High Rate Polynomial Evaluation Codes

Swastik Kopparty, Mrinal Kumar, and Harry Sha

Error Correcting Codes

• Goal: Want to encode messages into codewords such that even if there are some corruptions, we can still recover the original message.

• This corresponds to the mathematical problem of finding a subset $C \subseteq \Sigma^n$, such that for every distinct $x, y \in C$, x and y are far in the Hamming distance (differ in many coordinates).

Tradeoffs

Parameters

- $k = \log_{|\Sigma|}(|C|) = \text{message length (dimension)}$
- n =codeword length
- R = k/n, rate
- d = minimum (Hamming) distance between two codewords
- $\delta = d/n$, relative distance

What we want from codes

- High rate (low overhead)
- High distance (robust to many errors)
- Efficient decoding/encoding algorithms
- List decodable, locally testable, locally decodable...

Polynomial Evaluation Codes

- The messages are all m-variate polynomials of degree at most d.
- A polynomial f is encoded by evaluating f on each point in some evaluation set $S \subset \mathbb{F}^m$

$$f \to (f(\mathbf{x}))_{\mathbf{x} \in S}$$

The Evaluation Set

• Since the difference of two polynomials of degree at most d is again a polynomial of degree at most d, the minimum distance between two codewords is the minimum number of non-zeros of any non-zero degree $\leq d$ polynomial on S.

• Want:

- **High distance:** All non-zero polynomials of degree $\leq d$ have many non-zeros in S
- High rate: S is as small as possible.

The most famous code

Reed Solomon Codes, m = 1

```
S \subseteq \mathbb{F}
```

- Have the optimal rate-distance tradeoff $R = 1 \delta$.
- Decodable [WB86], List Decodable [GS99]...

Another example

Reed Muller Codes

 $S = A^m$, where $A \subseteq \mathbb{F}$.

- Suboptimal rate-distance tradeoff: $R \approx (1 \delta)^m / m!$
 - In particular, $R \leq 1/m!$
- Decodable [KK17], List decodable [PW04]
- Locally testable [RS96, AS03]

Goal

Construct high-rate multivariate polynomial evaluation codes.

Related Work

Polynomial Identity Testing

Problem: Given query access to a polynomial $f \in \mathbb{F}[X_1, \dots, X_m]$, of degree d, determine if $f \equiv 0$.

Classic test: Sample a random point **x** from *S*. Accept iff $f(\mathbf{x}) = 0$.

If $f \equiv 0$, then the test is always correct

If $f \not\equiv 0$ the test is correct iff $f(\mathbf{x}) \neq 0$.

- Randomness efficiency corresponds to |S|
- Low error corresponds to a non-zero f having many non-zeros in S

Polynomial Identity Testing

Individual degree bounds

• Chen-Kao [CK97], Lewin-Vadhan [LV98], Agrawal-Biswas [AB03]

Sparse polynomials

Klivans-Spielman [KSo1]

• Bläser-Pandey [BP20]

Pseudorandom Generators Against Polynomials

Want a generator G such that for any polynomial f for degree at most d,

$$f(U) \sim f(G(s))$$

Intuition: if those distributions looks similar, any non-zero f should be non-zero on many points of the form G(s), since f is non-zero on most of \mathbb{F}^m .

In fact, there is a reduction from polynomial evaluation codes to pseudorandom generators.

Pseudorandom Generators Against Polynomials

Constructions from Dvir-Shpilka [DS11], Viola [Vioo8], Bogdanov-Viola [BV10] work in the setting of large m, constant d, and small field size.

Main Results

Theorem A. For any constant $R \in (0,1)$, $m \ge 1$, there exist m-variate polynomial evaluation codes (CAP and GAP codes) with rate R and constant relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time from up to half of the minimum distance.

Theorem C. *m-variate GAP codes are locally testable with* $O(n^{2/m})$ *queries.*

High rate polynomial evaluation codes

Two constructions

- CAP (Combinatorial Arrays for Polynomials)
- GAP (Geometric Arrays for Polynomials)

• This talk: Constructions of bivariate CAP and GAP codes.

CAP Codes

CAP Codes

Distance of CAP Codes

The distance of CAP codes is obtained by a generalization of the Schwartz-Zippel Lemma.

How many zeros are there in a $\ell \times \ell$ grid?

Recap: Schwartz-Zippel

$$\operatorname{Let} f(X, Y) = \sum_{i=0}^{d_Y} c_i(X)Y^i,$$

How many zeros are there in the ath column?

- 1. If $c_{d_Y}(a) \neq 0$, then f(a, Y) is a univariate polynomial in Y of degree d_Y .
- 2. If $c_{d_Y}(a) = 0$, all bets are off, since f(a, Y) might be identically zero.

Case 2 happens at most $d - d_Y$ times, so the total number of zeros is at most $d_Y(\ell - d + d_Y) + \ell(d - d_Y) \le d\ell$

Number of zeros

E.g. $\ell = 15, d = 10$

There are ≤ 150 zeros in the grid...

Zeros are filled squares

Zeros in the triangle

E.g. $\ell = 15, d = 10$

... but that's useless because there are only

$$\binom{15+1}{2}$$
 = 120 points in the triangle!

There exists $d_Y \in \{0,1,...,d\}$ (which is the Y-degree of f) such that at most $d - d_Y$ columns are entirely zero, and the remaining columns have at most d_Y zeros each.

Shape of zeros

E.g.
$$\ell = 15, d = 10, d_Y = 4$$

Zeros are filled squares

CAP Codes

Counting zeros in the triangle

Shifting zeros down and to the left can only increase the number of zeros in the triangle

At least
$$\begin{pmatrix} \ell - d + 1 \\ 2 \end{pmatrix}$$
 non-zeros in the triangle!

CAP Codes

Rate and distance calculation

$$\delta = \frac{\binom{\ell + d + 1}{2}}{\binom{\ell + 1}{2}} \ge \left(1 - \frac{d}{\ell}\right)^2$$

$$R = \frac{\binom{d+1}{2}}{\binom{\ell+1}{2}} \ge \left(\frac{d}{\ell}\right)^2$$

$$R \ge \left(1 - \sqrt{\delta}\right)^2$$

$$\sqrt{R} + \sqrt{\delta} \ge 1$$

CAP Codes

GAP Codes

GAP Codes

A geometric construction

Take the intersection points of *t* lines in general position.

Distance of GAP Codes

Zoom in on a single line

Zoom in on a particular line containing a non-zero of *f*

Call the line H, and suppose it's defined by the equation Y = mX + b

Distance of GAP Codes

Count the number of non-zeros on ${\cal H}$

Then the polynomial g(X) = f(X, mX + b) is a non-zero univariate polynomial of degree at most d.

Hence, there are at least t-1-d non-zeros on this line

Distance of GAP Codes

Repeat this logic for the other line going through a non-zero point

Each line going through a non-zero point on H contains at least t-d-1 non-zeros. So we found $(t-d-1)^2$ non-zeros.

However, each non-zero point not on H was counted twice. Thus, the actual number of non-zeros is at least

$$\frac{(t-d-1)^2 + t - d - 1}{2} = \begin{pmatrix} t - d \\ 2 \end{pmatrix}$$

R vs. δ calculation

There are $\binom{t}{2}$ points. Thus, we have

$$\delta = {t - d \choose 2} / {t \choose 2} \approx (1 - d/t)^2,$$

and

$$R = {d+2 \choose d} / {t \choose 2} \approx (d/t)^2.$$

The tradeoff is $\sqrt{\delta} + \sqrt{R} = 1$

Evaluation Sets for Higher m

CAP Codes

• Triangle \rightarrow *m*-dimensional simplex

GAP Codes

 Intersections of lines in general position → Intersections of hyperplanes in general position.

Tradeoff: $R^{1/m} + \delta^{1/m} = 1$

Main Results

Theorem A. For any constant $R \in (0,1)$, $m \ge 1$, there exist m-variate polynomial evaluation codes (CAP and GAP codes) with rate R and constant relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time from up to half of the minimum distance.

Theorem C. *m-variate GAP codes are locally testable with* $O(n^{2/m})$ *queries.*

Main Results

Theorem A. For any constant $R \in (0,1)$, $m \ge 1$, there exist m-variate polynomial evaluation codes (CAP and GAP codes) with rate R and constant relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time from up to half of the minimum distance.

Theorem C. *m-variate GAP codes are locally testable with O(n^{2/m}) queries.*

Future directions

- Better tradeoffs: $R = 1 \delta$?
- Other properties
- Growing m
- Better CAP codes

Thank you!

Longer talk video

Link to Paper

Unique Decoding

Concatenated Codes

- A key component to our decoding algorithms is code concatenation, and the GMD algorithm, which is a general way to decode concatenated codes.
- Decoding GAP codes can be done almost directly using GMD.
- Decoding CAP codes requires a new variant of the GMD algorithm.

Concatenated Codes

Example: RS as the outer code

Concatenated Codes

More generally, each inner code can be different!

Concatenated Codes

• If C_{in} is a [n, k, d] code and C_{out} is a [N, K, D], code, then $C_{out} \circ C_{in}$ is a [Nn, Kk, Dd] code.

Theorem (GMD Decoding) [For66]. Suppose C_{out} , C_{in} can be decoded optimally*, Then, $C_{in} \circ C_{out}$ can be decoded optimally.

*optimally as in most number of errors we can hope to decode from, which is < distance /2

• Recall GAP codes are evaluated on the m-wise intersections of hyperplanes H_1, \ldots, H_t . Let's think of m=2 for now.

GAP codes as concatenated codes

$$f(X,Y) = \sum_{i=0}^{k} f_i(X)Y^i$$

$$g_1(X) = f(X, m_1X + b_1)$$

$$g_1(X) = f(X, m_1X + b_1)$$

$$g_1(X) = f(X, m_1X + b_1)$$

$$g_2(X) = f(X, m_2X + b_2)$$

$$g_3(H_1 \cap S)$$

$$f(X, Y) = \sum_{i=0}^{k} f_i(X)Y^i$$

- The outer code is a RS code where elements are from $\mathbb{F}(X)[Y]$
- The inner code is an RS code.

Decoding of CAP codes is based on [KK17].

The main new ingredient is an "uneven" version of the classic GMD algorithm for decoding concatenated codes. The proof is based on ideas from [BHKS23].

Lemma (Uneven GMD). Let C_{out} be a code with block length N, and distance D. Let C_1, \ldots, C_N be codes with distance d_i . Let $C = (C_1, \ldots, C_N) \circ C_{out}$. Then C has minimum distance at least $\min_{S \subset [N]: |S| = D} \sum_{i \in S} d_i$. Furthermore, if there exist optimal unique decoding

algorithms for $C_{out}, C_1, \ldots, C_N$, then there exists an optimal unique decoding algorithm for C.

Viewing CAP codes as a concatenated code

$$f(X, Y) = \sum_{i=0}^{k} f_i(X)Y^i$$

The key is to view the codeword as an encoding of f_k under concatenated code $\{C_1, \ldots, C_\ell\} \circ C_{out}$, where

• C_{out} evaluates f_k on $0,1,...,\mathcal{E}-1$ • C_x maps $\alpha \to \alpha Y^k + \sum_{i=0}^{k-1} f_i(x)Y^i$ and evaluates that polynomial on $0,1,...,\mathcal{E}-x-1$.

Distance Calculation

 C_{out} evaluates f_k on $0,1,...,\mathcal{E}-1$ $C_x \text{ maps } \alpha \to \alpha Y^k + \sum_{i=0}^{k-1} f_i(x)Y^i$

- The outer distance, D, is $\ell (d k)$
- The *x*th inner distance, d_i is $\ell x k$

• Top k inner codes have distance 0, next $\ell-d$ codes have distance $1,2,...,\ell-d$, so the distance of the concatenated code is

$$\binom{\ell-d+1}{2}$$

Y

Decoding CAP Codes

Recurse

- Thus, we can recover f_k using GMD
- Then, subtract f_k from the received word, and recurse to find f_{k-1}, \ldots, f_0

Main Results

Theorem A. For any constant $R \in (0,1)$, $m \ge 1$, there exist m-variate polynomial evaluation codes (CAP and GAP codes) with rate R and constant relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time from up to half of the minimum distance.

Theorem C. *m-variate GAP codes are locally testable with O(n^{2/m}) queries.*

Main Results

Theorem A. For any constant $R \in (0,1)$, $m \ge 1$, there exist m-variate polynomial evaluation codes (CAP and GAP codes) with rate R and constant relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time from up to half of the minimum distance.

Theorem C. *m-variate GAP codes are locally testable with* $O(n^{2/m})$ *queries.*

Local Testability of GAP Codes

Local Testing

- Motivation: Although decoding algorithms are polynomial time, it can still be an expensive process, especially if the message is long.
- A local test is an algorithm you can run on a received word to quickly check if it is "close" to a valid codeword or far from all valid codewords.

Theorem. There exists a test such that

- **Completeness.** if *f* is a codeword of the GAP code, then the test passes with probability 1.
- **Soundness**. There exists constants T, Q such that if the test rejects f with probability $p \le T$, then $\delta_C(f) \le Q \cdot p$.

Common Tests

For, e.g., Reed Muller Codes

Line/Plane-point test(f):

- 1. Pick a random line/plane, P
- 2. Let g_P be the closest degree d bivariate polynomial to $f|_P$
- 3. Sample a random point **x** on the line/plane and accept iff $g_P(\mathbf{x}) = f(\mathbf{x})$

Local Testing Intuition

- Reed-Solomon codes are not locally testable because all small sets of evaluations are consistent with some codeword.
- On the other hand, Reed-Muller codes resemble univariate polynomials in every line a significant restriction.
- For Reed Muller codes, to ensure these tests work, we typically need to use the entire dataset as the evaluation set; otherwise, a random line or plane may not be contained in the evaluation set.
- Thus, the fact that GAP codes are high rate and locally testable is surprising and interesting to us.

Recall GAP codes are evaluated on the *m*-wise intersections of hyperplanes H_1, \ldots, H_t .

• m-wise intersections are points, m-1-wise intersections are lines, and m-2-wise intersections are planes.

Plane-point test(f):

- 1. Pick a random 2-D plane (intersection of a random subset of m-2 of the H_i), P
- 2. Let g_P be the closest degree d bivariate polynomial to $f|_P$
- 3. Sample a random point **x** on the plane and accept iff $g_P(\mathbf{x}) = f(\mathbf{x})$

Plane-point test(f):

- 1. Pick a random 2-D plane (intersection of a random subset of m-2 of the H_i), P
- 2. Let g_P be the closest degree d bivariate polynomial to $f|_P$
- 3. Sample a random point **x** on the plane and accept iff $g_P(\mathbf{x}) = f(\mathbf{x})$

Completeness. If f is a codeword, then the plane-point test passes with probability 1

Soundness. There exist constants T, Q such that if the test rejects f with probability $p \le T$, then $\delta_C(f) \le Q \cdot p$.

Robust local characterization

Let g_i be the closest m-1 variate polynomial to $f|_{H_i}$.

Lemma (Robust local characterization). "If many pairs of g_i are consistent, then some m -variate polynomial h is consistent with many of them."

The proof is similar to [BSS06]

Soundness

Lemma (Robust local characterization). "If many pairs of g_i are consistent, then some m-variate polynomial h is consistent with many of them."

Soundness. If the test accepts f with high probability, the f is close to the code. The proof of soundness is by induction. Suppose the test works for m-1 variate GAP codes.

- If the tests accept f with high probability. Then, the probability the test accepts, given that the test queries a plane lying on H_i is also high.
- 2. Let g_i be the polynomial that is close to $f_i = f|_{H_i}$ (using the IH)
- 3. Since each g_i is close to f_i , many of them are consistent with each other.
- 4. Obtain a polynomial *h* consistent with most of them using the lemma.
- 5. *h* is a codeword that is close to *f*.

Main Results

Theorem A. For any constant $R \in (0,1)$, $m \ge 1$, there exist m-variate polynomial evaluation codes (CAP and GAP codes) with rate R and constant relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time from up to half of the minimum distance.

Theorem C. *m-variate GAP codes are locally testable with* $O(n^{2/m})$ *queries.*

Main Results

Theorem A. For any constant $R \in (0,1)$, $m \ge 1$, there exist m-variate polynomial evaluation codes (CAP and GAP codes) with rate R and constant relative distance.

Theorem B. CAP and GAP codes can be uniquely decoded in polynomial time from up to half of the minimum distance.

Theorem C. m-variate GAP codes are locally testable with $O(n^{2/m})$ queries.

Future directions

- What other properties do CAP and GAP codes have?
- Growing m
- Better CAP codes

Thank you!