
High Rate Polynomial
Evaluation Codes

Swastik Kopparty, Mrinal Kumar, and Harry Sha

Error Correcting Codes

• Goal: Want to encode messages into codewords such that even if there are some
corruptions, we can still recover the original message.

• This corresponds to the mathematical problem of finding a subset , such
that for every distinct , and are far in the Hamming distance (differ in
many coordinates).

C ⊆ Σn

x, y ∈ C x y

Picture

Picture

Picture

Picture

Tradeoffs

Parameters

• = message length (dimension)

• = codeword length

• , rate

• = minimum (Hamming) distance between two codewords

• , relative distance

k = log|Σ|(|C |)
n
R = k/n
d
δ = d/n

What we want from codes

• High rate (low overhead)

• High distance (robust to many errors)

• Efficient decoding/encoding algorithms

• List decodable, locally testable, locally decodable…

Polynomial Evaluation Codes

• The messages are all -variate polynomials of degree at most .

• A polynomial is encoded by evaluating on each point in some evaluation set

m d

f f
S ⊂ 𝔽m

f → (f(x))x∈S

The Evaluation Set

• Since the difference of two polynomials of degree at most is again a polynomial of
degree at most , the minimum distance between two codewords is the minimum
number of non-zeros of any non-zero degree polynomial on .

• Want:

• High distance: All non-zero polynomials of degree have many non-zeros in

• High rate: is as small as possible.

d
d

≤ d S

≤ d S

S

The most famous code

• Have the optimal rate-distance tradeoff .
• Decodable [WB86], List Decodable [GS99]…

S ⊆ 𝔽
R = 1 − δ

Reed Solomon Codes, m = 1

Another example

, where .

• Suboptimal rate-distance tradeoff:

• In particular,

• Decodable [KK17], List decodable [PW04]

• Locally testable [RS96, AS03]

S = Am A ⊆ 𝔽

R ≈ (1 − δ)m/m!

R ≤ 1/m!

Reed Muller Codes

Goal

Construct high-rate multivariate polynomial
evaluation codes.

Related Work

Polynomial Identity Testing

Problem: Given query access to a polynomial , of degree ,
determine if .

Classic test: Sample a random point from . Accept iff .

If , then the test is always correct

If the test is correct iff .

• Randomness efficiency corresponds to

• Low error corresponds to a non-zero having many non-zeros in

f ∈ 𝔽[X1, . . . , Xm] d
f ≡ 0

x S f(x) = 0

f ≡ 0

f ≢ 0 f(x) ≠ 0

|S |

f S

Polynomial Identity Testing

Individual degree bounds

• Chen-Kao [CK97], Lewin-Vadhan [LV98], Agrawal-Biswas [AB03]

Sparse polynomials

• Klivans-Spielman [KS01]

• Bläser-Pandey [BP20]

d < < m

Pseudorandom Generators Against Polynomials

Want a generator such that for any polynomial for degree at most ,

Intuition: if those distributions looks similar, any non-zero should be non-zero on
many points of the form , since is non-zero on most of .

In fact, there is a reduction from polynomial evaluation codes to pseudorandom
generators.

G f d

f(U) ∼ f(G(s))

f
G(s) f 𝔽m

Pseudorandom Generators Against Polynomials

Constructions from Dvir-Shpilka [DS11], Viola [Vio08], Bogdanov-Viola [BV10] work in
the setting of large , constant , and small field size.m d

Main Results

Theorem A. For any constant , there exist -variate
polynomial evaluation codes (CAP and GAP codes) with rate and constant
relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time
from up to half of the minimum distance.

Theorem C. -variate GAP codes are locally testable with queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)

High rate polynomial
evaluation codes

Two constructions

• CAP (Combinatorial Arrays for Polynomials)

• GAP (Geometric Arrays for Polynomials)

• This talk: Constructions of bivariate CAP and GAP codes.

CAP Codes

CAP Codes

Distance of CAP Codes

The distance of CAP codes is obtained by a generalization of the Schwartz-Zippel
Lemma.

CAP Codes

How many zeros are there in a grid?ℓ × ℓ

Let ,

How many zeros are there in the th column?
1. If , then is a univariate polynomial in of

degree .
2. If , all bets are off, since might be identically

zero.

Case 2 happens at most times, so the total number of zeros is
at most

f(X, Y) =
dY

∑
i=0

ci(X)Yi

a
cdY

(a) ≠ 0 f(a, Y) Y
dY

cdY
(a) = 0 f(a, Y)

d − dY
dY(ℓ − d + dY) + ℓ(d − dY) ≤ dℓ

Recap: Schwartz-Zippel

CAP Codes

Number of zeros
E.g. ℓ = 15,d = 10

Zeros are filled squares

There are
zeros in the grid…

≤ 150

CAP Codes

Zeros in the triangle

… but that’s useless because there are only

 points in the triangle!(15 + 1
2) = 120

E.g. ℓ = 15,d = 10

CAP Codes

There exists (which is the
-degree of) such that at most columns

are entirely zero, and the remaining columns
have at most zeros each.

dY ∈ {0,1,...,d} Y
f d − dY

dY

CAP Codes

Shape of zeros
E.g. ℓ = 15,d = 10,dY = 4

Zeros are filled squares

CAP Codes

Counting zeros in the triangle
Shifting zeros down and to the left can only increase the number of zeros in the triangle

At least non-zeros in the triangle!(ℓ − d + 1
2)

CAP Codes

Rate and distance calculation

δ =
(ℓ + d + 1

2)
(ℓ + 1

2)
≥ (1 −

d
ℓ)

2

R =
(d + 1

2)
(ℓ + 1

2)
≥ (d

ℓ)
2

R ≥ (1 − δ)
2

R + δ ≥ 1

CAP Codes

GAP Codes

GAP Codes
A geometric construction

Take the intersection points of lines in
general position.

t

GAP Codes

Distance of GAP Codes
Zoom in on a single line

GAP Codes

H

Zoom in on a particular line
containing a non-zero of

Call the line , and suppose it’s
defined by the equation

f

H
Y = mX + b

Distance of GAP Codes
Count the number of non-zeros on H

Then the polynomial
 is a non-zero

univariate polynomial of degree at
most .

Hence, there are at least
non-zeros on this line

g(X) = f(X, mX + b)

d

t − 1 − d

H

GAP Codes

Distance of GAP Codes
Repeat this logic for the other line going through a non-zero point

Each line going through a non-zero
point on contains at least
non-zeros. So we found
non-zeros.

However, each non-zero point not on
 was counted twice. Thus, the actual

number of non-zeros is at least

H t − d − 1
(t − d − 1)2

H

(t − d − 1)2 + t − d − 1
2

= (t − d
2)

H

GAP Codes

 vs. calculationR δ

There are points. Thus, we have

,

and

.

The tradeoff is

(t
2)

δ = (t − d
2)/(t

2) ≈ (1 − d/t)2

R = (d + 2
d)/(t

2) ≈ (d/t)2

δ + R = 1

GAP Codes

Evaluation Sets for Higher m

CAP Codes

• Triangle -dimensional simplex

GAP Codes

• Intersections of lines in general position Intersections of
hyperplanes in general position.

Tradeoff:

→ m

→

R1/m + δ1/m = 1

CAP Codes

Main Results

Theorem A. For any constant , there exist -variate
polynomial evaluation codes (CAP and GAP codes) with rate and constant
relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time
from up to half of the minimum distance.

Theorem C. -variate GAP codes are locally testable with queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)

Main Results

Theorem A. For any constant , there exist -variate
polynomial evaluation codes (CAP and GAP codes) with rate and constant
relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time
from up to half of the minimum distance.

Theorem C. -variate GAP codes are locally testable with queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)

Future directions

• Better tradeoffs:

• Other properties

• Growing

• Better CAP codes

R = 1 − δ?

m

Thank you!

Longer talk video Link to Paper

Unique Decoding

Concatenated Codes

• A key component to our decoding algorithms is code concatenation, and the GMD
algorithm, which is a general way to decode concatenated codes.

• Decoding GAP codes can be done almost directly using GMD.

• Decoding CAP codes requires a new variant of the GMD algorithm.

Decoding

Concatenated Codes

…

Cout

Cin

Cin

: Cin

 maps

 maps

Cout ΣK
out → ΣN

out

Cin Σout ∼ Σk
in → Σn

in

Cin ∘ Cout

Decoding

Example: RS as the outer code

…

Cin

Cin maps

 maps

Cout ΣK
out → ΣN

out

Cin Σout ∼ Σk
in → Σn

in

Cin ∘ Cout

f(X)

f(s1)

f(sN)

Decoding

Concatenated Codes

…

Cout

C(1)
in

C(2)
in

More generally, each
inner code can be
different!

Decoding

Concatenated Codes

• If is a [n, k, d] code and is a [N, K, D], code, then is a [Nn, Kk, Dd]
code.

Theorem (GMD Decoding) [For66]. Suppose , can be decoded optimally*,
Then, can be decoded optimally.

Cin Cout Cout ∘ Cin

Cout Cin
Cin ∘ Cout

Decoding

*optimally as in most number of errors we can hope
to decode from, which is < distance /2

Decoding GAP Codes

• Recall GAP codes are evaluated on the -wise intersections of hyperplanes
. Let’s think of for now.

m
H1, . . , Ht m = 2

Decoding GAP Codes

GAP codes as concatenated codes

f(X, Y)

g1(X) = f(X, m1X + b1)

gt(X) = f(X, mtX + bt)

…

g1(H1 ∩ S)

gt(Ht ∩ S)

……

H1

Shorthand: g(A) = [g(a1), . . . , g(at−1)]f(X, Y) =
k

∑
i=0

fi(X)Yi

Decoding GAP Codes

• The outer code is a RS code where elements are from

• The inner code is an RS code.

𝔽(X)[Y]

f(X, Y) =
k

∑
i=0

fi(X)Yi

Decoding GAP Codes

Decoding CAP Codes

Decoding of CAP codes is based on [KK17].

The main new ingredient is an “uneven” version of the classic GMD algorithm for
decoding concatenated codes. The proof is based on ideas from [BHKS23].

Lemma (Uneven GMD). Let be a code with block length , and distance . Let
 be codes with distance . Let . Then has minimum

distance at least . Furthermore, if there exist optimal unique decoding

algorithms for , then there exists an optimal unique decoding algorithm for .

Cout N D
C1, . . . , CN di C = (C1, . . . , CN) ∘ Cout C

min
S⊂[N]:|S|=D ∑

i∈S

di

Cout, C1, . . . , CN C

Decoding CAP Codes

Decoding CAP Codes
Viewing CAP codes as a concatenated code

The key is to view the codeword as an
encoding of under concatenated
code , where

• evaluates on

• maps and

evaluates that polynomial on
.

f(X, Y) =
k

∑
i=0

fi(X)Yi

fk
{C1, . . . , Cℓ} ∘ Cout

Cout fk 0,1,...,ℓ − 1

Cx α → αYk +
k−1

∑
i=0

fi(x)Yi

0,1,...,ℓ − x − 1 fk(0)

fk(1)

fk(ℓ − 1)

…

X

YDecoding CAP Codes

Decoding CAP Codes
Distance Calculation

 evaluates on

 maps

Cout fk 0,1,...,ℓ − 1

Cx α → αYk +
k−1

∑
i=0

fi(x)Yi

• The outer distance, , is

• The th inner distance, is

• Top inner codes have distance , next
codes have distance , so the
distance of the concatenated code is

D ℓ − (d − k)
x di ℓ − x − k

k 0 ℓ − d
1,2,...,ℓ − d

(ℓ − d + 1
2)

Decoding CAP Codes

Decoding CAP Codes
Recurse

• Thus, we can recover using GMD

• Then, subtract from the received word, and recurse to find

fk

fk fk−1, . . . , f0

Decoding CAP Codes

Main Results

Theorem A. For any constant , there exist -variate
polynomial evaluation codes (CAP and GAP codes) with rate and constant
relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time
from up to half of the minimum distance.

Theorem C. -variate GAP codes are locally testable with queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)

Main Results

Theorem A. For any constant , there exist -variate
polynomial evaluation codes (CAP and GAP codes) with rate and constant
relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time
from up to half of the minimum distance.

Theorem C. -variate GAP codes are locally testable with queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)

Local Testability of GAP
Codes

Local Testing

• Motivation: Although decoding algorithms are polynomial time, it can still be an
expensive process, especially if the message is long.

• A local test is an algorithm you can run on a received word to quickly check if it is
“close” to a valid codeword or far from all valid codewords.

Local testability of GAP Codes

Local Testing for GAP Codes

Theorem. There exists a test such that

• Completeness. if is a codeword of the GAP code, then the test passes with
probability 1.

• Soundness. There exists constants such that if the test rejects with
probability , then .

f

T, Q f
p ≤ T δC(f) ≤ Q ⋅ p

Local testability of GAP Codes

Common Tests

Line/Plane-point test():
1. Pick a random line/plane,
2. Let be the closest degree bivariate polynomial to
3. Sample a random point on the line/plane and accept iff

f
P

gP d f |P
x gP(x) = f(x)

For, e.g., Reed Muller Codes

Local testability of GAP Codes

Local Testing Intuition

• Reed-Solomon codes are not locally testable because all small sets of evaluations
are consistent with some codeword.

• On the other hand, Reed-Muller codes resemble univariate polynomials in every line
- a significant restriction.

• For Reed Muller codes, to ensure these tests work, we typically need to use the
entire dataset as the evaluation set; otherwise, a random line or plane may not be
contained in the evaluation set.

• Thus, the fact that GAP codes are high rate and locally testable is surprising and
interesting to us.

Local Testing for GAP Codes

Recall GAP codes are evaluated on the -wise intersections of hyperplanes .
• -wise intersections are points, -wise intersections are lines, and -wise

intersections are planes.

Plane-point test():
1. Pick a random 2-D plane (intersection of a random subset of of the),
2. Let be the closest degree bivariate polynomial to
3. Sample a random point on the plane and accept iff

m H1, . . , Ht
m m − 1 m − 2

f
m − 2 Hi P

gP d f |P
x gP(x) = f(x)

Local testability of GAP Codes

Local Testing for GAP Codes

Plane-point test():
1. Pick a random 2-D plane (intersection of a random subset of of the), P
2. Let be the closest degree bivariate polynomial to
3. Sample a random point on the plane and accept iff

Completeness. If is a codeword, then the plane-point test passes with probability 1

Soundness. There exist constants such that if the test rejects with probability
, then .

f
m − 2 Hi

gP d f |P
x gP(x) = f(x)

f

T, Q f
p ≤ T δC(f) ≤ Q ⋅ p

Local testability of GAP Codes

Local Testing for GAP Codes

Let be the closest variate polynomial to .

Lemma (Robust local characterization). “If many pairs of are consistent, then some
-variate polynomial is consistent with many of them.”

The proof is similar to [BSS06]

gi m − 1 f |Hi

gi m
h

Robust local characterization

Local testability of GAP Codes

Soundness

Soundness. If the test accepts with high probability, the is close to the code. The
proof of soundness is by induction. Suppose the test works for variate GAP
codes.
1. If the tests accept with high probability. Then, the probability the test accepts,

given that the test queries a plane lying on is also high.
2. Let be the polynomial that is close to (using the IH)

3. Since each is close to , many of them are consistent with each other.
4. Obtain a polynomial consistent with most of them using the lemma.
5. is a codeword that is close to .

f f
m − 1

f
Hi

gi fi = f |Hi

gi fi
h

h f

Lemma (Robust local characterization).
“If many pairs of are consistent, then some

-variate polynomial is consistent with
many of them.”

gi
m h

Local testability of GAP Codes

Main Results

Theorem A. For any constant , there exist -variate
polynomial evaluation codes (CAP and GAP codes) with rate and constant
relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time
from up to half of the minimum distance.

Theorem C. -variate GAP codes are locally testable with queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)

Main Results

Theorem A. For any constant , there exist -variate
polynomial evaluation codes (CAP and GAP codes) with rate and constant
relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time
from up to half of the minimum distance.

Theorem C. -variate GAP codes are locally testable with queries.

R ∈ (0,1), m ≥ 1 m
R

m O(n2/m)

Future directions

• What other properties do CAP and GAP codes have?

• Growing

• Better CAP codes

m

Thank you!

