 

• List decodable, locally testable, locally decodable… 



Polynomial Evaluation Codes

• The messages are all -variate polynomials of degree at most .  

• A polynomial  is encoded by evaluating  on each point in some evaluation set 
 

m d

f f
S ⊂ 𝔽m

f → ( f(x))x∈S



The Evaluation Set

• Since the difference of two polynomials of degree at most  is again a polynomial of 
degree at most , the minimum distance between two codewords is the minimum 
number of non-zeros of any non-zero degree  polynomial on . 

• Want:  

• High distance: All non-zero polynomials of degree  have many non-zeros in  

• High rate:  is as small as possible. 

d
d

≤ d S

≤ d S

S



The most famous code

 
• Have the optimal rate-distance tradeoff . 
• Decodable [WB86], List Decodable [GS99]…

S ⊆ 𝔽
R = 1 − δ

Reed Solomon Codes, m = 1



Another example

, where . 

• Suboptimal rate-distance tradeoff:  

• In particular,  

• Decodable [KK17], List decodable [PW04] 

• Locally testable [RS96, AS03]

S = Am A ⊆ 𝔽

R ≈ (1 − δ)m/m!

R ≤ 1/m!

Reed Muller Codes



Goal

Construct high-rate multivariate polynomial 
evaluation codes.



Related Work



Polynomial Identity Testing

Problem: Given query access to a polynomial , of degree , 
determine if .  

Classic test: Sample a random point  from . Accept iff .  

If , then the test is always correct 

If  the test is correct iff .  

• Randomness efficiency corresponds to  

• Low error corresponds to a non-zero  having many non-zeros in 

f ∈ 𝔽[X1, . . . , Xm] d
f ≡ 0

x S f(x) = 0

f ≡ 0

f ≢ 0 f(x) ≠ 0

|S |

f S



Polynomial Identity Testing

Individual degree bounds 

• Chen-Kao [CK97], Lewin-Vadhan [LV98], Agrawal-Biswas [AB03] 

Sparse polynomials 

• Klivans-Spielman [KS01]  

 

• Bläser-Pandey [BP20] 

d < < m



Pseudorandom Generators Against Polynomials

Want a generator  such that for any polynomial  for degree at most ,  

 

Intuition: if those distributions looks similar, any non-zero  should be non-zero on 
many points of the form , since  is non-zero on most of .  

In fact, there is a reduction from polynomial evaluation codes to pseudorandom 
generators.

G f d

f(U) ∼ f(G(s))

f
G(s) f 𝔽m



Pseudorandom Generators Against Polynomials

Constructions from Dvir-Shpilka [DS11], Viola [Vio08], Bogdanov-Viola [BV10] work in 
the setting of large , constant , and small field size.m d



Main Results

Theorem A. For any constant , there exist -variate 
polynomial evaluation codes (CAP and GAP codes) with rate  and constant 
relative distance. 

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time 
from up to half of the minimum distance. 

Theorem C. -variate GAP codes are locally testable with  queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)



High rate polynomial 
evaluation codes



Two constructions

• CAP (Combinatorial Arrays for Polynomials) 

• GAP (Geometric Arrays for Polynomials) 

• This talk: Constructions of bivariate CAP and GAP codes.



CAP Codes



CAP Codes



Distance of CAP Codes

The distance of CAP codes is obtained by a generalization of the Schwartz-Zippel 
Lemma. 

CAP Codes



How many zeros are there in a  grid?ℓ × ℓ

Let ,  

How many zeros are there in the th column? 
1. If  , then  is a univariate polynomial in  of 

degree . 
2. If  , all bets are off, since  might be identically 

zero. 

Case 2 happens at most  times, so the total number of zeros is 
at most   

f(X, Y) =
dY

∑
i=0

ci(X)Yi

a
cdY

(a) ≠ 0 f(a, Y) Y
dY

cdY
(a) = 0 f(a, Y)

d − dY
dY(ℓ − d + dY) + ℓ(d − dY) ≤ dℓ

Recap: Schwartz-Zippel

CAP Codes



Number of zeros
E.g. ℓ = 15,d = 10

Zeros are filled squares 

There are  
zeros in the grid…

≤ 150

CAP Codes



Zeros in the triangle

… but that’s useless because there are only 

 points in the triangle!(15 + 1
2 ) = 120

E.g. ℓ = 15,d = 10

CAP Codes



There exists  (which is the 
-degree of ) such that at most  columns 

are entirely zero, and the remaining columns 
have at most  zeros each.

dY ∈ {0,1,...,d} Y
f d − dY

dY

CAP Codes



Shape of zeros
E.g. ℓ = 15,d = 10,dY = 4

Zeros are filled squares 

CAP Codes



Counting zeros in the triangle
Shifting zeros down and to the left can only increase the number of zeros in the triangle

At least  non-zeros in the triangle!(ℓ − d + 1
2 )

CAP Codes



Rate and distance calculation

 

 

 

δ =
(ℓ + d + 1

2 )
(ℓ + 1

2 )
≥ (1 −

d
ℓ )

2

R =
(d + 1

2 )
(ℓ + 1

2 )
≥ ( d

ℓ )
2

R ≥ (1 − δ)
2

R + δ ≥ 1

CAP Codes



GAP Codes



GAP Codes
A geometric construction

Take the intersection points of  lines in 
general position.

t

GAP Codes



Distance of GAP Codes
Zoom in on a single line

GAP Codes

H

Zoom in on a particular line 
containing a non-zero of  

Call the line , and suppose it’s 
defined by the equation 

f

H
Y = mX + b



Distance of GAP Codes
Count the number of non-zeros on H

Then the polynomial 
 is a non-zero 

univariate polynomial of degree at 
most .   

Hence, there are at least  
non-zeros on this line

g(X) = f(X, mX + b)

d

t − 1 − d

H

GAP Codes



Distance of GAP Codes
Repeat this logic for the other line going through a non-zero point

Each line going through a non-zero 
point on  contains at least  
non-zeros. So we found  
non-zeros. 

However, each non-zero point not on 
 was counted twice. Thus, the actual 

number of non-zeros is at least  

H t − d − 1
(t − d − 1)2

H

(t − d − 1)2 + t − d − 1
2

= (t − d
2 )

H

GAP Codes



 vs.  calculationR δ

There are  points. Thus, we have  

, 

and  

. 

The tradeoff is 

( t
2)

δ = (t − d
2 )/( t

2) ≈ (1 − d/t)2

R = (d + 2
d )/( t

2) ≈ (d/t)2

δ + R = 1

GAP Codes



Evaluation Sets for Higher m

CAP Codes 

• Triangle  -dimensional simplex 

GAP Codes 

• Intersections of lines in general position  Intersections of 
hyperplanes in general position. 

Tradeoff: 

→ m

→

R1/m + δ1/m = 1

CAP Codes



Main Results

Theorem A. For any constant , there exist -variate 
polynomial evaluation codes (CAP and GAP codes) with rate  and constant 
relative distance. 

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time 
from up to half of the minimum distance. 

Theorem C. -variate GAP codes are locally testable with  queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)
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Future directions

• Better tradeoffs:  

• Other properties 

• Growing  

• Better CAP codes

R = 1 − δ?

m



Thank you!

Longer talk video Link to Paper



Unique Decoding



Concatenated Codes

• A key component to our decoding algorithms is code concatenation, and the GMD 
algorithm, which is a general way to decode concatenated codes.  

• Decoding GAP codes can be done almost directly using GMD. 

• Decoding CAP codes requires a new variant of the GMD algorithm.

Decoding



Concatenated Codes

…

Cout

Cin

Cin

:  Cin

 maps  

 maps 

Cout ΣK
out → ΣN

out

Cin Σout ∼ Σk
in → Σn

in

Cin ∘ Cout

Decoding



Example: RS as the outer code

…

Cin

Cin maps  

 maps 

Cout ΣK
out → ΣN

out

Cin Σout ∼ Σk
in → Σn

in

Cin ∘ Cout

f(X)

f(s1)

f(sN)

Decoding



Concatenated Codes

…

Cout

C(1)
in

C(2)
in

More generally, each 
inner code can be 
different! 

Decoding



Concatenated Codes

• If  is a [n, k, d] code and  is a [N, K, D], code, then  is a [Nn, Kk, Dd] 
code. 

Theorem (GMD Decoding) [For66]. Suppose  ,  can be decoded optimally*, 
Then,  can be decoded optimally.  

Cin Cout Cout ∘ Cin

Cout Cin
Cin ∘ Cout

Decoding

*optimally as in most number of errors we can hope 
to decode from, which is < distance /2



Decoding GAP Codes

• Recall GAP codes are evaluated on the -wise intersections of hyperplanes 
. Let’s think of  for now.

m
H1, . . , Ht m = 2

Decoding GAP Codes



GAP codes as concatenated codes

f(X, Y)

g1(X) = f(X, m1X + b1)

gt(X) = f(X, mtX + bt)

…

g1(H1 ∩ S)

gt(Ht ∩ S)

……

H1

Shorthand: g(A) = [g(a1), . . . , g(at−1)]f(X, Y) =
k

∑
i=0

fi(X)Yi

Decoding GAP Codes



• The outer code is a RS code where elements are from  

• The inner code is an RS code.

𝔽(X)[Y]

f(X, Y) =
k

∑
i=0

fi(X)Yi

Decoding GAP Codes



Decoding CAP Codes

Decoding of CAP codes is based on [KK17]. 

The main new ingredient is an “uneven” version of the classic GMD algorithm for 
decoding concatenated codes. The proof is based on ideas from [BHKS23].  

Lemma (Uneven GMD). Let  be a code with block length , and distance . Let 
 be codes with distance . Let . Then  has minimum 

distance at least . Furthermore, if there exist optimal unique decoding 

algorithms for , then there exists an optimal unique decoding algorithm for .

Cout N D
C1, . . . , CN di C = (C1, . . . , CN) ∘ Cout C

min
S⊂[N]:|S|=D ∑

i∈S

di

Cout, C1, . . . , CN C

Decoding CAP Codes



Decoding CAP Codes
Viewing CAP codes as a concatenated code

 

The key is to view the codeword as an 
encoding of  under concatenated 
code , where 

•  evaluates  on  

•  maps  and 

evaluates that polynomial on 
.

f(X, Y) =
k

∑
i=0

fi(X)Yi

fk
{C1, . . . , Cℓ} ∘ Cout

Cout fk 0,1,...,ℓ − 1

Cx α → αYk +
k−1

∑
i=0

fi(x)Yi

0,1,...,ℓ − x − 1 fk(0)

fk(1)

fk(ℓ − 1)

…

X

YDecoding CAP Codes



Decoding CAP Codes
Distance Calculation

 evaluates  on  

 maps 

Cout fk 0,1,...,ℓ − 1

Cx α → αYk +
k−1

∑
i=0

fi(x)Yi

• The outer distance, , is  

• The th inner distance,  is  

• Top  inner codes have distance , next  
codes have distance , so the 
distance of the concatenated code is   

D ℓ − (d − k)
x di ℓ − x − k

k 0 ℓ − d
1,2,...,ℓ − d

(ℓ − d + 1
2 )

Decoding CAP Codes



Decoding CAP Codes
Recurse

• Thus, we can recover  using GMD 

• Then, subtract  from the received word, and recurse to find 

fk

fk fk−1, . . . , f0

Decoding CAP Codes



Main Results

Theorem A. For any constant , there exist -variate 
polynomial evaluation codes (CAP and GAP codes) with rate  and constant 
relative distance. 

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time 
from up to half of the minimum distance. 

Theorem C. -variate GAP codes are locally testable with  queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)
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Local Testability of GAP 
Codes



Local Testing

• Motivation: Although decoding algorithms are polynomial time, it can still be an 
expensive process, especially if the message is long. 

• A local test is an algorithm you can run on a received word to quickly check if it is 
“close” to a valid codeword or far from all valid codewords.

Local testability of GAP Codes



Local Testing for GAP Codes

Theorem. There exists a test such that 

• Completeness. if  is a codeword of the GAP code, then the test passes with 
probability 1. 

• Soundness. There exists constants  such that if the test rejects  with 
probability , then . 

f

T, Q f
p ≤ T δC( f ) ≤ Q ⋅ p

Local testability of GAP Codes



Common Tests

Line/Plane-point test(  ): 
1. Pick a random line/plane,  
2. Let  be the closest degree  bivariate polynomial to  
3. Sample a random point  on the line/plane and accept iff  

f
P

gP d f |P
x gP(x) = f(x)

For, e.g., Reed Muller Codes

Local testability of GAP Codes



Local Testing Intuition

• Reed-Solomon codes are not locally testable because all small sets of evaluations 
are consistent with some codeword. 

• On the other hand, Reed-Muller codes resemble univariate polynomials in every line 
- a significant restriction. 

• For Reed Muller codes, to ensure these tests work, we typically need to use the 
entire dataset as the evaluation set; otherwise, a random line or plane may not be 
contained in the evaluation set. 

• Thus, the fact that GAP codes are high rate and locally testable is surprising and 
interesting to us.



Local Testing for GAP Codes

Recall GAP codes are evaluated on the -wise intersections of hyperplanes . 
• -wise intersections are points, -wise intersections are lines, and -wise 

intersections are planes. 

Plane-point test(  ): 
1. Pick a random 2-D plane (intersection of a random subset of  of the ),  
2. Let  be the closest degree  bivariate polynomial to  
3. Sample a random point  on the plane and accept iff  

m H1, . . , Ht
m m − 1 m − 2

f
m − 2 Hi P

gP d f |P
x gP(x) = f(x)

Local testability of GAP Codes



Local Testing for GAP Codes

Plane-point test(  ): 
1. Pick a random 2-D plane (intersection of a random subset of  of the ), P 
2. Let  be the closest degree  bivariate polynomial to  
3. Sample a random point  on the plane and accept iff   

Completeness. If  is a codeword, then the plane-point test passes with probability 1 

Soundness. There exist constants  such that if the test rejects  with probability 
, then . 

f
m − 2 Hi

gP d f |P
x gP(x) = f(x)

f

T, Q f
p ≤ T δC( f ) ≤ Q ⋅ p

Local testability of GAP Codes



Local Testing for GAP Codes

Let  be the closest  variate polynomial to . 

Lemma (Robust local characterization). “If many pairs of   are consistent, then some 
-variate polynomial  is consistent with many of them.” 

The proof is similar to [BSS06]

gi m − 1 f |Hi

gi m
h

Robust local characterization

Local testability of GAP Codes



Soundness

Soundness. If the test accepts  with high probability, the  is close to the code. The 
proof of soundness is by induction. Suppose the test works for  variate GAP 
codes. 
1. If the tests accept  with high probability. Then, the probability the test accepts,  

given that the test queries a plane lying on  is also high. 
2. Let  be the polynomial that is close to  (using the IH) 

3. Since each  is close to , many of them are consistent with each other. 
4. Obtain a polynomial  consistent with most of them using the lemma. 
5.  is a codeword that is close to .

f f
m − 1

f
Hi

gi fi = f |Hi

gi fi
h

h f

Lemma (Robust local characterization). 
“If many pairs of   are consistent, then some 

-variate polynomial  is consistent with 
many of them.” 

gi
m h

Local testability of GAP Codes



Main Results

Theorem A. For any constant , there exist -variate 
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Future directions

• What other properties do CAP and GAP codes have? 

• Growing  

• Better CAP codes

m



Thank you!


