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Preface

Beauty is truth, truth beauty, that is all
Ye know on earth, and all ye need to know

–John Keats

All intellectual pursuits seek to help us understand reality — i.e., the truth. Even endeav-
ours intended to appeal to our aesthetic sense are ultimately after truth; this is the point of
Keats’ first assertion — that beauty is truth.

Mathematics is one of the most successful intellectual tools that human culture has devel-
oped in its quest for investigating reality. At first this appears paradoxical: unlike the physical
and life sciences the subject matter of mathematics is not reality per se. Mathematics, on its
own, cannot tell us that the mass of an object in motion affects the force it exerts or that
the DNA is structured as a double helix, even though mathematics is crucial in the precise
description of both these facts. Mathematics deals with abstract constructions of the human
mind, such as numbers, sets, relations and functions.

Two elements of mathematics are the source of its success as a tool for the investigation
of reality: its techniques and its methodology. Accordingly, mathematics is a tool in two
interrelated but distinct ways. First, it is a tool in the straightforward sense in which a
hammer is a tool. We can use mathematics to get a job done: calculate the volume of a
complicated shape, determine the trajectory of an object given the forces acting on it, etc.
In this role, mathematics provides us with techniques for performing computational tasks.
Second, mathematics is also a tool in the less tangible sense in which planning is a tool. It is
hard to point to a specific feature of a house attributable to the planning of its construction
— certainly harder than pointing to a nail whose presence is attributable to the use of the
hammer — but there is no doubt that without planning no house would be built. In this
subtler role, mathematics provides us not with computational techniques but with a particular
methodology.

The methodology of mathematics has many aspects; key among them are:

• An explicit and unambiguous acknowledgement of our assumptions.
• A small set of simple but powerful “rules of thought” through which we can reach conclu-
sions that necessarily follow from our assumptions. The transition from assumptions to
conclusions, through an unassailable process, is the essence of mathematical proof.
• An inclination to abstraction. In mathematics we ignore the coincidental and focus on the
germane. Thus, for example, in mathematics we study numbers regardless of what quantity
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they represent, and functions regardless of what relationship they capture. The virtue of
abstraction is that it broadens the applicability of our results.
• An inclination to frugality. The mathematical methodology frowns upon unnecessary as-
sumptions. A mathematical proof should be as direct and simple as possible. Mathematical
constructions should be as efficient as possible, according to well-defined and meaningful
notions of efficiency.

The two aspects of the “mathematical enterprise” — mathematics as a set of computa-
tional techniques and mathematics as a methodology of precise and elegant reasoning — are
not counterposed. They go hand-in-hand. Neither can be properly appreciated and mastered
without the other. In my opinion there has been a trend in the teaching of mathematics (at
least in North America north of the Rio Grande) to overemphasise the former at the expense of
the latter. This emphasis is often justified in the name of “practicality” or “relevance”. In my
view this choice, well-meaning as it may be, is seriously misguided. Learning computational
techniques is, of course, necessary not only because of their immediate applications but also
because without them there is no mathematics. But I believe that the ability for precise, rig-
orous and abstract reasoning is more important than the mastery of particular computational
techniques. It is also relevant to a wider spectrum of tasks than computational techniques are.

The emphasis on computational techniques at the expense of exposing students to the
methodology of mathematics is prevalent at all stages of mathematics education, with the
exception of the way the subject is taught to mathematics majors at the university level. For
reasons I outlined above, I believe that this is unfortunate for all students. It is particularly
unfortunate for computer science students, the audience for which these notes are intended,
because the methodology of mathematics is especially relevant to computer science. Abstrac-
tion, precise reasoning, generality, efficiency: these are the tools of the trade, and I know of no
better way of sharpening one’s mastery of them than through the study of mathematics.

In these notes I have tried to present the subject matter in what I believe is a balanced
way, paying attention not only to the techniques that students need to master but also, and
perhaps more importantly, to exposing them to what I have been calling the methodology of
mathematics. It is my hope that the notes will help students gain an understanding, and even
a working knowledge, of mathematics as a tool for investigating the truth. To the extent the
notes are successful in this, I believe that they will also shed some light to the second point of
Keats’ couplet quoted at the start of the preface — that truth is beauty.
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Chapter 0

PRELIMINARIES

In this chapter we have collected a number of basic mathematical concepts and definitions
which we assume you have encountered before, in one form or another. It is probably wise to
review this material so that you familiarise yourself with the terminology we will be using in
this course.

0.1 Sets

A set is a collection of objects. Admittedly, this is not much of a definition: it defines the
word ‘set’ in terms of another word, ‘collection’, which is no more precise or clear than the first
one. Unfortunately, we can’t do better than this: the concept of a set is so elementary that
it does not admit further definition. It is (hopefully) a self-evident concept that we will take
for granted. The same is true about other elementary concepts that we encounter in various
areas of mathematics. For example, in arithmetic we take the concept of number for granted;
in geometry we take concepts such as point and line for granted.

The nature of the objects in a set is irrelevant: they may be concrete things (like players of
a soccer club, items on sale in the supermarket, planets of the solar system, books in a library
etc) or abstract things (like numbers, mathematical functions, or even sets).

The objects that comprise a set are the set’s elements. If an object a is an element of set
A, we say that a is in A, that a belongs to A, or that a is a member of A; we denote this
fact as a ∈ A. If an object a does not belong to set A, we write a /∈ A.

The collection that contains no elements at all is also considered a set, called the empty
or null set, and denoted as ∅.

The number of elements in a set A, denoted |A|, is called its cardinality or its size. If
A has a finite number of elements, then |A| is a nonnegative integer (that number); if A has
an infinite number of elements, we write |A| = ∞. Regarding the symbol ∞, we adopt the
convention that, for every integer k, k < ∞, and ∞ ≤ ∞.1 The cardinality of the empty set

1 The use of∞ to denote the cardinalities of all infinite sets is an oversimplification. An important part of set
theory is devoted to studying how to compare the cardinalities of different infinite sets. Roughly speaking, two
sets A and B are said to have the same cardinality, if we can set up an one-to-one correspondence between
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is 0; i.e., |∅| = 0.

0.1.1 Describing sets

We can describe a set in one of two ways: by listing its elements explicitly (this is called
an extensional description), or by stating a property that characterises its elements (this is
called an intentional description).

To write an extensional description of a set, we list the elements of the set separated by
commas, and enclose this list in curly brackets, as in: {1, 3, 5, 7, 9}. Since a set is simply
a collection of objects, the only thing that matters about a set is which objects belong to
it, and which do not. In particular, there is no such thing as “the first element of the set”.
Thus, the order in which objects are listed in an extensional description of a set is irrelevant;
furthermore, there is no point in repeating an element more than once in the listing. For
example, the above set is the same as {3, 9, 1, 7, 5}, and also the same as {9, 9, 1, 5, 7, 5, 3, 5}
(see set equality in the following subsection for more on this). There are other mathematical
structures, called sequences and discussed in Section 0.7, where the order in which objects
appear and the multiplicity with which they occur do matter.

To write an intensional description of a set we use the following conventions: we first
identify a variable which will stand for a generic element of the set; we then write the symbol
‘:’ (some people prefer ‘|’); we write the property that characterises the elements of the set
(this property refers to the variable identified before the ‘:’); finally we enclose the entire
expression in curly brackets. For example, an intensional description of the set {1, 3, 5, 7, 9} is:
{x : x is a positive odd integer less than 10}. We read this as follows: “the set of all elements
x such that x is a positive odd integer less than 10”. A different intensional description of
the same set is {i : i is an odd integer represented by a decimal digit}. Note that here we use
both a different variable to denote the generic element of the set, and a different property to
describe precisely the same elements.

0.1.2 Fundamental relationships between sets

Let A and B be two sets. If every element of A is also an element of B, we say that A is a
subset of B, denoted A ⊆ B, and that B is a superset of A, denoted B ⊇ A . If it is the
case that both A ⊆ B and B ⊆ A, we say that A is equal to B, denoted A = B. Finally, if
A ⊆ B and A 6= B, then we say that A is a proper subset of B, denoted A ⊂ B, and that B
is a proper superset of A, denoted B ⊃ A.

The definition of equality between two sets A and B implies that A = B if and only if A

the elements of A and the elements of B — in other words, a correspondence that associates to each element of
A one and only one element of B, and vice versa. By this criterion, it turns out that the cardinality of the set
of positive integers is exactly the same as the cardinality of the set of odd positive integers: to positive integer i
we associate the odd positive integer 2i−1; it is easy to see that this association is a one-to-one correspondence
between the two sets. Perhaps more surprisingly, it turns out that there are as many rational numbers as
there are integers, but there are more real numbers between 0 and 1 than there are integers! The seemingly
esoteric pursuit of comparing cardinalities of infinite sets has turned out to have profound implications in such
disparate (and applied) fields as probability theory, real analysis, and computer science.
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and B have exactly the same elements: each element of A belongs to B and each element of
B belongs to A. This is the precise meaning of the statement, made earlier, that the order
in which the elements of a set are listed and the number of times an element is listed (in an
extensional description of the set) are irrelevant.

The definition of proper subset, implies that A ⊂ B if and only if every element of A is
an element of B, and there is (at least) one element of B that is not an element of A.

Note that, by these definitions, the empty set is a subset of every set, and a proper subset
of every set other that itself. That is, for any set A, ∅ ⊆ A; and if A 6= ∅, then ∅ ⊂ A.

0.1.3 Operations on sets

Let A and B be two sets. We define three binary operations on sets, i.e., ways of combining
two sets to obtain another set.

• The union of A and B, denoted A ∪B, is the set of elements that belong to A or to B
(or both).

• The intersection of A and B, denoted A∩B, is the set of elements that belong to both
A and to B. Note that this may be the empty set. If A ∩ B = ∅, we say that A and B
are disjoint sets.

• The difference of A and B, denoted A−B, is the set of elements that belong to A but
do not belong to B. Note that A−B = ∅ if and only if A ⊆ B.

Above we defined the union and intersection of two sets. It is useful to also define the union
and intersection of an arbitrary (even infinite) number of sets. Let I be a set of “indices” so
that associated with each index i ∈ I there is a set Ai. The union and intersection of all Ai’s
are defined, respectively, as

∪i∈IAi = {x : for some i ∈ I, x ∈ Ai}
∩i∈IAi = {x : for each i ∈ I, x ∈ Ai}

For example, I could be the set of nonnegative integers and, for each i ∈ I, Ai could be the
set of all nonnegative integer powers of i — i.e., {i0, i1, i2, i3, . . .}. For instance, A0 = {0, 1},
A1 = {1}, A2 = {1, 2, 4, 8, 16, . . .}, A3 = {1, 3, 9, 27, 81, . . .} and so on. In this example, ∪i∈IAi

is the set of all nonnegative integers, and ∩i∈IAi is the set {1}.
Another important operation on sets is the powerset operation. For any set A, the pow-

erset of A, denoted P(A) (or sometimes 2A), is the set of subsets of A. For example, if
A = {a, b, c}, then P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Note that this oper-
ation can be applied to an infinite, as well as to a finite, set A. The powerset of the empty set
is the set containing the empty set: P(∅) = {∅}. Note that this is not the same thing as the
empty set.
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0.1.4 Partition of a set

If A is a set, a partition of A is a set of nonempty, pairwise-disjoint subsets of A whose union
is A. In terms of the concepts we defined earlier, a partition of A is a set X ⊆ P(A) such
that (i) for each X ∈ X , X 6= ∅; (ii) for each X, Y ∈ X such that X 6= Y , X ∩ Y = ∅; and
(iii)

⋃
X∈X X = A.

For example, the set of even integers and the set of odd integers is a partition of the set
of integers. The set of integers less than −5, the set of integers between −5 and 5 (inclusive)
and the set of integers greater than 5 is another partition of the set of integers.

0.2 Ordered pairs

Consider two objects a and b, not necessarily distinct. The ordered pair (a, b) is a math-
ematical construction that “bundles” these two objects together, in a particular order — in
this case, first the object a and then the object b.

The fact that the order of the objects in an ordered pair matters is reflected in the following
definition. Let a, b, c, d be objects. We say that the ordered pair (a, b) is equal to the ordered
pair (c, d), denoted (a, b) = (c, d), if and only if a = c and b = d.

By this definition, the ordered pair (a, b) is different from the ordered pair (b, a), unless a
and b are equal. Both of these ordered pairs are “beasts of a different nature” than the set
{a, b}.

Strictly speaking, the above definition of “ordered pair” is not really satisfactory. What
does it mean to say that a mathematical construction “bundles” two objects together “in a
particular order”? Although these words are suggestive, they are not really rigorously defined.
Is an ordered pair another instance of a fundamental concept that cannot be reduced to more
primitive terms, just like a set? Perhaps surprisingly, the answer is no. We can use the concept
of set (that we have already accepted as irreducibly primitive) to define rigorously an ordered
pair.

Specifically, we can formally define the ordered pair (a, b) simply as the set {{a}, {a, b}}.
This is a set of two elements, each of which is a set. One of them is a set that contains only one
element, and that is to be viewed as the ‘first’ element of the ordered pair; the other element
of the set that represents the ordered pair is a set that contains two elements; one of them
is the first element of the ordered pair, and the other is the second element of the ordered
pair. Note that, in describing how the elements of the set {{a}, {a, b}} correspond to the two
elements of the ordered pair (a, b) we are not allowed to talk about “the first element of the
set” and the “second element of the set” — because a set’s elements are not ordered. Instead,
we can distinguish the two elements (and therefore the order of the pair’s elements) by their
cardinalities.

Let us verify that this representation of ordered pairs actually satisfies the definition of
equality between ordered pairs given above. Consider the ordered pairs (a, b) and (c, d).
The sets that represent these ordered pairs are, respectively, X = {{a}, {a, b}}, and Y =
{{c}, {c, d}}. Under what conditions can these two sets be equal? By the definition of equality
between sets we must have that every element of X is an element of Y and vice versa. Thus,
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either

1. {a} = {c} and {a, b} = {c, d}, or

2. {a} = {c, d} and {a, b} = {c}.

We consider each of these cases separately.

Case 1. {a} = {c} and {a, b} = {c, d}. Then, by the definition of equality between sets, we
have that a = c, and b = d.

Case 2. {a} = {c, d} and {a, b} = {c}. Then, by the definition of equality between sets, we
have that a = c = d and a = b = c, i.e., that a = b = c = d.

In both cases, we have that a = c and b = d. This is precisely the condition under which
the ordered pairs (a, b) and (c, d) are equal. We have therefore shown that the formal definition
of ordered pairs in terms of sets has the desired property regarding equality of ordered pairs.
Although, strictly speaking, there is no need to introduce ordered pairs — since we can instead
use sets as discussed — it is certainly more convenient and natural to be able to use the notation
(a, b) instead of the more cumbersome {{a}, {a, b}}.

Having defined ordered pairs, we can also define ordered triples. Informally, an ordered
triple (a, b, c) is a mathematical construction that “bundles” three objects a, b and c (not
necessarily distinct) in a particular order. More formally, we can define an ordered triple
(a, b, c) as the ordered pair (a, (b, c)) — an ordered pair the first element of which is the object
a and the second element of which is the ordered pair (b, c). It is straightforward to verify
that, by this definition, and the definition of equality between ordered pairs, two ordered triples
(a, b, c) and (a′, b′, c′) are equal if and only if a = a′, b = b′ and c = c′.

We can extend this to ordered quadruples, ordered quintuples and, in general, ordered
n-tuples for any integer n > 1.

0.3 Cartesian product

Having defined the concept of ordered pairs, we can now define another important operation
between sets. Let A and B be sets; the Cartesian product of A and B, denoted A × B, is
the set of ordered pairs (a, b) where a ∈ A and b ∈ B. In other words, A × B is the set of
ordered pairs the first element of which is an element of A, and the second of element of which
is an element of B. If A or B (or both) is the empty set, then A×B is also empty.

It is easy to verify from this definition that if A and B are finite sets, then |A×B| = |A|·|B|;
if at least one of A and B is infinite and the other is nonempty, then A× B is infinite. Also,
if A,B are distinct nonempty sets, A× B 6= B × A.

Since we can generalise the notion of ordered pair to ordered n-tuple, for any n > 1, we can
also talk about the Cartesian product of n sets. Specifically, the Cartesian product of n > 1
sets A1, A2, . . . , An, denoted A1×A2 . . . An, is the set of ordered n-tuples (a1, a2, . . . , an), where
ai ∈ Ai for each i such that 1 ≤ i ≤ n.
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0.4 Relations

Let A and B be sets. Informally, a relation between A and B is an association between elements
of the set A and elements of the set B. For example, suppose A is the set of persons and B is
the set of universities. We can talk about the relation “graduate-of” between these two sets;
this relation associates a person, say Ravi, with a university, say the University of Toronto, if
and only if Ravi graduated from U of T. Notice that in such an association it is possible that
a person is associated to no university (if that person has not graduated from university), or
that a person is associated with multiple universities (if the person has degrees from different
universities).

The above definition of a relation is not rigorous. What, after all, does it mean to “asso-
ciate” elements of one set with elements of another? We can define the concept of a relation
rigorously based on sets.

Formally, a relation R between A and B is a subset of the Cartesian product A × B,
i.e., R ⊆ A × B. In our preceding example, the relation “graduate-of” is the subset of the
Cartesian product of the set of people and the set of universities that contains, among other
ordered pairs, (Ravi,U of T). As another example, suppose A = B is the set of integers. We
can define the relation LessThan between A and B as the set of ordered pairs of integers (a, b)
such that a < b. For example, the ordered pair (−2, 7) belongs to LessThan, while neither
(2, 2) nor (5, 3) belong to this relation.

In general, we can have relations not just between two sets (as in the preceding examples),
but between any number of sets. For example, consider the set A of students, the set B of
possible marks, and the set C of courses. Suppose we want to talk about the relation which
describes the mark that a student achieved in a course. Mathematically we can formalise this
by defining this relation as the subset of the Cartesian product A×B ×C that consists of all
ordered triples (s, c,m) such that student s received mark m in course c.

As another example, let A, B and C be the set of integers. We can define the relation Sum
consisting of the set of ordered triples (a, b, c) such that a = b + c. For example, (17, 7, 10) is
in this relation, while (17, 7, 5) is not.

Naturally, we can also define relations among four, five, or any number of sets. In general,
let n > 1 be an integer, and A1, A2, . . . , An be sets. A relation among A1, A2, . . . , An is a subset
of the Cartesian product A1 × A2 × . . .× An. The number of sets involved in a relation (n in
this general definition) is called the arity of the relation. For example, relation LessThan is
a relation of arity two (or a binary relation), while relation Sum is a relation of arity three
(or a ternary relation). In the (common) special case where all n sets are the same, say A,
we say that the relation is an n-ary relation over A. Thus, the relation LessThan is a binary
relation over the integers.

Since relations are sets, we already have a notion of equality between relations: two relations
are equal if the corresponding sets of tuples are equal. This fact has certain implications that
must be clearly understood.

First, certain associations that might superficially appear to define the same relation are, in
fact, different relations — at least mathematically speaking. For instance, compare the relation
graduate-of between persons and universities mentioned above, and the relation alma-mater-
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of between universities and persons, which associates a university, say U of T, to a person,
say Ravi, if and only if the person has graduated from that university. Superficially, it may
appear that the two relations define the same “association”. Yet, mathematically speaking,
they are different relations, because they are different sets. The first contains ordered pairs
like (Ravi,U of T), while the latter contains ordered pairs like (U of T,Ravi). This becomes a
little clearer if we do something similar to the LessThan relation between integers; if we invert
the order of the elements of each ordered pair in the relation we get the “greater-than” relation
between integers — which is clearly a different relation than LessThan!

A second consequence of the definition of equality between relations is that the particular
way of describing the association between elements is not important — what is important is the
association itself. For example, consider the binary relation C over the real numbers consisting
of the set of ordered pairs (x, y) that are the coordinates of points on the circumference of
a circle whose centre lies at point (0, 0) and whose radius has length 1. Also consider the
binary relation C ′ over the real numbers consisting of the set of ordered pairs (x, y) such that
x2 + y2 = 1. These two relations are equal because they contain exactly the same sets of
ordered pairs. Note that we described these two relations in entirely different ways: C was
described geometrically, and C ′ was described algebraically. Nevertheless — by a nontrivial,
though elementary, theorem of analytic geometry — the two descriptions refer to exactly the
same set of ordered pairs, and therefore the two relations are equal. The point of this example
is that what matters in defining a relation is the set of ordered pairs it contains — not the
particular manner in which we describe the association between the elements of the two sets
over which the relation is defined.

0.5 Important types of binary relations

A binary relation between elements of the same set, can be represented graphically as a so-
called directed graph. A directed graph consists of a set of points and a set of arrows, each
connecting two points. The points of a directed graph are also called nodes or vertices, and
the arrows are also called edges or arcs. The directed graph that represents a binary relation
R ⊆ A× A is constructed as follows. Each vertex corresponds to some element of A; thus we
will think of the vertices as elements of A. The directed graph has an edge from vertex a ∈ A
to vertex b ∈ A if and only if (a, b) ∈ R. For example, Figure 1 shows the directed graph that
represents the relation R = {(a, b) : a, b ∈ {1, 2, 3, 4} and a ≤ b}. The vertices are drawn as
circles in this figure, and each vertex is labeled with the element of A to which it corresponds.

We now define some important special types of binary relations that relate elements of the
same set. Let A be a set and R ⊆ A× A be a relation.

R is a reflexive relation if for each a ∈ A, (a, a) ∈ R. For example, the relation a ≤ b
between integers is reflexive, while a < b is not. In the directed graph that represents a reflexive
relation, for each vertex there is an edge that starts and ends at that vertex. This is the case
in the graph of Figure 1.

R is a symmetric relation if for each a, b ∈ A, if (a, b) ∈ R then (b, a) ∈ R. For example,
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1 2 3 4

Figure 1: The directed graph of the relation {(a, b) : a, b ∈ {1, 2, 3, 4} and a ≤ b}

the relation

R1 = {(a, b) : a and b are persons with at least one parent in common}

is symmetric. In the directed graph that represents a symmetric relation, whenever there is
an arrow from a to b, there is also an arrow from b to a. To avoid the unnecessary visual
clutter that results from having pairs of arrows running between the same two vertices in
opposite directions, we can replace each such pair of arrows by a single line that connects the
two vertices, without indicating the direction with an arrowhead. The resulting graph that
consists of points and lines (still called vertices and edges) is referred to as an undirected
graph. Figure 2 shows the directed graph that represents a symmetric relation and, on its
right, the undirected graph that represents the same relation.

Figure 2: The directed and undirected graphs that correspond to a symmetric relation

R is a transitive relation if for each a, b, c ∈ A, if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.
For example, both relations defined below are transitive:

R2 = {(a, b) : a and b are persons with the same parents}
R3 = {(a, b) : a and b are persons and a is an ancestor of b}.

R2 is also reflexive and symmetric, while R3 is neither. A path in a graph is a sequence of
edges each of which ends at the vertex where the next edge, if one exists, starts. Such a path is
said to be from vertex a to vertex b, if the first edge in the path starts at a and the last edge
ends at b. In the graph that represents a transitive relation, whenever there is a path from a
to b there is an edge that goes directly from a to b. This is the case in the graph of Figure 1.
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R is an equivalence relation if it is reflexive, symmetric and transitive. For example, R2

is an equivalence relation. R1 is not an equivalence relation because, although it is reflexive
and symmetric, it is not transitive. R3 is not an equivalence relation because it is not reflexive
or symmetric. Another example of an equivalence relation between integers is the so-called
congruence modulo m relation: If m is a positive integer, integers a and b are congruent
modulo m, written a ≡m b, if the divisions of a and b by m leave the same remainder. For
example, 7 ≡5 17. It is easy to see that the relation ≡m is an equivalence relation, for every
positive integer m.

Let R be an equivalence relation and a be an element of A. The equivalence class of
a under R is defined as the set Ra = {b : (a, b) ∈ R}, i.e., the set of all elements that are
related to a by R. The fact that R is reflexive implies that for any a ∈ A, Ra 6= ∅; and the fact
that R is transitive implies that for any a, b ∈ A, if Ra 6= Rb then Ra ∩ Rb = ∅. Therefore, an
equivalence relation R on A partitions A into a collection of equivalence classes. The elements
of each equivalence class are related to each other by R, and elements of different equivalence
classes are not related to each other by R. For example, since the division of an integer by a
positive integer m can leave m possible remainders (0, 1, . . . ,m − 1), the equivalence relation
≡m partitions the set of integers into m equivalence classes: the integers that have remainder
0 when divided by m, those that have remainder 1 when divided by m, and so on. The set
of people is partitioned by the equivalence relation R2 into a collection of equivalence classes,
each consisting of siblings, i.e., persons with the same parents.

In view of this discussion, if R is an equivalence relation, the undirected graph that repre-
sents R is a collection of disconnected “clusters” as shown in Figure 3. Each cluster corresponds
to one of the equivalence classes of A under R. Since every pair of elements in an equivalence
class are related by R, there is an edge between every pair of nodes in each cluster (including
an edge from a node to itself). And since elements in different equivalence classes are not
related by R, there are no edges between nodes in different clusters. The equivalence relation
represented in Figure 3 partitions a set into four equivalence classes, with one, four, two and
five elements respectively.

Figure 3: The undirected graph that corresponds to an equivalence relation of twelve elements

R is an antisymmetric relation if for each a, b ∈ A such that a 6= b, if (a, b) ∈ R then
(b, a) /∈ R. For example, the relations a ≤ b and a < b between integers are antisymmetric.
Relation R3 defined above is antisymmetric. Note that a relation could be neither symmetric
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nor antisymmetric. For example,

R4 = {(a, b) : a and b are persons with the same parents and a is male}

is neither symmetric nor antisymmetric.
R is a partial order if it is antisymmetric and transitive. For example, the relation R3 is

a partial order. Note that there are persons neither one of which is an ancestor of the other.
The qualification “partial” in the name “partial order” refers to the fact that, in general, a
partial order need not specify an order between every two elements, A partial order that relates
any two elements, in one way or the other, is called a total order. More precisely, R is a
total order if it is a partial order that satisfies the following property: for each a, b ∈ A, either
(a, b) ∈ R or (b, a) ∈ R. For example, if each person has a unique Social Insurance Number
(SIN), the relation

R5 = {(a, b) : a and b are persons and a’s SIN is smaller than b’s}

is a total order.

0.6 Functions

Let A and B be sets. A function f from A to B is a special kind of relation between A and
B. Specifically, it is a relation with the property that, each element a ∈ A is associated to
exactly one element of B. More formally, the relation f ⊆ A × B is a function if for each
a ∈ A there is exactly one b ∈ B such that (a, b) ∈ f . Note that, since a relation is actually a
set (of ordered pairs), a function is also a set.

We usually write f : A→ B to denote the fact that f is a function (and hence a relation)
from A to B. The set A is called the domain of the function, and B is called the range of
the function. If a ∈ A and b ∈ B are such that (a, b) ∈ f , we say that a maps to b (under f)
and we write f(a) to denote b. Note that, by definition of a function, such an element b ∈ B
is unique and therefore f(a) is well-defined.

The function f : A→ B is called an onto (or surjective) function if for every b ∈ B there
is (at least) one a ∈ A such that f(a) = b. In other words, every element of B is mapped onto
by some element of A (under f). It is called one-to-one (or injective) if for every element
b ∈ B, there is at most one element a ∈ A that maps onto b (under f). Finally, a function is
called bijective if it is one-to-one and onto. If f : A→ B is a bijection, then |A| = |B|.

The restriction of a function f : A → B to a subset A′ of its domain, denoted f ↾ A′, is
the function f ′ : A′ → B such that for every a ∈ A′, f ′(a) = f(a).

Since functions are relations and we already know what equality between relations means,
we also know what equality between functions means. Let f : A → B and f ′ : A → B be
functions. From the definitions, it is easy to check that f = f ′ if and only if for every a ∈ A,
f(a) = f ′(a).

The comments made at the end of the Section 0.4 regarding the implications of the definition
of equality between relations apply to functions as well. To emphasise the point, consider two
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functions that map nonnegative integers to nonnegative integers. The first function, f is
defined recursively as follows:

f(0) = 0

f(1) = 1

f(n) = f(n− 1) + f(n− 2), for any integer n > 1.

So, for example,

f(2) = f(1) + f(0) = 1 + 0 = 1,

f(3) = f(2) + f(1) = 1 + 1 = 2,

f(4) = f(3) + f(2) = 2 + 1 = 3,

f(5) = f(4) + f(3) = 3 + 2 = 5,

f(6) = f(5) + f(4) = 5 + 3 = 8, and so on.

The second function, f ′, is defined as follows: For any nonnegative integer n,

f ′(n) =

(
1+

√
5

2

)n

−
(

1−
√
5

2

)n

√
5

.

It can be shown that, for any nonnegative integer n, f(n) = f ′(n). (In fact, we will show
this later in the course. The proof is surprisingly simple, although the result is by no means
obvious prima facie.) Thus, the two functions are equal. The point, once again, is that the
manner in which we describe a function is not important: it is the set of ordered pairs that we
define that matters. As this example shows, the same function can be described in extremely
different ways, and it is not always immediately obvious whether two different descriptions
in fact define the same function or different ones. We must therefore keep in mind that just
because we defined two functions in different ways, it does not thereby follow that the two
functions are themselves different. To prove that two functions f and f ′ from A to B are
different, we must produce a particular element on which they differ — i.e., we must show that
there is some element a ∈ A such that f(a) 6= f ′(a).

0.7 Sequences

Informally, a sequence is an arrangement of objects in a particular order. Unlike a set, the
order of the objects in the sequence is important, and an object may appear in the sequence
several times. When we write down a sequence, we list the objects in the order they appear in
the sequence, separating them with commas — e.g., a, b, c, b, f . Sometimes, the entire sequence
is surrounded by angled brackets, as in 〈a, b, c, b, f〉. Naturally, if the sequence in question is
infinite, we cannot write it down in this manner. In that case we rely in a combination of English
and, perhaps, an initial fragment of the infinite sequence followed by ellipses. For example,
we might talk about “the sequence of prime numbers in increasing order, i.e., 2, 3, 5, 7, . . .”.
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Another way or writing down an infinite sequence is reminiscent of intentional descriptions of
sets. We use a variable, say x, subscripted by a nonnegative integer index, say i; a generic
element of the sequence is denoted as xi, and the sequence may be described by stating the
property that xi satisfies. For example, the sequence of prime numbers in increasing order can
be written as: 〈xi : xi is prime and there are exactly i primes less than xi〉.

The preceding definition of sequence, although perhaps suggestive, is not rigorous since it
relies on undefined terms like “arrangement of objects”. We can define sequences formally by
using the mathematical concepts we have introduced earlier.

Let N be the set of natural numbers, i.e. the set of nonnegative integers. An initial
segment I of N is a subset of N with the following property: for any element k ∈ I, if k > 0,
then k− 1 ∈ I. Thus, an initial segment of N is either the empty set, or the set {0, 1, 2, . . . , k}
for some nonnegative integer k, or the entire set N.

Let A be a set. A sequence over A is a function σ : I → A, where I is an initial segment
of N. Intuitively, σ(0) is the first element in the sequence, σ(1) is the second element in the
sequence and so on. If I = ∅, then σ is the empty or null sequence, denoted ǫ. If I = N then
σ is an infinite sequence; otherwise, it is a finite sequence. The length of σ is |I| — i.e., the
number of elements in the sequence. Note that the length of the empty sequence is 0, and the
length of an infinite sequence (i.e., one whose domain is the entire set of nonnegative integers,
N) is ∞.

0.7.1 Operations on sequences

In this section we define two operations on sequences: concatenation and reversal.

Let σ : I → A and σ′ : I ′ → A be sequences over the same set A, and suppose that σ is
finite. Informally, the concatenation of σ and σ′, denoted σ ◦ σ′ (and sometimes as σσ′), is
the sequence over A that is obtained by juxtaposing the elements of σ′ after the elements of
σ. More precisely, this is defined as follows. If I ′ = N (i.e., σ′ is infinite), then let J = N;
otherwise, let J be the initial segment {0, 1, . . . , |I|+ |I ′| − 1}. Then σ ◦ σ′ : J → A, where for
any i ∈ I, σ ◦ σ′(i) = σ(i), and for any i ∈ I ′, σ ◦ σ′(|I|+ i) = σ′(i).

Let σ : I → A be a finite sequence over A. Informally, the reversal of σ, denoted σR, is
the sequence of the elements of σ in reverse order. More precisely, σR : I → A is the sequence
so that, for each i ∈ I, σR(i) = σ(|I| − 1− i).

0.7.2 Fundamental relationships between sequences

Since, strictly speaking, a sequence is a function of a special kind, and we know what it means
for two functions to be equal, we also know what it means for two sequences to be equal. Let
σ : I → A and σ′ : I → A be two sequences over A of the same length. Then σ = σ′ if and
only if, for every k ∈ I, σ(k) = σ′(k). (Note that two sequences of different length cannot be
equal, since the corresponding functions cannot possibly be equal.)

From the definitions of concatenation and equality of sequences, it is easy to verify the
following facts (recall that concatenation of two sequences is defined only if the first of the
sequences is finite): For any sequence σ, ǫ ◦ σ = σ; if σ is finite, σ ◦ ǫ = σ. Furthermore, for
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any sequences σ, τ over the same set, if τ is finite and τ ◦ σ = σ, then τ = ǫ; if σ is finite and
σ ◦ τ = σ, then τ = ǫ.

A sequence σ is a subsequence of sequence τ if the elements of σ appear in τ and do so in
the same order as in σ. For example, 〈b, c, f〉 is a subsequence of 〈a, b, c, d, e, f, g〉. Note that
we do not require the elements of σ to be consecutive elements of τ — we only require that
they appear in the same order as they do in σ. If, in fact, the elements of σ are consecutive
elements of τ , we say that σ is a contiguous subsequence of τ . More formally, the definition
of the subsequence relationship between sequences is as follows. Let A be a set, I and J be
initial segments of N such that |I| ≤ |J |, and σ : I → A, τ : J → A be sequences over A.
The sequence σ is a subsequence of τ if there is an increasing function2 f : I → J so that, for
all i ∈ I, σ(i) = τ(f(i)). If σ is a subsequence of τ and is not equal to τ , we say that σ is a
proper subsequence of τ .

The sequence σ is a contiguous subsequence of sequence τ if there is some nonnegative
integer j such that for all i ∈ I, σ(i) = τ(i + j). For example, 〈c, d, e〉 is a contiguous
subsequence of 〈a, b, c, d, e, f, 〉 (what is the value of j for this example?). Obviously, if σ is a
contiguous subsequence of τ , then σ is a subsequence of τ . The converse, however, is not, in
general, true: σ may be a subsequence of τ without being a contiguous subsequence of it.

The sequence σ is a prefix of sequence τ , if (i) σ is finite and there is a sequence σ′ such
that σ ◦ σ′ = τ , or (ii) σ is infinite and σ = τ . If σ is a prefix of τ , but is not equal to it,
then σ is a proper prefix of τ . For example, 〈a, b, c〉 is a prefix (in fact, a proper prefix) of
〈a, b, c, d〉.

The sequence σ is a suffix of τ , if there is some (finite) sequence σ′ so that σ′ ◦ σ = τ . If
σ is a suffix of τ but is not equal to it, then σ is a proper suffix of τ . For example, 〈c, d, e〉
is a suffix (in fact, a proper suffix) of 〈a, b, c, d, e〉.

It is an immediate consequence of these definitions that if σ is a (proper) prefix of τ , then
σ is a contiguous (proper) subsequence of τ , but the converse is not necessarily true. Thus,
the prefix relationship is a special case of the contiguous subsequence relationship. A similar
fact holds if σ is a suffix of τ .

0.7.3 Strings

An alphabet is a nonempty set Σ; the elements of an alphabet are called its symbols. A
string (over alphabet Σ) is simply a finite sequence over Σ. By convention when we deal
with strings we write the sequence without separating its elements by commas. Thus, if the
alphabet is {0, 1}, we write 0100 instead of 〈0, 1, 0, 0〉; if the alphabet is {a, b, . . . , z}, we write
boy instead of 〈b, o, y〉. The empty sequence is a string and is denoted, as usual, ǫ. The set
of all strings over alphabet Σ is denoted Σ∗. Note that ǫ ∈ Σ∗, for any alphabet Σ. Although
each string is a finite sequence, it can be of arbitrary length and thus Σ∗ is an infinite set.

Since strings are simply (finite) sequences over a specified set, various notions defined for
sequences apply to strings as well. In particular, this is the case for the notion of length (which

2A function f whose domain is an initial segment I of N is called increasing if, for every i, j ∈ I such that
i < j, f(i) < f(j).
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must now be a natural number, and cannot be∞), the operations concatenation and reversal,
and the relationships equality, (proper) prefix and (proper) suffix. We use the term substring
as synonymous to contiguous subsequence (not to subsequence); thus for any σ, τ ∈ Σ∗, σ is
a substring of τ if and only if there exist σ′, σ′′ ∈ Σ∗ (either or both of which may be empty)
such that τ = σ′σσ′′. If σ′ = ǫ then σ is, in fact, a prefix of τ ; and if σ′′ = ǫ then σ is a suffix
of τ .

0.8 Permutations

Let A be a finite set. A permutation of A is a sequence in which every element of A appears
once and only once. For example, if A = {a, b, c, d} then 〈b, a, c, d〉, 〈a, c, d, b〉 and 〈a, b, c, d〉
are permutations of A (there are 24 such permutations in total).

Sometimes we speak of permutations of a sequence (rather than a set). In this case, the
definition is as follows: Let σ : I → A and τ : I → A be finite sequences over A (note that the
two sequences have the same length, |I|). The sequence τ is a permutation of σ if there is a
bijective function f : I → I so that for every i ∈ I, τ(i) = σ(f(i)).
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Exercises

1. Let A = {1, 2, 3, {1, 2}, {1, 2, 3}}.
(a) Is {1, 2} an element of A, a subset of A, both or neither?

(b) Is {2, 3} an element of A, a subset of A, both or neither?

(c) Is 1 an element of A, a subset of A, both or neither?

2. What is |{{1, 2, 3}}|?

3. Prove that if A and B are finite sets such that A ⊆ B and |A| = |B|, then A = B. Does
the same result hold if A and B are not finite?

4. If A ∪ B = A, what can we conclude about the sets A and B?

5. If A ∩ B = A, what can we conclude about the sets A and B?

6. Write down the set that formally represents the ordered triple (a, b, c).

7. If A × B = B × A, what can we conclude about the sets and A and B? Justify your
answer.

8. If |A× B| = |A|, what can we conclude about the sets A and B? Justify your answer.

9. Let A = {1, 2} and B = {a, b, c}. Write down all possible functions from A to B. (Each
function should be written as a set of ordered pairs.) How many such functions are there?

10. Let f : A→ B be a function, where A and B are finite sets. Recall that a function is a
certain kind of relation, and a relation is a certain kind of set, so it makes sense to talk about
the cardinality of the function, |f |.
(a) What can we say about |f | in comparison to |A|?
(b) If f is surjective, what can we say about |A| in comparison to |B|?
(c) If f is injective, what can we say about |A| in comparison to |B|?
(d) If f is bijective, what can we say about |A| in comparison to |B|?

11. Formally, a sequence is a special kind of function, a function is a special kind of a relation,
and a relation is a special kind of set. Thus, ultimately a sequence is some sort of a set. Given
two sequences, then, it makes perfect sense to ask whether one is a subset of the other. Is the
subset relationship between sequences (viewed as sets) the same as either the subsequence or
prefix relationship? In other words, suppose σ and τ are arbitrary sequences over some set A.

(a) Is it true that σ ⊆ τ if and only if σ is a subsequence of τ?

(b) Is it true that σ ⊆ τ if and only if σ is a prefix of τ?

Justify your answers.
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12. Let A = {1, 2, 3}. Write down all the permutations of A. Suppose B = {1, 2, 3, 4}.
How many permutations of B are there? How would you generate all permutations of B
in a systematic way, given all the permutations of A? Based on your experience with this
example, write a (recursive) program which takes as input a number n ≥ 0, and returns, in
some reasonable representation, the set of permutations of the set {1, 2, . . . , n} (it returns ∅,
if n = 0).

13. In the text we defined permutations of a set and permutations of a sequence. Consider
the following alternative definition of a permutation of a sequence σ : I → A. Let S be the
set of elements that appear in σ; more precisely, S = {x: for some i ∈ I, x = σ(i)}. Then a
permutation of σ is a permutation of the set S. Is this definition equivalent to the definition
of permutation of sequence given in the text? Justify your answer.



Chapter 1

INDUCTION

1.1 Fundamental properties of the natural numbers

The natural numbers are the nonnegative integers 0, 1, 2, . . .. The set of natural numbers is
denoted N; the set of all integers (including the negative ones) is denoted Z. In this section
we discuss three fundamental properties of N: well-ordering, (simple) induction, and complete
induction.

1.1.1 Well-ordering

Principle of well-ordering: Any nonempty subset A of N contains a minimum element;
i.e., for any A ⊆ N such that A 6= ∅, there is some a ∈ A such that for all a′ ∈ A, a ≤ a′.

Note that this principle applies to all nonempty subsets of N and, in particular, to infinite
subsets of N. Also note that this principle does not apply to several other sets of numbers.
For instance, it does not apply to Z: the set of negative integers is a nonempty subset of Z
that does not have a minimum element! Similarly, the well-ordering principle does not apply
to the set of all rational numbers between 0 and 1: {1

2
, 1
3
, 1
4
, 1
5
, . . .} is a subset of this set that

has no minimum element. The point of these examples is to illustrate that the well-ordering
principle, although rather obvious, is not something completely trivial that is true of all sets
of numbers. It is a property specific to the set N.

1.1.2 Simple induction

Principle of (simple) induction: Let A be any set that satisfies the following properties:

(i) 0 is an element of A;

(ii) for any i ∈ N, if i is an element of A then i+ 1 is also an element of A.

Then A is a superset of N.

Here is an informal justification of why this principle is valid.

17
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• By (i), 0 ∈ A.

• For i = 0, property (ii) states that if 0 ∈ A then 1 ∈ A. Since we have just shown that
0 ∈ A, it follows that 1 ∈ A.

• For i = 1, property (ii) states that if 1 ∈ A then 2 ∈ A. Since we have just shown that
1 ∈ A, it follows that 2 ∈ A.

• For i = 2, property (ii) states that if 2 ∈ A then 3 ∈ A. Since we have just shown that
2 ∈ A, it follows that 3 ∈ A.

It seems perfectly clear that we can proceed in this manner to also prove that each of 4, 5, 6, . . .
— in fact, any natural number whatsoever — belongs to A; and therefore, that N ⊆ A. This,
however, is not a rigorous proof: We have not actually shown that this argument (the repeated
application of (ii)) can be used to prove that every natural number is in A. In fact, it is
intrinsically impossible to do so, since there are infinitely many cases to check. Nothing we
have said so far can rule out a skeptic’s concern that this argument will break down after some
(perhaps incredibly large) number! Our intuition about the natural numbers strongly suggests
that the argument does not break down, and so we accept this principle as “obviously true”.

1.1.3 Complete induction

Principle of complete induction: Let A be any set that satisfies the following property:

(∗) for any i ∈ N, if every natural number less than i is an element of A then i is also an
element of A.

Then A is a superset of N.

This principle seems quite similar to the principle of (simple) induction, although there
are some differences. First, the requirement that 0 ∈ A (see property (i) in the principle of
induction) appears to be missing. Actually, this is not true: the requirement that 0 ∈ A is
implicit in (∗). To see this, note that for i = 0, (∗) states that if every natural number less
than 0 belongs to A, then 0 belongs to A. Since there are no natural numbers less than 0, the
hypothesis of this implication is (vacuously) true, and therefore so is the conclusion. In other
words, 0 is an element of A.

The second, and less superficial, difference between complete and simple induction is this:
In complete induction, we require i to be an element of A if all the numbers preceding i are
in A. In contrast, in simple induction, we require i to be an element of A as long as just the
previous number, i− 1, is in A.

We can give an informal justification of this principle, along the lines we used for simple
induction:

• As we argued two paragraphs earlier, 0 belongs to A (by considering what (∗) says when
i = 0).
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• When i = 1, (∗) states that if 0 belongs to A, then 1 also belongs to A. But we showed
that 0 does belong to A; therefore, so does 1.

• When i = 2, (∗) states that if 0 and 1 belong to A, then 2 also belongs to A. But we
showed that 0 and 1 do belong to A; therefore, so does 2.

• When i = 3, (∗) states that if 0, 1 and 2 belong to A, then 3 also belongs to A. But we
showed that 0, 1 and 2 do belong to A; therefore, so does 3.

Proceeding in the same manner, we can show that each of 4, 5, 6, . . . is in A. This is not a
formal proof of the validity of complete induction, for the same reason given in the case of
simple induction.

1.1.4 Equivalence of the three principles

The three properties of the natural numbers discussed in the preceding sections are so basic
that they cannot be proved from more elementary facts. We accept them axiomatically, as
“self-evident” truths. This may be disappointing, but it is perhaps comforting to know that
we don’t have to accept all three of them independently. This is because we can prove that
the three principles are equivalent: any one of them implies the other two. Thus, if we think
that just one of them is “self-evident” we must be prepared to accept the other two as well,
since they follow from it.

Theorem 1.1 The principles of well-ordering, induction, and complete induction are equiva-
lent.

Proof. We prove this by establishing a “cycle” of implications. Specifically, we prove that
(a) well-ordering implies induction, (b) induction implies complete induction, and (c) complete
induction implies well-ordering.

(a) Well-ordering implies induction: Assume that the principle of well-ordering holds. We will
prove that the principle of induction is also true. To that end, let A be any set that satisfies
the following properties:

(i) 0 is an element of A;

(ii) for any i ∈ N, if i is an element of A then i+ 1 is also an element of A.

To prove the principle of induction we must show that A ⊇ N. We do so using a proof by
contradiction.

Suppose, for contradiction, that A is not a superset of N. Then the set A = N − A must
be nonempty. (Note that, by the definition of A, a natural number k belongs to A if and only
if it does not belong to A.) By the principle of well-ordering (which holds by assumption) A
has a minimum element, say i∗. By (i), i∗ 6= 0 (because 0 ∈ A, while i∗ /∈ A). Thus, i∗ > 0,
and hence i∗ − 1 is a natural number. Since i∗ is the minimum element of A, it follows that
i∗−1 /∈ A, and therefore, i∗−1 ∈ A. By (ii) and the fact that i∗−1 ∈ A, it follows that i∗ ∈ A.
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But then i∗ /∈ A, contradicting the fact that i∗ is an element of A — in fact, the minimum
element of it.

This contradiction means that our original supposition, that A is not a superset of N, is
false. In other words, A ⊇ N, as wanted.

(b) Induction implies complete induction: Assume that the principle of induction holds. Let
A be any set that satisfies the following property:

(∗) for any i ∈ N, if every natural number less than i is an element of A then i is also an
element of A.

To prove that the principle of complete induction holds, we must prove that A ⊇ N. To this
end, define the set B as follows:

B = {i ∈ N : every natural number less than or equal to i is in A}.

In other words, B is the initial segment of N up to (but not including) the smallest number
that is not in A. Obviously, B ⊆ A. Thus, to prove that A ⊇ N it suffices to prove that
B ⊇ N. Indeed, we have:

(1) 0 ∈ B. (This is because (∗), for i = 0, implies that 0 is in A.)

(2) For any i ∈ N, if i ∈ B then i + 1 ∈ B. (To see why, suppose i ∈ B. By definition of
B, every natural number less than or equal to i is in A. By (∗), i + 1 ∈ A. Thus, every
natural number less than or equal to i+ 1 is in A. By definition of B, i+ 1 ∈ B.)

By (1), (2) and the principle of induction (which we assume holds), we get that B ⊇ N, as
wanted.

(c) Complete induction implies well-ordering: Assume that the principle of complete induction
holds. Let A be any subset of N that has no minimum element. To prove that the principle of
well-ordering holds it suffices to show that A is empty.

For any i ∈ N, if every natural number less than i is not in A, it follows that i is not in A
either — otherwise, i would be a minimum element of A, and we are assuming that A has no
minimum element. Let A = N − A. (Thus, any natural number i is in A if and only if it is
not in A.) Therefore, for any i ∈ N, if every natural number less than i is in A, then i is also
in A. By the principle of complete induction (which we assume holds), it follows that A is a
superset of N. Therefore A is empty, as wanted.

1.2 Mathematical induction

Mathematical induction is a proof technique which can often be used to prove that a certain
statement is true for all natural numbers. Before we see how and why this proof technique
works, we must first understand very clearly the kind of statements to which it can be applied.
Consider the following statements:
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• P1(n): The sum of the natural numbers up to and including n is equal to n(n+ 1)/2.

• P2(n): If a set A has n elements, then the powerset of A has 2n elements.

• P3(n): The number n is prime or it is equal to the product of a sequence of primes.

• P4(n): n cents worth of postage can be formed using only 4-cent and 5-cent stamps.

• P5(n): n is a perfect square (i.e., there is some a ∈ N such that n = a2).

• P6(n): n is a perfect cube and is the sum of two perfect cubes of positive numbers (i.e.,
there are a, b, c ∈ N such that n = a3, b, c > 0 and n = b3 + c3).

Each of these is a generic statement about the variable n, which we assume ranges over the
natural numbers. It becomes a specific statement once we choose a particular value for n; and
that specific statement may be true or false. For instance, if we choose n = 5, P1(5) states
that the sum 0 + 1 + 2 + 3 + 4 + 5 is equal to 5 · 6/2; this is clearly a true statement. On the
other hand, P5(5) states that 5 is a perfect square, which is a false statement. Technically, a
statement like these is called a predicate of natural numbers.

In general, a predicate of a natural number n may be true for all values of n, for some
values of n, or for no value of n. For example, P1(n) and P2(n) are true for all n; P3(n) is
true for all n ≥ 2; P4(n) is true for all n ∈ N except 0, 1, 2, 3, 6, 7 and 11; P5(n) is true for an
infinite number of natural numbers, and false for an infinite number of natural numbers; and
P6(n) is true for no natural number whatsoever.

In mathematics and in computer science, we are often interested in proving that a predicate
of a natural number n is true for all n ∈ N. Obviously we can’t hope to do this by checking
each natural number in turn, since there are infinitely many such numbers and we’d never be
done checking them all. Induction is an important technique (though not the only one) that
can be used to prove such statements.

Thus, a proof by induction, is a method for proving the statement

for each n ∈ N, P (n) is true

where P (n) is a predicate of natural numbers. This method of proof consists of two steps:

Basis: Prove that P (0) is true, i.e., that the predicate P (n) holds for n = 0.

Induction Step: Prove that, for each i ∈ N, if P (i) is true then P (i+ 1) is also true.

The assumption that P (i) holds in the induction step of this proof is called the induction
hypothesis.

The question now arises: Why does such a proof actually show that P (n) is true for
all n ∈ N? The answer should be clear if we recall the principle of induction for N (see
Section 1.1.2). To spell out exactly what is going on, let A[P ] be the set of natural numbers
for which the predicate P is true; i.e., A[P ] = {n ∈ N : P (n) is true}. By the basis of the
induction proof,

(i) 0 ∈ A[P ].
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By the Induction Step,

(ii) for each i ∈ N, if i ∈ A[P ] then i+ 1 ∈ A[P ].

By the principle of induction, A[P ] is a superset of N. Since (by definition) A[P ] contains only
natural numbers, A[P ] is a subset of N. Thus, A[P ] = N. From the definition of A[P ], this
means that P (n) is true for all n ∈ N.

Before looking at some examples, it is important to dispell a common misconception about
the induction step. The induction hypothesis is not the assumption that predicate P is true
for all natural numbers. This is what we want to prove and so assuming it would be circular
reasoning. Rather, the induction step requires us to prove, for each natural number, that if
P holds for that number then it holds for the next number too. Thus, typically the induction
step proceeds as follows:

• We let i be an arbitrary natural number.

• We assume that P (i) is true (the induction hypothesis).

• Using the induction hypothesis, we prove that P (i+ 1) is also true.

The particulars of the last step depend on the predicate P . To carry out this step we must
somehow relate what the predicate asserts for a number to what it asserts for the previous
number.

1.2.1 Examples

Having seen, in general terms, what a proof by induction looks like and why it works, let us
now turn our attention to some specific examples of inductive proofs.

Example 1.1 Let i and j be integers, and suppose that, for each integer t such that i ≤ t ≤
j, at is some number. We use the notation

∑j
t=i at to denote the sum ai + ai+1 + · · ·+ aj. (If

i > j, we adopt the convention that
∑j

t=i at is 0.) We will use induction to prove the following:

Proposition 1.2 For any n ∈ N,
∑n

t=0 t = n(n+ 1)/2; i.e. 0 + 1 + · · ·+ n = n(n+ 1)/2.

(Note that in the above use of the
∑

notation, at = t.)
Whenever we do a proof by induction, it is crucial to be very clear about the predicate which

we want to prove is true for all natural numbers. The best way to ensure this is to explicitly
write down this predicate using a suitable variable to denote the generic natural number that
the predicate is talking about, and to give the predicate a name. In this particular case, let
us call the predicate in question S(n) (so in this case we have chosen n as the variable name
denoting a generic natural number). We have

S(n) :
n∑

t=0

t =
n(n+ 1)

2
. (1.1)
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Be sure you understand the distinction between the predicate S(n) and the statement “for
every natural number n, S(n) holds”. The former (being a predicate of natural numbers) is a
function that becomes true or false once we specify a particular natural number. It makes no
sense to ask whether the predicate S(n) is true unless we have already specified a value for n;
it makes sense to ask whether S(5) or S(17) is true. On the other hand, it makes perfect sense
to ask whether the statement “for all n ∈ N, S(n) holds” is true (and we will presently prove
that it is).

Proof of Proposition 1.2. Let S(n) be the predicate defined in (1.1). We use induction
to prove that S(n) is true for all n ∈ N.

Basis: n = 0. In this case, S(0) states that 0 = 0 · 1/2, which is obviously true. Thus S(0)
holds.

Induction Step: Let i be an arbitrary natural number and assume that S(i) holds, i.e.,∑i
t=0 t = i(i + 1)/2. We must prove that S(i + 1) holds, i.e., that

∑i+1
t=0 t = (i + 1)(i + 2)/2.

Indeed, we have:

i+1∑

t=0

t =
( i∑

t=0

t
)
+ (i+ 1) [by associativity of addition]

=
i(i+ 1)

2
+ (i+ 1) [by induction hypothesis]

=
(i+ 1)(i+ 2)

2
[by simple algebra]

Therefore S(i+ 1) holds, as wanted.

End of Example 1.1

Example 1.2 Suppose A is a finite set with k elements. We would like to determine how
many different subsets of A there are. For small values of k, it is easy to determine this directly.
For example, if k = 0 (i.e., A is empty) then A has 1 subset, namely itself. If k = 1 then A
has two subsets, namely the empty set and itself. If k = 2 then A has four subsets: the empty
set, two subsets that contain one element each, and itself. If k = 3 then A has eight subsets:
the empty set, three subsets that contain one element each, three subsets that contain two
elements each, and itself. In general:

Proposition 1.3 For any k ∈ N, any set with k elements has exactly 2k subsets.

Proof. Define the predicate P (k) as follows:

P (k) : any set with k elements has exactly 2k subsets.

We will prove, using induction, that for every k ∈ N, P (k) holds.
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Basis: k = 0. Then P (0) states that any set with 0 elements has exactly 20 = 1 subsets. But
the only set with 0 elements is the empty set, and it has exactly one subset (namely itself).
Thus, P (0) holds.

Induction Step: Let i be an arbitrary natural number, and assume that P (i) holds, i.e.,
any set with i elements has 2i subsets. We must prove that P (i + 1) holds, i.e., that any set
with i+ 1 elements has 2i+1 subsets.

Consider an arbitrary set with i + 1 distinct elements, say A = {a1, a2, . . . , ai+1}. There
are two (mutually exclusive) types of subsets of A: those that contain ai+1 and those that do
not. Let Y (for “yes”) be the set of subsets of A that contain ai+1, and N (for “no”) be the
set of subsets of A that do not contain ai+1.

First, we note that Y and N have the same number of elements. (Note that the elements
of Y and N are subsets of A.) To see this, let f : Y → N be the function defined as follows:
For any B ∈ Y (i.e., for any B ⊆ A such that ai+1 ∈ B), let f(B) = B − {ai+1} (hence,
f(B) ∈ N ). It is easy to see that this function is a bijection, and therefore |Y| = |N |.

Next, we note that N is (by definition) the set of subsets of A′ = {a1, a2, . . . , ai}. Since
A′ has i elements, by induction hypothesis, it has 2i subsets. Therefore, N has 2i elements.
Since, as shown before, Y has as many elements as N , we have that Y also has 2i elements.

Finally, the number of subsets of A is equal to the number of elements in Y plus the number
of elements in N (because every subset of A must belong to one and only one of Y or N ).
Therefore, the number of subsets of A is 2i + 2i = 2 · 2i = 2i+1. Hence, the number of subsets
of an arbitrary set of i+ 1 elements is 2i+1. This shows that P (i+ 1) holds, as wanted.

Recall that if A is a set, then the powerset of A, P(A), is the set of subsets of A. Thus,
Proposition 1.3 can be stated as follows:

Corollary 1.4 For any finite set A, |P(A)| = 2|A|.

End of Example 1.2

Example 1.3 Our next example is not directly an illustration of induction, but a useful
result that can be obtained as a corollary to Proposition 1.3. A binary string is a finite
sequence of bits — i.e., a string over the alphabet {0, 1} (cf. Section 0.7.3, page 13). For
example, a byte is a binary string of length eight. Binary strings come up very frequently
in computer science because information in computers is ultimately encoded, stored and ma-
nipulated as binary strings. The question we are interested in is: How many different binary
strings are there of a specified length ℓ?

Proposition 1.3 immediately yields the answer to this question, if we observe that we can
think of a binary string of length ℓ as the subset of the set {0, 1, . . . , ℓ− 1} which contains the
indices (positions) of all the bits in the string which are 1. For example, 0110 can be thought of
as designating the set {1, 2}, and 1011 can be thought of as designating the set {0, 2, 3}. Since
there are 2ℓ subsets of {0, 1, . . . , ℓ− 1} and (by the correspondence just mentioned) there are
as many binary strings of length ℓ as subsets of this set, we have the answer to our question.
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We now state all this a little more carefully.

Proposition 1.5 For any ℓ ∈ N, there are 2ℓ binary strings of length ℓ.

Proof. Let Bℓ be the set of binary strings of length ℓ, and Aℓ = {0, 1, . . . , ℓ − 1}. Define
the function f : Bℓ → P(Aℓ) as follows: For any string b0b1 . . . bℓ−1 ∈ Bℓ (where bi ∈ {0, 1}, for
each i such that 0 ≤ i < ℓ),

f(b0b1 . . . bℓ−1) = {i : 0 ≤ i < ℓ and bi = 1}.

It is easy to check that this function is a bijection, and therefore |Bℓ| = |P(Aℓ)|. By Proposi-
tion 1.3, |Bℓ| = 2ℓ. Thus, there are 2ℓ binary strings of length ℓ, as wanted.

As an exercise, you should prove Proposition 1.5 by using induction directly, without using
Proposition 1.3. End of Example 1.3

Example 1.4 Let A and B be finite sets. We are interested in determining the number of
functions from A to B.

Proposition 1.6 For any m,n ∈ N, there are exactly nm functions from any set of m elements
to any set of n elements.

We will prove this proposition by using induction. Our first task is to identify the predicate
which we want to show holds for all natural numbers. The difficulty, in this example, is that
the statement we want to prove has two parameters that range over N, namely m and n. We
have two natural choices; we can consider the predicate

P (m) : for any n ∈ N, there are exactly nm functions

from any set of m elements to any set of n elements

and try using induction to prove that P (m) holds for every m ∈ N. Alternatively, we can
consider the predicate

Q(n) : for any m ∈ N, there are exactly nm functions

from any set of m elements to any set of n elements

and try using induction to prove that Q(n) holds for every n ∈ N. Proving either of these
statements would be a proof of the desired proposition. As a matter of fact, the first of them
is easily amenable to an induction proof, while the second is not.

Proof of Proposition 1.6. We use induction to prove that P (m) holds for all m ∈ N.

Basis: m = 0. P (0) states that, for any integer n ∈ N, there is exactly one (since n0 = 1)
function from any set A of zero elements to any set B of n elements. Since A has zero elements
it is the empty set, and there is indeed exactly one function whose domain is empty, namely
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the empty function. (Recall that, formally speaking, a function from A to B is a set of pairs
in A×B; the empty function then, is the empty set.)

Induction Step: Let i be an arbitrary natural number, and assume that P (i) holds; i.e., for
any n ∈ N, there are exactly ni functions from any set of i elements to any set of n elements.
We must prove that P (i + 1) holds as well; i.e., for any integer n ∈ N, there are exactly ni+1

functions from any set of i+ 1 elements to any set of n elements.
Let A be an arbitrary set with i + 1 elements, say A = {a1, a2, . . . , ai+1}, and B be an

arbitrary set with n elements, say B = {b1, b2, . . . , bn}. Let us fix a particular element of A,
say ai+1, and let us group the functions from A to B according to the element of B into which
ai+1 gets mapped. That is, define the following sets of functions from A to B:

X1 = the set of functions from A to B that map ai+1 to b1

X2 = the set of functions from A to B that map ai+1 to b2
...

Xn = the set of functions from A to B that map ai+1 to bn

Every function from A to B belongs to one and only one of these sets. Notice that, for any j
such that 1 ≤ j ≤ n, Xj contains exactly as many functions as there are functions from the set
A′ = {a1, a2, . . . , ai} to B. (This is because Xj contains the functions from {a1, a2, . . . , ai, ai+1}
to B where, however, we have specified the element to which ai+1 is mapped; the remaining
elements of A, namely the elements of A′, can get mapped to the elements of B in any possible
way.) Therefore, by induction hypothesis, |Xj| = ni, for each j such that 1 ≤ j ≤ n. The total
number of functions from A to B then is:

|X1|+ |X2|+ . . .+ |Xn| = ni + ni + . . .+ ni

︸ ︷︷ ︸
n times

= n · ni = ni+1

as wanted.

You may find it instructive to try proving, using induction, that Q(n) holds for all n ∈ N

in order to discover the difficulty in carrying out the induction step. Basically, there seems to
be no natural way to use the induction hypothesis that there im functions from any set of m
elements to any set of i elements in order to prove that there are (i+ 1)m functions from any
set of m elements to any set of i+ 1 elements. In contrast, we were able to find (in the proof
given above) a way to successfully use the induction hypothesis that there ni functions from
any set of i elements to any set of n elements in order to prove that there are ni+1 functions
from any set of i + 1 elements to any set of n elements. You may wonder how we knew to
try proving that P (m) holds for all m ∈ N, rather than to try proving that Q(n) holds for
all n ∈ N. In fact, there was no a priori reason to favour the first of these alternatives over
the other. We simply have to try them out. If one doesn’t seem to work, then we can try the
other. As you gain experience and acquire a deeper understanding of various mathematical
techniques, you will, in many instances, have a better feeling as to which of the various choices



1.2. MATHEMATICAL INDUCTION 27

facing you is likely to “pan out”. But even the best mathematicians, when faced with difficult
enough problems, have to resort to trial-and-error. End of Example 1.4

Example 1.5 Let m,n be natural numbers such that n 6= 0. The division of m by n yields
a quotient and a remainder — i.e., unique natural numbers q and r such that m = q ·n+ r and
r < n. How do we know this? Presumably we believe that this is true because (sometime long
ago) we learned an algorithm for dividing numbers. But, although we all learned the division
algorithm in elementary school, nobody really proved to us that this algorithm works! The
algorithm for dividing m by n undoubtedly produces two natural numbers q and r. But how
do we know that these numbers really are the quotient and remainder of the division, in the
sense that they satisfy the property m = q ·n+ r and r < n? Perhaps our belief that given any
two natural numbers m and n (such that n 6= 0), the quotient and remainder of the division
of m by n exist (and are unique) is not well-founded. We will now prove that such numbers
really do exist. (And rest assured that the division algorithm you learned in elementary school
really does work — although proving that it does, is a somewhat nontrivial matter!)

Proposition 1.7 For any m,n ∈ N such that n 6= 0, there are unique q, r ∈ N such that
m = q · n+ r and r < n.

Proof. Define the predicate P (m) as follows:

P (m) : for any natural number n 6= 0, there are q, r ∈ N

such that m = q · n+ r and r < n

We use induction to prove that P (m) holds for every m ∈ N.

Basis: m = 0. Let q = r = 0. Since, for any n ∈ N, 0 = 0 · n+ 0, P (0) holds.

Induction Step: Let i ≥ 0 be an arbitrary natural number, and suppose that P (i) holds;
i.e., for any natural number n 6= 0 there are q, r ∈ N such that i = q · n + r and r < n. We
must prove that P (i + 1) holds as well. That is, we must prove that for any natural number
n 6= 0 there are q′, r′ ∈ N such that i + 1 = q′ · n + r′ and r′ < n. Since r < n, there are two
cases: either r < n− 1 or r = n− 1.

Case 1. r < n− 1. In this case let q′ = q and r′ = r + 1. Note that r′ < n. We have:

i+ 1 = (q · n+ r) + 1 [by induction hypothesis]

= q · n+ (r + 1) [by associativity of addition]

= q′ · n+ r′ [because q′ = q and r′ = r + 1]

as wanted. Thus, P (i+ 1) holds in this case.
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Case 2. r = n − 1. In this case let q′ = q + 1 and r′ = 0. Note that r′ < n, because n > 0
(since n is a natural number and n 6= 0). We have:

i+ 1 = (q · n+ r) + 1 [by induction hypothesis]

=
(
q · n+ (n− 1)

)
+ 1 [because r = n− 1]

= q · n+ n

= (q + 1) · n
= q′ · n+ r′ [because q′ = q + 1 and r′ = 0]

as wanted. Thus, P (i+ 1) holds in this case as well.

We have shown that for any m,n ∈ N such that n 6= 0, the division of m by n has a
quotient and a remainder. It remains to show that these are unique. The proof of this fact
does not require induction. Suppose that m and n are natural numbers such that n 6= 0. Let
q, q′, r, r′ ∈ N be such that m = q · n+ r = q′ · n+ r′, where r, r′ < n. To prove the uniqueness
of the quotient and remainder we must prove that q = q′ and r = r′.

Since q · n+ r = q′ · n+ r′, it follows that

(q − q′) · n = r′ − r (1.2)

Without loss of generality, we may assume that q ≥ q′, i.e., q − q′ ≥ 0.1 If q − q′ > 0, then
q − q′ ≥ 1, so (q − q′) · n ≥ n and, by (1.2), r′ − r ≥ n; this is impossible, since r′ < n and
r ≥ 0, so that r′ − r ≤ r′ < n. Therefore q − q′ = 0. By (1.2), r′ − r = 0 as well. In other
words, q = q′ and r = r′, as wanted.

By Proposition 1.7, there are functions div : N×(N−{0})→ N and mod : N×(N−{0})→
N, where div(m,n) is the (unique) quotient and mod(m,n) is the (unique) remainder of the
division of m by n. Proposition 1.7 can be easily extended so that m,n are integers (not just
natural numbers). Now the quotient may may negative (if exactly one of m,n is negative),
but the remainder r is in the range 0 ≤ r < |n|. The functions div and mod can be extended

accordingly. End of Example 1.5

1 The expression “without loss of generality”, sometimes abbreviated as “wlog”, is an idiom frequently used
in mathematical proofs. It means that the argument about to be made holds thanks to an assumption (in our
case, that q ≥ q′) which, however, can be easily discharged — for example, by renaming some variables, by
uniformly changing a + sign to a − sign, or the direction of inequality sign from < to a >, and so on. This
allows us to avoid tedious repetition in a proof. This idiom, however, should be used carefully. In particular,
when it is used, the assumption made should truly not restrict the applicability of the argument. Furthermore,
it should be clear (to the typical reader of the proof) why the assumption does not restrict the applicability
of the argument. Sometimes, it may be helpful to provide a hint as to why the assumption does no harm to
generality. For instance, in our case we might have added the following remark to help the reader see why the
assumption that q ≥ q′ is truly without loss of generality: “(otherwise, switch the roles of q and q′ and the
roles of r and r′ in the foregoing argument)”.
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1.2.2 Bases other than zero

There are predicates of interest that are true not for all natural numbers, but for all sufficiently
large ones — i.e., for all natural numbers greater than or equal to some constant c. For example,
2n > 10n is true for all n ≥ 6, but it is easy to see that it is false for 0 ≤ n < 6. Suppose c ∈ N

is a constant, and P (n) is a predicate of natural numbers. We can prove a statement of the
form

for each n ∈ N such that n ≥ c, P (n) is true. (1.3)

using the following variant of induction.

Basis: Prove that P (c) is true, i.e., that the predicate P (n) holds for n = c.

Induction Step: Prove that, for each i ∈ N such that i ≥ c, if P (i) is true then P (i+ 1) is
also true.

Note that statement (1.3) is just another way of saying

for each n ∈ N, P (n+ c) is true. (1.4)

Thus, the basis and induction step given above are just the corresponding steps of a normal
proof by induction of statement (1.4).

Example 1.6 Any exponential function, no matter how small the base, eventually gets
larger than any linear function, no matter how large its slope. The following proposition is a
specific instance of this general fact.

Proposition 1.8 For all natural numbers n ≥ 6, 2n > 10n.

Proof. Let P (n) be the predicate defined as follows:

P (n) : 2n > 10n

We will use induction to prove that P (n) is true for all natural numbers n ≥ 6.

Basis: n = 6. 26 = 64, while 10 · 6 = 60. Thus, 26 > 10 · 6, and P (6) holds.

Induction Step: Let i be an arbitrary integer such that i ≥ 6, and suppose that P (i) holds,
i.e., 2i > 10i. We must show that P (i+1) holds as well, i.e., that 2i+1 > 10(i+1). Indeed, we
have

2i+1 = 2 · 2i
> 2 · 10i [by induction hypothesis]

= 10i+ 10i

> 10i+ 10 [because i ≥ 6 and thus 10i > 10]

= 10(i+ 1)

Thus, 2i+1 > 10(i+ 1), as wanted.
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Notice that the requirement i ≥ 6 was used not only in the basis (to start the in-
duction with 6, rather than 0), but also in the induction step (to argue that 10i > 10).

End of Example 1.6

Example 1.7 Suppose you have an unlimited supply of postage stamps, where each stamp
has a face value of 4 cents or a face value of 7 cents. Can you use your supply of stamps to
make exact postage for a letter that requires $1.03 worth of stamps? The answer is affirmative;
one way of achieving the desired goal is to use 3 of the 4-cent stamps and 13 of the 7-cent
stamps (since 3× 4 + 13× 7 = 103). In fact, we can prove something much more general:

Proposition 1.9 We can use an unlimited supply of 4-cent and 7-cent postage stamps to
make (exactly) any amount of postage that is 18 cents or more.

Proof. Let P (n) be the predicate defined as follows:

P (n) : postage of exactly n cents can be made using only 4-cent and 7-cent stamps

We will use induction to prove that P (n) holds for all n ≥ 18.

Basis: n = 18. We can use one 4-cent stamp and two 7-cent stamps to make 18 cents worth
of postage (since 1× 4 + 2× 7 = 18).

Induction Step: Let i be an arbitrary integer such that i ≥ 18, and suppose that P (i)
holds, i.e., we can make i cents of postage using only 4-cent and 7-cent stamps. Thus, there
are k, ℓ ∈ N such that i = 4 · k+7 · ℓ (k is the number of 4-cent stamps and ℓ is the number of
7-cent stamps used to make i cents worth of postage). We will prove that P (i+ 1) holds, i.e.,
that we can make i+ 1 cents of postage using only 4-cent and 7-cent stamps. In other words,
we must prove that there are k′, ℓ′ ∈ N such that 4 · k′ + 7 · ℓ′ = i + 1. There are two cases,
depending on whether ℓ > 0 or ℓ = 0.

Case 1. ℓ > 0. Then let k′ = k+2 and ℓ′ = ℓ−1 (note that since ℓ > 0, ℓ′ ∈ N). (Intuitively
we trade in one 7-cent stamp — which we know we have, since ℓ > 0 — for two 4-cent stamps;
the result is to increase the total value of the postage by 1.) More precisely, we have:

4 · k′ + 7 · ℓ′ = 4 · (k + 2) + 7 · (ℓ− 1) [by definition of k′ and ℓ′]

= 4 · k + 8 + 7 · ℓ− 7

= 4 · k + 7 · ℓ+ 1

= i+ 1 [since, by induction hypothesis, i = 4 · k + 7 · ℓ]

Case 2. ℓ = 0. Since i ≥ 18, we have 4 · k ≥ 18 and therefore k ≥ 5. Then let k′ = k − 5
and ℓ′ = 3 (note that since k ≥ 5, k′ ∈ N). (Now we don’t have a 7-cent stamp to trade in,
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but because i ≥ 18, we have at least five 4-cent stamps, which we can trade in for three 7-cent
stamps, again increasing the total value of the postage by 1.) More precisely, we have:

4 · k′ + 7 · ℓ′ = 4 · (k − 5) + 7 · 3 [by definition of k′ and ℓ′]

= 4 · k − 20 + 21

= 4 · k + 1

= 4 · k + 7 · ℓ+ 1 [since ℓ = 0 in this case]

= i+ 1 [since, by induction hypothesis, i = 4 · k + 7 · ℓ]
Thus, in both cases P (i+ 1) holds, as wanted.

End of Example 1.7

1.2.3 Pitfalls

Leaving out the basis

The basis of an induction proof is often (though not always) much easier to prove than the
induction step. This, however, does not mean that we should feel free to leave out the basis of
an induction proof. An induction “proof” in which the basis is omitted is not a sound way to
prove that a predicate holds for all natural numbers. The following example should convince
you of this.

Example 1.8

Conjecture 1.10 For any n ∈ N,
∑n

t=0 2
t = 2n+1.

“Proof”. Define the predicate

P (n) :
n∑

t=0

2t = 2n+1.

We “prove” that P (n) holds for all n ∈ N by “induction”.

Induction Step: Let i be an arbitrary natural number, and suppose that P (i) holds, i.e.,∑i
t=0 2

t = 2i+1. We must prove that P (i + 1) holds as well, i.e., that
∑i+1

t=0 2
t = 2i+2. Indeed,

we have

i+1∑

t=0

2t =
( i∑

t=0

2t
)
+ 2i+1 [by associativity of addition]

= 2i+1 + 2i+1 [by induction hypothesis]

= 2 · 2i+1

= 2i+2
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as wanted.

Now, let’s check what we have supposedly proved for, say, n = 3. P (3) states that 20 +
21 +22 +23 = 24. However, the left hand side of this evaluates to 1+ 2+4+8 = 15, while the
right hand side evaluation to 16. So something is wrong here.

What is wrong, of course, is that in the above inductive “proof” we left out the basis, P (0).
If we had tried to prove that P (0) is true, we would have discovered the error, because P (0)
states that 20 = 21, which is clearly false.

The correct fact is that for any n ∈ N,
∑n

t=0 2
t = 2n+1 − 1. As an exercise, prove this by

using induction. End of Example 1.8

Changing the predicate in the induction step

A somewhat more subtle mistake is sometimes committed in carrying out the induction step.
The mistake consists in proving that P (i + 1) holds using as the “inductive hypothesis” that
P ′(i) holds, where P ′ is a predicate stronger than P . (In a correct proof the induction hypoth-
esis must be that P (i) holds.) We will illustrate this type of error in the two examples that
follow.

First we need to refresh our memory about binary trees. Recall that a (directed) graph G
consists of a set of nodes N and a set of edges E, where E ⊆ N × N . Thus, an edge e is an
ordered pair of nodes (u, v); we say that e goes from u to v. A path in graph G is a sequence
of nodes 〈u1, u2, . . . , uk〉, such that for each i, 1 ≤ i < k, (ui, ui+1) is an edge of G. A graph
is shown diagrammatically in Figure 1.1(a); its nodes are drawn as circles, and its edges as
arrows. Specifically, the edge (u, v) is drawn as an arrow with its tail in u and its head in v.

A tree is a directed graph G with the following property: If the set of nodes of G is
nonempty, then G has a node r, called G’s root such that, for every node u, there is one and
only one path from r to u. If (u, v) is an edge of a tree, we say that v is a child of u, and that
u is the parent of v.2 Nodes with the same parent are called siblings. A node that has no
children is called a leaf. A node that is not a leaf is called an internal node. It is easy to see
that a nonempty tree with finitely many nodes has at least one leaf. Furthermore, if from a
tree we remove a leaf (and the edge, if any,3 that connects it to its parent), the resulting object
is also a tree. A tree is shown diagrammatically in Figure 1.1(b). It is customary to draw the
root of the tree at the top, and to omit the direction of the edges, the convention being that
edges are directed “away” from the root.

A binary tree is a tree every node of which has at most two children, together with a
labeling of each edge as either “left” or “right”, so that edges from a node to distinct children
have different labels. If edge (u, v) is labeled “left” (respectively, “right”), then we say that v
is the left child of u (respectively, v is the right child of u). When we draw a binary tree,

2A tree node cannot have two parents; if it did, there would be multiple distinct paths from the root to it:
at least one through each of its parents. This fact justifies our talking about the parent (rather than a parent)
of v.

3If the root is also a leaf, then the tree has just one node and no edges.
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(g) A full binary tree

Figure 1.1: Illustration of graphs and trees
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the direction (left or right) of the edges emanating from u indicates their labels. Some binary
trees are shown diagrammatically in Figures 1.1(c)–(g). Note that viewed as binary trees, the
objects depicted in Figures 1.1(c) and (d) are different; viewed as trees, however, they are
identical. The reason is that in binary trees it matters whether a node is the left or right child
of another. In contrast, in trees only the parent-child relationships matter, not the ordering of
siblings. Similar remarks apply to the pair of objects depicted in Figures 1.1(e) and (f).

A full binary tree is a binary tree in which every internal node has exactly two children.
For example, Figure 1.1(g) is a full binary tree, while Figures 1.1(c)–(f) are not.

Example 1.9

Conjecture 1.11 For any n ≥ 1, any full binary tree with n nodes has more leaves than the
square of the number of its internal nodes.

“Proof”. Define the predicate P (n) as follows:

P (n) : any full binary tree with n nodes, has more leaves

than the square of the number of its internal nodes.

We use induction to “prove” that P (n) holds for all n ≥ 1.

Basis: n = 1. There is only one full binary tree with one node, consisting of just that node
and no edges. Thus, a full binary tree has one leaf and zero internal nodes. Since 1 > 02, P (1)
holds, as wanted.

Induction Step: Let i ≥ 1 be an arbitrary integer, and assume that P (i) holds i.e., any full
binary tree with i nodes has more leaves than the square of the number of its internal nodes.
We must prove that P (i+ 1) holds as well, i.e., that any full binary tree with i+ 1 nodes has
more leaves than the square of the number of its internal nodes.

Let T be an arbitrary full binary tree with i + 1 nodes. Let v be a leaf of T , and let v′

be the parent of v. (Note that v′ exists, because v cannot be the only node of T , since T has
i + 1 ≥ 2 nodes.) Let T ′ be the binary tree obtained by removing the leaf v from T . T ′ has i
nodes.

Let ℓ be the number of leaves of T , and m be the number of internal nodes of T . Similarly,
let ℓ′ be the number of leaves of T ′, and m′ be the number of internal nodes of T ′. We must
prove that ℓ > m2.

Since T is a full binary tree and v is a leaf of T , it follows that v′ has another child in T ,
and therefore v′ is not a leaf in T ′. Hence, ℓ = ℓ′ + 1 (T has one more leaf than T ′, namely v),
and m = m′ (T has the same number of internal nodes as T ′, since the removal of v does not
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make v′ a leaf in T ′). Therefore we have:

ℓ = ℓ′ + 1 [as argued above]

> m′2 + 1 [by induction hypothesis; recall that
T ′ has i nodes]

= m2 + 1 [since m′ = m, as argued above]

> m2

Thus, ℓ > m2, which means that P (i+ 1) holds, as wanted.

The binary tree shown in Figure 1.1(g) is a full binary tree with 7 nodes, 3 of which are
internal nodes and 4 are leaves. However, it is not the case that 4 > 32 — so P (7) does not
hold, as this counterexample shows. Evidently, something is wrong with the proof. Before you
continue reading you should carefully go over the “proof” and try to identify the mistake, if
you have not already done so.

The mistake lies in our use of the induction hypothesis. We said that T ′ is a binary tree with
i nodes and therefore we can apply the induction hypothesis P (i) to conclude that ℓ′ > m′2.
But the induction hypothesis applies to full binary trees with i nodes. T ′ is a binary tree with
i nodes, but is it a full one? Some thought will convince you that it is not — therefore we had
no right to apply the induction hypothesis to it.

In more general terms, the mistake we made can be stated as follows. Let P ′(n) be the
predicate

P ′(n) : any binary tree with n nodes, has more leaves

than the square of the number of its internal nodes.

The difference between P (n) and P ′(n) is that P (n) talks about full binary trees, while P ′(n)
talks about all binary trees (regardless of whether they are full). P ′(n) is stronger than P (n),
since it applies to a larger class of objects. In a correct induction proof, in the induction step
we are supposed to prove that P (i + 1) holds assuming P (i) holds. In the incorrect “proof”
given above, we proved that P (i+1) holds assuming that P ′(i) (a stronger property than P (i))

holds! It was this inappropriate use of induction that led us astray. End of Example 1.9

Example 1.10 In this example we examine a mistake similar to the one above, but with a
different, and very important, moral.

Proposition 1.12 For any n ≥ 1, a full binary tree with n nodes has n− 1 edges.

“Proof”. Define the predicate P (n) as follows:

P (n) : any full binary tree with n nodes, has n− 1 edges
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We use induction to “prove” that P (n) holds for all n ≥ 1.

Basis: n = 1. There is only one full binary tree with one node, consisting of just that node
and no edges. Thus, P (1) holds, as wanted.

Induction Step: Let i ≥ 1 be an arbitrary integer, and assume that P (i) holds; i.e., any full
binary tree with i nodes has i− 1 edges. We must prove that P (i+ 1) holds as well; i.e., that
any full binary tree with i+ 1 nodes has i edges.

Let T be an arbitrary full binary tree with i+1 nodes. We must prove that T has i edges.
Let v be a leaf of T and T ′ be the binary tree obtained by removing the leaf v from T . T ′

has i nodes (because T has i+ 1 nodes and v is not in T ′), and one edge less than T (because
the edge connecting v to its parent is not in T ′). We have:

# of edges in T = (# of edges in T ′) + 1 [as argued above]

=
(
(# of nodes in T ′)− 1

)
+ 1 [by induction hypothesis; recall that

T ′ has i nodes]

= # of nodes in T ′

= i

Thus, T has i edges, as wanted.

This proof is incorrect for exactly the same reason we saw in the previous example: We
applied the induction hypothesis to a binary tree T ′ that is not full, while the predicate
we are trying to prove is talking specifically about full binary trees. Unlike the previous
example, however, hard as we may try, we will not succeed in finding a counterexample to
Proposition 1.12. This is because, although our “proof” was incorrect, the proposition itself is
actually true!

How do we prove it, then? We can use induction to prove a stronger proposition:

Proposition 1.13 For any n ≥ 1, a binary tree with n nodes has n− 1 edges.

Notice that this proposition talks about all binary trees (not just full ones). It is easy to verify
that this proposition is proved by the induction argument given above, modified by striking
out all references to full binary trees and replacing them by references simply to binary trees.4

Having proved Proposition 1.13, Proposition 1.12 follows immediately, since a full binary tree
is a special case of a binary tree.

This example is a simple illustration of an important and somewhat paradoxical phe-
nomenon regarding inductive proofs. Sometimes, when we use induction to prove that a
predicate P (n) holds for all n ∈ N, we stumble in the induction step and realise that in order
to prove that P (i+1) holds we really need to assume P ′(i), rather than P (i), as our induction
hypothesis, where P ′(n) is a stronger predicate than P (n).

4As an aside, an even stronger proposition holds and can be proved in a similar way; this relationship
between the number of nodes and edges applies to all trees, whether binary or not.



1.3. COMPLETE INDUCTION 37

Of course, this is not legitimate; if we did this we would be using an incorrect (and therefore
unsound) induction proof along the lines of the two preceding examples. In such a case,
however, it is advisable to try using induction in order to prove the stronger fact that P ′(n)
holds for all n ∈ N. If we succeed in doing so then, of course, the desired weaker fact —
namely, that P (n) holds for all n ∈ N — follows immediately. There is no guarantee that we
will succeed; after all, it is possible that we are trying to prove a false statement, as in the
previous example. Sometimes, however, this works — as in the current example.

It may seem counterintuitive that proving a stronger statement is easier than proving a
weaker one. The apparent paradox is resolved if we think a little more carefully about the
nature of induction proofs. In the induction step, we use the induction hypothesis that the
predicate of interest holds for i, in order to prove that the predicate of interest holds for i+1.
It is possible that, by strengthening the induction hypothesis, we get the leverage required to
carry out the induction step, while a weaker induction hypothesis would not allow us to do
so. End of Example 1.10

1.3 Complete induction

In carrying out the induction step of an inductive proof, we sometimes discover that to prove
that P (i + 1) holds, it would be helpful to know that P (j) holds for one or more values of j
that are smaller than i + 1, but are not necessarily i. For example, it might be that to prove
that P (i+1) holds, we need to use the fact that P (⌊i/2⌋) holds, rather than the fact that P (i)
holds.5 Or, we might need to use the fact that both P (⌊i/2⌋) and P (i) hold. The induction
proofs we have seen so far, which are based on the principle of induction (see Section 1.1.2),
are of no help is such situations. There is a different type of induction proof, based on the
principle of complete induction (see Section 1.1.3), that is designed to address just this sort of
situation. This type of proof is called complete induction.6

Let P (n) be a predicate of natural numbers. A complete-induction proof of the statement
“P (n) holds for all n ∈ N” consists in proving the following statement:

(∗) For each i ∈ N, if P (j) holds for all natural numbers j < i then P (i) holds as well.

The assumption, in (∗), that P (j) holds for all natural numbers j < i is called the induction
hypothesis. Thus, a proof by complete induction proceeds as follows:

• We let i be an arbitrary natural number.

• We assume that P (j) holds for all natural numbers j < i (induction hypothesis).

• Using the induction hypothesis, we prove that P (i) holds as well.

5If x is a real number, then ⌊x⌋ (called the floor of x) denotes the largest integer that is smaller than or
equal to x; similarly ⌈x⌉ (the ceiling of x) denotes the smallest integer that is greater than or equal to x. Thus
⌊17.3⌋ = 17, ⌈17.3⌉ = 18, ⌊17⌋ = ⌈17⌉ = 17.

6Some mathematicians use the terms course-of-values induction and strong induction instead of
complete induction.
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Why does proving (∗) actually show that P (n) holds for all n ∈ N? To see this, let A[P ] be
the set of natural numbers for which the predicate P is true; i.e., A[P ] = {n ∈ N : P (n) is true}.
Proving (∗) means that we prove that, for any i ∈ N, if every natural number less than i is an
element of A[P ] then i is also an element of A[P ]. By the principle of complete induction (see
Section 1.1.3), A[P ] is a superset of N. By definition, A[P ] is a set of natural numbers, so it
is also a subset of N. Hence, A[P ] = N. By the definition of A[P ], this means that P (n) holds
for every n ∈ N.

1.3.1 A second form of complete induction

Sometimes complete induction proofs take a somewhat different form. In that form, the proof
that P (n) holds for all n ∈ N consists of two steps, as in the case of simple induction:

Basis: Prove that P (0) is true, i.e., that the predicate P (n) holds for n = 0.

Induction Step: Prove that, for each natural number i > 0, if P (j) holds for all natural
numbers j < i then P (i) holds as well.

The second form of complete induction seems to differ from the previous form, in that it
has an explicit basis case, for n = 0. As we saw in our discussion of the difference between the
principles of (simple) induction and complete induction (see page 18, Section 1.1.3), the case
n = 0 is implicit in (∗). Both forms of complete induction prove that P (n) holds for all n ∈ N.
We can use whichever is more convenient for the specific predicate P (n) of interest.

Speaking in general terms, induction lets us prove that a certain result holds for all numbers,
by proving that

(i) it holds for certain “simplest” numbers, and

(ii) it holds for “more complex” numbers, if it holds for “simpler” ones.

In many instances, “simplest” just means “smallest” — i.e., 0 or some other single basis case.
There are instances, however, where the meaning of “simplest” is different, and there are
several “simplest” numbers that can be treated together as a single special case. In such
instances, the first form of complete induction leads to more natural and more elegant proofs.
(See Example 1.11.)

1.3.2 Bases other than zero

As with simple induction, sometimes we need to prove that a predicate holds, not for all natural
numbers, but for all natural numbers greater than or equal to some constant, say c. We can
prove such a statement using variants of complete induction.

The variant of the first form of complete induction consists in proving the following state-
ment:

(∗) For each i ∈ N such that i ≥ c, if P (j) holds for all natural numbers j such that c ≤ j < i
then P (i) holds as well.
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This proves that P (n) holds for all n ≥ c. (Why?)

The variant of the second from of complete induction consists of the following two steps:

Basis: Prove that P (c) is true.

Induction Step: Prove that, for each natural number i > c, if P (j) holds for all natural
numbers j such that c ≤ j < i then P (i) holds as well.

This, too, proves that P (n) holds for all n ≥ c. (Why?)

1.3.3 Examples

Example 1.11 An excellent illustration of complete induction is afforded by the proof of a
fundamental result in number theory: every natural number that is greater than or equal to 2
can be written as the product of prime numbers.

First we need to recall some definitions. If n,m are integers, we say that n is divisible
by m if the division of n by m has no remainder, i.e., if n/m is an integer. An integer n
is prime if n ≥ 2 and the only positive integers that divide n are 1 and itself.7 A prime
factorisation of a natural number n is a sequence of primes whose product is n. Notice that
a prime factorisation, being a sequence may contain the same (prime) number repeatedly. For
example, 〈3, 2, 2, 7, 3〉 is a prime factorisation of 252.

Proposition 1.14 Any integer n ≥ 2, has a prime factorisation.

Proof. Define the predicate P (n) as follows:

P (n) : n has a prime factorisation

We use complete induction to prove that P (n) holds for all integers n ≥ 2.
Let i be an arbitrary integer such that i ≥ 2. Assume that P (j) holds for all integers j,

such that 2 ≤ j < i. We must prove that P (i) holds as well. There are two cases.

Case 1. i is prime. Then 〈i〉 is a prime factorisation of i. Thus, P (i) holds in this case.

Case 2. i is not prime. Thus, there is a positive integer a that divides i such that a 6= 1
and a 6= i. Let b = i/a; i.e., i = a · b. Since a 6= 1 and a 6= i, it follows that a, b are both
integers such that 2 ≤ a, b < i. Therefore, by the induction hypothesis, P (a) and P (b) both
hold. That is, there is a prime factorisation of a, say 〈p1, p2, . . . , pk〉, and there is a prime
factorisation of b, say 〈q1, q2, . . . , qℓ〉. Since i = a · b, it is obvious that the concatenation of the
prime factorisations of a and b, i.e., 〈p1, p2, . . . , pk, q1, q2, . . . , qℓ〉, is a prime factorisation of i.
Therefore, P (i) holds in this case as well.

7Keep in mind that, according to this definition, 1 is not a prime number. Although the only positive
integers that divide it are 1 and itself, it is not greater than or equal to 2. This exclusion of 1 from the set of
prime numbers may appear arbitrary, but there is a good reason for it, as we will see shortly.
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Therefore, P (n) holds for all n ≥ 2.

Notice that there is no obvious way in which we could have done this proof by using simple
induction, as opposed to complete induction. Just knowing the prime factorisation of i gives
us absolutely no clue about how to find a prime factorisation of i+1. However, if we know the
factorisation of all numbers less than i, then we can easily find a prime factorisation of i: if i
is prime, then it is its own prime factorisation, and we are done; if i is not prime, then we can
get a prime factorisation of i by concatenating the prime factorisations of two factors (which
are smaller than i and therefore whose prime factorisation we know by induction hypothesis).

Also notice how convenient was the use of the first form of complete induction (the one
with no explicit basis) in this proof. The reason is that there are actually infinitely many
“simplest” numbers as far as prime factorisations go: Every prime number has a trivial prime
factorisation, namely itself. Thus, there is nothing special about the basis case of n = 2; the
argument used to prove that P (2) holds is also used to prove that P (m) holds for every prime
number m. It is more succinct and elegant to treat all these cases at once, as in the preceding
proof.

There is actually more to prime factorisations of natural numbers than Proposition 1.14
states. More specifically, not only does every natural number n ≥ 2 have a prime factorisa-
tion, but the factorisation is essentially unique — up to permuting the prime numbers in the
sequence. That is, if two sequences are prime factorisations of the same number, then they
are permutations of each other. Proving the uniqueness of prime factorisations also involves
complete induction, but requires a few basic results about number theory, and so we will not
prove this fact in this course.

By the way, in view of this, we can see why 1 should not be considered as a prime number.
If it were, prime factorisation would not be unique (up to reordering of the factors). Any prime
factorisation of a number could be extended by introducing an arbitrary number of 1s in the
sequence. This would not affect the product of the numbers in the sequence, but would result
in a sequence that is not a permutation of the original one. We could allow 1 to be a prime,
thus slightly simplifying the definition of primality, at the expense of complicating the sense
in which a prime factorisation is unique. It turns out that doing so is not a good tradeoff, and
this is the reason that 1 is by definition not prime. End of Example 1.11

Example 1.12 We reprove Proposition 1.9 (see Example 1.7) using complete induction.

Alternative proof of Proposition 1.9. Let P (n) be the predicate defined as follows:

P (n) : postage of exactly n cents can be made using only 4-cent and 7-cent stamps

We will use complete induction to prove that P (n) holds for all n ≥ 18.
Let i be an arbitrary integer such that i ≥ 18, and assume that P (j) holds for all j such

that 18 ≤ j < i. We will prove that P (i) holds as well.

Case 1. 18 ≤ i ≤ 21. We can make postage for
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• 18 cents using one 4-cent stamp and two 7-cent stamps (18 = 1× 4 + 2× 7);

• 19 cents using three 4-cent stamp and one 7-cent stamps (19 = 3× 4 + 1× 7);

• 20 cents using five 4-cent stamps (20 = 5× 4);

• 21 cents using three 7-cent stamps (21 = 3× 7).

Thus, P (i) holds for 18 ≤ i ≤ 21.

Case 2. i ≥ 22. Let j = i − 4. Thus, 18 ≤ j < i and therefore, by induction hypothesis,
P (j) holds. This means that there are k, ℓ ∈ N such that j = 4 · k + 7 · ℓ. Let k′ = k + 1 and
ℓ′ = ℓ. We have:

4 · k′ + 7 · ℓ′ = 4 · (k + 1) + 7 · ℓ [by definition of k′ and ℓ′]

= 4 · k + 7 · ℓ+ 4

= j + 4 [by induction hypothesis]

= i

Thus, P (i) holds in this case, as well.

Thus, in both cases P (i) holds, as wanted.

End of Example 1.12

Example 1.13 If you draw a few full binary trees, you may notice that each has an odd
number of nodes and you may suspect that this is true for all full binary trees. You may
therefore formulate the following

Conjecture 1.15 For any positive integer n, if a full binary tree has n nodes then n is odd.

Induction is a natural method to try using in order to prove this conjecture. Our attempts
to prove things about full binary trees using simple induction (recall Examples 1.9 and 1.10)
were fraught with difficulties. The basic problem was that the removal of a leaf from a full
binary tree yields a binary tree with one less node which, however, is not full — and, therefore,
to which we cannot apply the induction hypothesis.

In the case of Conjecture 1.15, we cannot possibly get around this difficulty by using the
technique of Example 1.10 — i.e., strengthening the statement we wish to prove by applying
it to all binary trees, not just full ones. This is because the strengthened statement is false: It
is certainly possible to have binary trees with an even number of nodes! In this case, complete
induction comes to the rescue.

Let T be a tree and u be an arbitrary node of T . The nodes of T that are reachable from
u (i.e., the set of nodes to which there is a path from u) and the edges through which these
nodes are reached from u form a tree, whose root is u. This is called the subtree of T rooted
at u. The term “subtree of T” (without reference to a specific node as its root) refers to a
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subtree rooted at one of the children of T ’s root. For example, the tree in Figure 1.1(b) has
three subtrees: one contains nodes 2, 5 and 6; one contains just node 3; and one contains nodes
4, 7, 8 and 9.

Thus, trees have an interesting recursive structure: The subtrees of a tree are smaller trees,
which can be further decomposed into yet smaller trees, and this decomposition process can
continue recursively until we have arrived at the smallest possible trees. (Depending on what
it is we are trying to prove about trees, the “smallest possible trees” may be trees with just
one node, trees with no nodes, or some other “basis” case.) Thus, it is natural to prove things
about trees inductively by applying the inductive hypothesis to subtrees, and using this to
prove that the desired property holds for the entire tree. In general, this is an application of
complete induction, since the subtrees are “smaller” (say, in number of nodes) than the tree,
but they are not necessarily smaller by one.

It is easy to see that if we apply the decomposition described above to binary trees, the
resulting subtrees are themselves binary. Similarly, if we apply it to full binary trees, the
resulting subtrees are themselves full binary trees. Thus, we can use this idea to prove induc-
tively things about binary trees or about full binary trees. We will illustrate this by proving
the above conjecture.

Proof of Conjecture 1.15. Let P (n) be the following predicate:

P (n) : if a full binary tree has n nodes, then n is an odd number.

We will prove that P (n) holds for all integers n ≥ 1 using complete induction.
Let i be an arbitrary integer i ≥ 1, and suppose that P (j) holds for all positive integers

j < i. That is, for any positive integer j < i, if a full binary tree has j nodes, then j is an odd
number. We will prove that P (i) holds as well. That is, we will prove that if a full binary tree
has i nodes, then i is an odd number. Let T be an arbitrary full binary tree with i nodes; we
must prove that i is odd. There are two cases, depending on whether i = 1 or i > 1.

Case 1. i = 1. Obviously, i is odd in this case.

Case 2. i > 1. Let T1 and T2 be the two subtrees of T , and let i1 and i2 be the number of
nodes of T1 and T2, respectively. The nodes of T are: the root, the nodes of T1 and the nodes
of T2. Thus,

i = i1 + i2 + 1 (1.5)

Since T is a full binary tree, T1 and T2 are also full binary trees. Since T has more than
one node (because i > 1) and is a full binary tree, each of T1 and T2 has at least one node,
so i1, i2 ≥ 1. Since i1 and i2 are nonnegative numbers, (1.5) implies that i1, i2 < i. Thus,
1 ≤ i1, i2 < i; by the induction hypothesis, P (i1) and P (i2) hold. Thus, i1 and i2 are odd
numbers. By (1.5), i is an odd number.

End of Example 1.13
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1.3.4 Pitfalls

In addition to the problems we discussed Section 1.2.3 (i.e., omitting the basis case or inad-
vertently strengthening the induction hypothesis in the induction step), in complete induction
proofs we must watch out for another problem. Suppose we are using complete induction to
prove that P (n) holds for all integers n ≥ c, where c ∈ N is some constant. In the induction
step of this proof we consider an arbitrary natural number i, and we prove that P (i) holds
assuming that P (j) holds for all integers j in the interval c ≤ j < i. Thus, if the argument
that P (i) holds uses the fact that P (j) holds, we must be careful to ensure that both (a) j ≥ c,
and (b) j < i. If not, then we have no right to assume that P (j) holds as part of the induction
hypothesis.

It is requirements (a) and (b) that dictate for which values of n we must prove that the
predicate P (n) holds with no recourse to the induction hypothesis — i.e., what should be the
“basis cases” of the induction proof. To illustrate this point, suppose that we wish to prove
that P (n) holds for all n ≥ 18, and in the induction step of this proof we are trying to prove
that P (i) holds using, as the induction hypothesis, that P (i − 4) holds, where i ≥ 18. Of
course, i − 4 < i, so (b) is automatically satisfied. Because of requirement (a), however, we
can use the induction hypothesis P (i − 4) only if i − 4 ≥ 18; i.e., only if i ≥ 22. This means
that this induction step is valid only if i ≥ 22, and suggests that the truth of P (18), P (19),
P (20) and P (21) should be handled separately, without recourse to the induction hypothesis.
In fact, we have already seen an instance just like this in Example 1.12. You should review
the proof in that example and make sure you understand why the proof would be incomplete
if we had only proved that P (18) holds in Case 1.

Now we consider a situation where it is the satisfaction of requirement (b) that imposes
restrictions on the values of i for which the induction step can be carried out. Suppose that
we wish to prove that P (n) holds for all n ≥ 0, and in the induction step we are trying to
prove that P (i) holds using, as the induction hypothesis, that P (⌈ i+1

2
⌉) holds, where i ≥ 0. It

turns out that ⌈ i+1
2
⌉ < i, for all i ≥ 3; however, ⌈ i+1

2
⌉ ≥ i, for 0 ≤ i < 3. This means that the

induction step in such a proof is valid only if i ≥ 3, and suggests that the truth of P (0), P (1)
and P (2) must be handled separately, with no recourse to the induction hypothesis.
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Exercises

1. Describe a set A that satisfies properties (i) and (ii) of the induction principle (see Sec-
tion 1.1.2, page 17) and is a proper superset of N.

2. When we do an induction proof, is it necessary to prove the basis before we prove the
Induction Step, or could we prove the two steps in either order?

3. Let P (n) be a predicate of natural numbers. Suppose we prove the following facts:

• P (0) holds

• P (1) holds

• for any i ≥ 0, if P (i) holds then P (i+ 2) holds

Does this constitute a valid proof that P (n) holds for all n ∈ N? Justify your answer.

4. Let P (n) be a predicate of the integers. Suppose we prove the following facts:

• P (0) holds

• for any i ≥ 0, if P (i) holds then P (i+ 1) holds

• for any i ≥ 0, if P (i) holds then P (i− 1) holds

Does this constitute a valid proof that P (n) holds for all n ∈ Z? Justify your answer.

5. Let P (n) be a predicate of the integers. Suppose we prove the following facts:

• P (0) holds

• for any i ≥ 0, if P (i) holds then P (i+ 1) holds

• for any i ≤ 17, if P (i) holds then P (i− 1) holds

Does this constitute a valid proof that P (n) holds for all n ∈ Z? Justify your answer.

6. Let P (n) be a predicate of the integers. Suppose we prove the following facts:

• P (17) holds

• for any i ≥ 17, if P (i) holds then P (i+ 1) holds

• for any i ≤ −17, if P (i) holds then P (i− 1) holds

Does this constitute a valid proof that P (n) holds, for all integers n such that n ≥ 17 or
n ≤ −17? Justify your answer.

7. Use induction to prove that, for any integers m ≥ 2 and n ≥ 1,
∑n

t=0m
t = mn+1−1

m−1
.

8. Review the definitions of equality between sequences and the subsequence relationship
between sequences. Then prove that any two finite sequences are equal if and only if each is a
subsequence of the other. Does this result hold for infinite sequences? (Show that it does, or
provide a counterexample proving that it does not.)
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9. Prove that every nonempty finite set of natural numbers has a maximum element. Does
the same hold for infinite sets of natural numbers? Compare this with the Well-Ordering
principle.

10. Use Proposition 1.6 to prove Propositions 1.3 and 1.5 without using induction.

11. Each of the proofs of Proposition 1.9 (see Example 1.7, page 30, and Example 1.12,
page 40) not only proves that we can make postage for any amount of n ≥ 18 cents using only
4-cent and 7-cent stamps; it also (implicitly) provides a recursive algorithm for determining
how to do so. Specifically, starting from any n ≥ 18 and “unwinding the induction” backwards
(either in steps of 1 — as in the first proof — or in steps of 4 — as in the second proof) we
can see how to recursively compute the number of 4-cent and the number of 7-cent stamps
for making exactly n cents of postage. Do the two algorithms produce the same answer for
each amount of postage? That is, for any value of n ≥ 18, do both algorithms yield the same
number of 4-cent and 5-cent stamps with which to make n cents of postage? Justify your
answer!

Note that, in principle, this need not be the case. For instance, postage of 56 cents can be
produced in any of the following ways:

• seven 4-cent stamps and four 7-cent stamps

• fourteen 4-cent stamps

• eight 7-cent stamps.

12. Use complete induction to prove that for each nonempty full binary tree the number of
leaves exceeds the number of internal nodes by exactly one.

13. Let P (n) be the predicate:

P (n) : postage of exactly n cents can be made using only 4-cent and 6-cent stamps.

Consider the following complete induction “proof” of the statement “P (n) holds for all n ≥ 4”.

Basis: n = 4. Postage of exactly 4 cents can be made using just a single 4-cent stamp. So
P (4) holds, as wanted.

Induction Step: Let i ≥ 4 be an arbitrary integer, and suppose that P (j) holds for all j
such that 4 ≤ j < i. That is, for all j such that 4 ≤ j < i, postage of exactly j cents can be
made using only 4-cent and 6-cent stamps. We must prove that P (i) holds. That is, we must
prove that postage of exactly i cents can be made using only 4-cent and 6-cent stamps.

Since i− 4 < i, by induction hypothesis we can make postage of exactly i− 4 cents using
only 4-cent and 6-cent stamps. Suppose this requires k 4-cent stamps and ℓ 6-cent stamps;
i.e., i− 4 = 4 · k + 6 · ℓ. Let k′ = k + 1 and ℓ′ = ℓ. We have

4 · k′ + 6 · ℓ′ = 4 · (k + 1) + 6 · ℓ [by definition of k′ and ℓ′ ]

= 4 · k + 6 · ℓ+ 4

= (i− 4) + 4 [by induction hypothesis]

= i
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Thus, P (i) holds, as wanted.

Clearly, however, we can’t make an odd amount of postage using only 4-cent and 6-cent
stamps! Thus, the statement “P (n) holds for all n ≥ 4” is certainly false. Consequently, the
above “proof” is incorrect. What is wrong with it?

14. Define the sequence of integers a0, a1, a2, · · · as follows:

ai =

{
2, if 0 ≤ i ≤ 2

ai−1 + ai−2 + ai−3, if i > 2

Use complete induction to prove that an < 2n, for every integer n ≥ 2.

15. An n-bit Gray code is a sequence of all 2n n-bit strings with the property that any two
successive strings in the sequence, as well as the first and last strings, differ in exactly one
position. (You can think of the 2n strings as arranged around a circle, in which case we can
simply say that any two successive strings on the circle differ in exactly one bit position.)
For example, the following is a 3-bit Gray code: 111, 110, 010, 011, 001, 000, 100, 101. There
are many other 3-bit Gray codes — for example, any cyclical shift of the above sequence, or
reversal thereof, is also a 3-bit Gray code.

Prove that for every integer n ≥ 1, there is an n-bit Gray code.

16. Let n be any positive integer. Prove that

(a) Every set S that contains binary strings of length n such that no two strings in S differ
in exactly one position, contains no more than 2n−1 strings.

(b) There exists a set S that contains exactly 2n−1 binary strings of length n such that no
two strings in S differ in exactly one position.



Chapter 2

CORRECTNESS OF ITERATIVE
AND RECURSIVE PROGRAMS

2.1 Program correctness

When we say that a program is correct, we mean that it produces a correct output on every
acceptable input. Of course, what exactly is a “correct output” and what are deemed as
“acceptable inputs” depends on the problem that the program is designed to solve — e.g., if
it is a program to sort arrays, or a program to solve systems of linear equations. Thus, when
we test that our program does the right thing by running it on some selected set of inputs we
are not producing conclusive evidence that the program is correct. We are, at best, gaining
confidence that the program is not incorrect. To prove that a program is correct we must
give a sound mathematical argument which shows that the right output is produced on every
acceptable input, not just those on which we chose to test the program.

Iterative programs (i.e., programs with loops) present a special challenge in this respect
because, in general, the number of times that a loop is executed depends on the input. The
same is true about recursive programs. Computer scientists have developed certain techniques
for proving the correctness of such programs. These techniques rely heavily on induction. In
this chapter we will examine these techniques.

2.2 Specification through preconditions and postconditions

First we need to discuss how to specify what are the acceptable inputs of a program and what
are the correct outputs for each acceptable input. One convenient and popular way to do this
is by using preconditions and postconditions. A precondition for a program is an assertion
involving some of the variables of the program; this assertion states what must be true before
the program starts execution — in particular, it can describe what are deemed as acceptable
inputs for the program. A postcondition for a program is an assertion involving some of the
variables of the program; this assertion states what must be true when the program ends —
in particular, it can describe what is a correct output for the given input.

Given a precondition/postcondition specification and a program, we say that the program is

47
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correct with respect to the specification (or the program meets the specification), if whenever
the precondition holds before the program starts execution, then (a) the program terminates
and (b) when it does, the postcondition holds. Following are some examples of precondi-
tion/postcondition pairs for some simple but useful specifications. In these notes we assume
that the starting index of arrays is 1, and that length(A) is the number of elements of array A.

Example 2.1 Suppose we are interested in a program which, given an array A and an
element x, searches A for x and returns the index of a position of A that contains x; if no
position of A contains x, then the program returns 0. Such a program can be specified by the
following precondition/postcondition pair.

Precondition: A is an array.

Postcondition: Return an integer i such that 1 ≤ i ≤ length(A) and A[i] = x, if such an
integer exists; otherwise return 0.

Note that this specification does not tell us how to search A for x. We can meet the
specification with a program that searches A from the first position to the last, or from the
last position to the first, or in any other order.

Strictly speaking, the postcondition in the above specification should also state that the
values of A and x are not altered by the program. To see why, consider the program that sets
A[1] := x and returns 1. This program does, indeed, return the index of an element of A that
contains x, but it does so by changing A, not by searching it! Because it becomes tedious to
explicitly state that various variables are not changed by the program, we adopt the convention
that, unless stated otherwise, all variables mentioned in the precondition and postcondition
are not altered by the program. End of Example 2.1

Example 2.2 Some programs that search an array for an element work correctly only if the

array is sorted.1 To specify such a search program, the additional assumption that the array
is sorted must be included in the precondition. Thus, for such a program, the precondition
given above would be replaced by

Precondition: A is a sorted array.

The postcondition remains as in Example 2.1.
A program that satisfies this specification can exhibit arbitrary behaviour if the given array

is not sorted: It may return an index that contains an element other than x, it may return
a value that is not an index of the array, it may never return a value, or it may cause the
computer to crash! End of Example 2.2

1An array is sorted if its elements appear in nondecreasing order. More precisely, A is sorted if, for each t

such that 1 ≤ t < length(A), A[t] � A[t + 1], where � is a total order of the data type to which the elements
of A belong. (When we speak of a sorted array we are, implicitly or explicitly, assuming a total order of the
data types to which the array elements belong. For example, if the array elements contain integers, the total
order could be the ≤ or ≥ relation on integers; if the array elements contain strings, the total order could be
lexicographic ordering.) Note that, in general, a sorted array may contain duplicates.



2.3. CORRECTNESS OF BINARY SEARCH 49

Example 2.3 Suppose we are interested in a program which sorts a given array. Such a

program can be specified by the following precondition/postcondition pair.

Precondition: A is an array.

Postcondition: A contains the same elements as before the invocation, but in sorted (non-
decreasing) order.

Notice that this specification allows for A to be altered by the program— albeit in restricted
ways, namely by rearranging its elements. End of Example 2.3

Specifications of the kind illustrated by these examples are very important in practice.
The single most important element of good documentation for a program is to convey just
what the program does (postconditions) and under what conditions it is expected to do it
(preconditions). Thus, a well-documented program must include, at a minimum, a precondi-
tion/postconditions pair that constitutes its statement of correctness. Providing such a speci-
fication is crucial regardless of whether one intends to carry out a detailed proof of correctness
for the program. This is because a programmer who wishes to use an existing program should
be able to do so by reading just this specification, and without having to look at the code.

There are many formal notations that have been developed for expressing preconditions
and postconditions, each with its advantages and disadvantages. Some of these notations rely
heavily on predicate logic, a subject that we will encounter in Chapter 6. In these notes we
will not be concerned with formal notations used to express preconditions and postconditions;
we will express them informally — though hopefully clearly and precisely — in English.

2.3 Correctness of binary search

Binary search is an algorithm which, given a sorted array A and an element x determines
whether x appears in A and if so it also determines an index of A that contains x. Thus, the
specification of this algorithm is that given in Example 2.2. Informally, binary search works
by comparing the target element x to the “middle” element of A. If the middle element is
greater than or equal to x, then the search is confined to the first half of A; otherwise, the
search is confined to the second half. This process is repeated until the search is confined
to a subarray of size 1, in which case the information sought by the algorithm is trivial to
determine. This algorithm can be expressed either iteratively, in which case each halving of
the array corresponds to an iteration of a loop, or recursively, in which case each halving
corresponds to a recursive call.

The iterative version of binary search is shown in Figure 2.1, which also contains the
preconditions and postconditions relative to which we want to prove the correctness of the
program. (The function div was defined on page 28.) The program uses two variables, f and
ℓ that indicate, respectively, the “first” and “last” index of the range to which the search has
been confined so far. If the range is nontrivial (i.e., has more than one element), the “middle”
index of the range is computed as variable m, and the range is confined to the appropriate
half.
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BinSearch(A, x)
◮ Precondition: A is a sorted array of length at least 1.
◮ Postcondition: Return an integer t such that 1 ≤ t ≤ length(A) and A[t] = x,
◮ if such a t exists; otherwise return 0.

1 f := 1; ℓ := length(A)
2 while f 6= ℓ do
3 m := (f + ℓ) div 2
4 if A[m] ≥ x then
5 ℓ := m
6 else
7 f := m+ 1
8 end if
9 end while
10 if A[f ] = x then
11 return f
12 else
13 return 0
14 end if

Figure 2.1: Iterative binary search

We will prove the correctness of this program with respect to the precondition/postcondition
pair given in Figure 2.1. This can be stated as follows:

Theorem 2.1 Suppose A is a sorted array of length at least 1. BinSearch(A, x) termi-
nates and returns t such that 1 ≤ t ≤ length(A) and A[t] = x, if such a t exists; otherwise
BinSearch(A, x) terminates and returns 0.

The proof of this theorem will be given in two parts:

(a) Partial Correctness: Suppose A is a sorted array of length at least 1. If BinSearch(A, x)
terminates then, when it does, it returns t such that 1 ≤ t ≤ length(A) and A[t] = x, if
such a t exists; otherwise it returns 0.

(b) Termination: Suppose A is a sorted array of length at least 1. BinSearch(A, x) termi-
nates.

You should make sure you understand why (a) and (b) together imply Theorem 2.1 — and
why (a) alone does not. In the next two subsections we present the proofs of these two parts.

2.3.1 Partial correctness of BinSearch

To prove partial correctness of BinSearch, we will prove that if the preconditions hold before
the program starts then the following is true at the end of each iteration of the loop:

1 ≤ f ≤ ℓ ≤ length(A), and if x is in A then x is in A[f..ℓ]. (2.1)
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(For any integers i and j such that 1 ≤ i ≤ j ≤ length(A), the notation A[i..j] denotes the
subarray of A between indices i and j, inclusive.) This assertion captures the essence of the
loop of BinSearch: The loop ensures that the element x being sought, if it is anywhere at all
in the array, then it is in the part of the array that lies between indices f (as a lower bound)
and ℓ (as an upper bound). This is just what (2.1) states, albeit in more mathematical terms.

A statement that is true at the end of each iteration of a loop, such as (2.1), is called a
loop invariant. More precisely, consider a program that contains a loop. Let P and Q be
predicates of (some of) the variables of the program. We say that P is an invariant for the
loop with respect to precondition Q if, assuming the program’s variables satisfy Q before
the loop starts, the program’s variables also satisfy P before the loop starts as well as at the
end of each iteration of the loop. From now on, we adopt the convention that the “end of the
0-th iteration of the loop” is the point in the program just before entering the loop, and that
“each iteration of the loop” includes this 0-th iteration. Thus, we simply say that an invariant
is true at the end of each iteration of the loop, without explicitly saying that it is true before
the loop.

We will now prove that (2.1) is, in fact, an invariant for the loop in BinSearch with
respect to that program’s precondition.2 Later, in the proof of Corollary 2.4, we will see the
relevance of this fact for the partial correctness of BinSearch.

First we need to develop some notation, which we will also use in other proofs of partial
correctness. Consider a variable v, whose value may change during an iteration of the loop.
(BinSearch contains three such variables: f , ℓ and m.) We use the notation vi to denote the
value of variable v at the end of the i-th iteration of the loop — provided that there is such
an iteration.

We will need the following lemma:

Lemma 2.2 For any integers f, ℓ such that f < ℓ, f ≤ (f + ℓ) div 2 < ℓ.

Proof. We have:

(f + ℓ) div 2 ≥ (f + f) div 2 [since ℓ > f ]

= (2f) div 2

= f (2.2)

and

(f + ℓ) div 2 ≤ (f + ℓ)/2 [by definition of div]

≤
(
(ℓ− 1) + ℓ

)
/2 [since f < ℓ and so f ≤ ℓ− 1]

= ℓ− 1
2

< ℓ (2.3)

2Note that, in this case, the precondition of BinSearch involves variables that are not modified before
executing the loop. Thus, if the precondition holds before the program starts, the precondition still holds
before the loop starts.
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The lemma follows from (2.2) and (2.3).

We are now ready to prove that (2.1) is a loop invariant. More precisely,

Lemma 2.3 Suppose the precondition of BinSearch holds before the program starts. For
each i ∈ N, if the loop of BinSearch(A, x) is executed at least i times, then (i) 1 ≤ fi ≤ ℓi ≤
length(A), and (ii) if x is in A, then x is in A[fi..ℓi].

3

Proof. Let P (i) be the following predicate:

P (i) : if the loop is executed at least i times, then (i) 1 ≤ fi ≤ ℓi ≤ length(A), and

(ii) if x is in A, then x is in A[fi..ℓi].

We will use induction to prove that P (i) holds for all i ∈ N.

Basis: i = 0. We have f0 = 1 and ℓ0 = length(A). Part (i) of P (0) follows because, by the
precondition, length(A) ≥ 1. Part (ii) of P (0) is trivially true.

Induction Step: Let j be an arbitrary natural number, and assume that P (j) holds. We
must prove that P (j + 1) holds as well. If there is no (j + 1)-st iteration then P (j + 1) holds
trivially. So, assume that there is such an iteration. By the loop exit condition, fj 6= ℓj. By
induction hypothesis, fj ≤ ℓj, and thus fj < ℓj. By Lemma 2.2,

fj ≤ mj+1 < ℓj. (2.4)

By the program, either fj+1 = fj and ℓj+1 = mj+1, or fj+1 = mj+1 + 1 and ℓj+1 = ℓj. In
conjunction with the fact that 1 ≤ fj ≤ ℓj ≤ length(A) (part (i) of the induction hypothesis),
and (2.4), we have that 1 ≤ fj+1 ≤ ℓj+1 ≤ length(A). This is part (i) of P (j + 1). It remains
to prove part (ii) of P (j+1). Suppose that x is in A. By part (ii) of the induction hypothesis,
x is in A[fj..ℓj ]. We must prove that x is in A[fj+1..ℓj+1]. There are three cases:

Case 1. A[mj+1] = x. In this case, by the program, fj+1 = fj and ℓj+1 = mj+1 and so it is
obvious that x is in A[fj+1..ℓj+1], as wanted.

Case 2. A[mj+1] > x. Since A is sorted, A[t] > x for all t such that mj+1 ≤ t ≤ ℓj. Since x
is in A[fj..ℓj] but it is not in A[mj+1..ℓj], it follows that x is in A[fj..mj+1]. By the program,
in this case fj+1 = fj and ℓj+1 = mj+1. Thus, x is in A[fj+1..ℓj+1], as wanted.

Case 3. A[mj+1] < x. Since A is sorted, A[t] < x for all t such that fj ≤ t ≤ mj+1. Since
x is in A[fj ..ℓj] but it is not in A[fj..mj+1], it follows that x is in A[mj+1 + 1..ℓj]. By the
program, in this case fj+1 = mj+1+1 and ℓj+1 = ℓj. Thus, x is in A[fj+1..ℓj+1], as wanted.

We are now in a position to prove the partial correctness of BinSearch.

3We do not subscript A and x because these variables’ values do not change in the loop.



2.3. CORRECTNESS OF BINARY SEARCH 53

Corollary 2.4 Suppose the precondition of BinSearch holds before the program starts. If
the program terminates then, when it does, the postcondition holds.

Proof. Suppose the precondition holds and the program terminates. Since the program
terminates, the loop is executed a finite number of times, say k. By the exit condition of the
loop, fk = ℓk. By part (i) of Lemma 2.3, 1 ≤ fk ≤ length(A). There are two cases:

Case 1. There is some t such that 1 ≤ t ≤ length(A) and A[t] = x. This means that x is in
A and by part (ii) of Lemma 2.3, x is in A[fk..ℓk]. But since fk = ℓk, we have that x = A[fk]
and the program returns fk, as required by the postcondition in this case.

Case 2. For each t such that 1 ≤ t ≤ length(A), A[t] 6= x. Since, by part (i) of Lemma 2.3,
1 ≤ fk ≤ length(A), in particular, A[fk] 6= x. So, in this case, the program returns 0, as
required by the postcondition in this case.

It is instructive to step back for a moment to consider the basic structure of the preceding
corollary’s proof: The loop invariant (x is in A[f..ℓ], if it is anywhere in A) is used in conjunction
with the loop exit condition (f = ℓ) to obtain the postcondition. This sheds some interesting
light to the question of how we came up with (2.1) as the particular statement for our loop
invariant.

This question is very relevant in view of the fact that there are many statements that are
invariants for a loop. For example, the statement “A is a sorted array” is an invariant of the
loop of BinSearch with respect to that program’s precondition. This is simply because the
precondition assures us that A is sorted and the loop does not modify A. So, the question
arises: Why did we choose (2.1), rather than “A is sorted”, as our loop invariant? The answer
is that the former helps prove partial correctness while the latter does not. This is really the
ultimate test for the claim we made earlier that (2.1) “captures the essence” of the loop. In
contrast, the statement “A is sorted”, although true at the end of each iteration of the loop,
does not correspond to our intuition about the purpose of the loop in BinSearch. This is
reflected by the fact that the statement “A is sorted”, combined with the loop exit condition,
is not enough to yield the postcondition of BinSearch.

2.3.2 Termination of BinSearch

To prove that BinSearch terminates it is sufficient to show that the loop in lines 2–9 termi-
nates, since all other statements of the program obviously terminate. Proving that a loop ter-
minates usually involves induction in the guise of the well-ordering principle (see Section 1.1.1).
A sequence σ of numbers is decreasing if, for each i such that 0 ≤ i < |σ|, σ(i+1) < σ(i). It
is easy to see that the principle of well-ordering immediately implies:

Theorem 2.5 Every decreasing sequence of natural numbers is finite.
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To prove the termination of a loop we typically proceed as follows: We associate with
each iteration i of the loop a number ki, defined in terms of the values of the variables in the
i-th iteration, with the properties that (i) each ki is a natural number and (ii) the sequence
〈k0, k1, k2, . . .〉 is decreasing. Then the loop must terminate, for otherwise we would have an
infinite decreasing sequence of natural numbers, which Theorem 2.5 precludes.

In BinSearch we can associate with each iteration of the loop the value of the quantity
ℓi − fi. This choice reflects the intuition that the reason the loop of BinSearch terminates
is that the range of the array into which the search for x has been confined gets smaller and
smaller with each iteration. The fact that ℓi−fi is a natural number follows immediately from
the fact that ℓi and fi are natural numbers and, by part (i) of Lemma 2.3, fi ≤ ℓi. It remains
to show that the sequence 〈ℓ0 − f0, ℓ1 − f1, ℓ2 − f2, . . .〉 is decreasing. More precisely,

Lemma 2.6 Consider the loop in lines 2–9 of Figure 2.1. For each i ∈ N, if the loop is
executed at least i+ 1 times then ℓi+1 − fi+1 < ℓi − fi.

Proof. Suppose that the loop is executed at least i + 1 times. By the loop termination
condition, this means that ℓi 6= fi. By part (i) of Lemma 2.3, fi ≤ ℓi, and so fi < ℓi.
Therefore, by Lemma 2.2,

fi ≤ mi+1 < ℓi. (2.5)

There are two cases:

Case 1. A[mi+1] ≥ x. In this case, fi+1 = fi and ℓi+1 = mi+1. By (2.5), mi+1 < ℓi.
Therefore, ℓi+1 − fi+1 = mi+1 − fi < ℓi − fi.

Case 2. A[mi+1] < x. In this case, fi+1 = mi+1 + 1 and ℓi+1 = ℓi. By (2.5), fi ≤ mi+1 and
so fi < mi+1 + 1. Therefore, ℓi+1 − fi+1 = ℓi − (mi+1 + 1) < ℓi − fi.

In either case, ℓi+1 − fi+1 < ℓi − fi, as wanted.

Since we can associate with each iteration of the loop a natural number, so that successive
iterations correspond to a decreasing sequence of natural numbers, by Theorem 2.5, the loop
terminates.

2.4 The correctness of a multiplication program

Consider the program in Figure 2.2 which, as it turns out, returns the product of its inputs m
and n, whenever m ∈ N and n ∈ Z. (The functions div and mod were defined on page 28.)
Some observations about this program are in order. This is supposed to be a program for
multiplying numbers, yet in line 7 it uses multiplication (and in line 6 it uses integer division)!
This seems rather pointless; if multiplication is available then why bother with Mult in the
first place? The integer division and multiplication of lines 6 and 7, however, are of a very
special kind: they divide and multiply by 2. These operations can be accomplished in the
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Mult(m,n)
◮ Precondition: m ∈ N and n ∈ Z.
◮ Postcondition: Return m · n.

1 x := m
2 y := n
3 z := 0
4 while x 6= 0 do
5 if x mod 2 = 1 then z := z + y end if
6 x := x div 2
7 y := y ∗ 2
8 end while
9 return z

Figure 2.2: A multiplication program

following way: to multiply an integer by 2, append a 0 to its binary representation; to integer-
divide a number by 2, drop the rightmost bit from its binary representation.4 Thus, Mult
could have easily been written without multiplication or division operations, using shift-left
and shift-right operations instead. We chose to use multiplication and division to make things
clearer.

Let us now return to the issue of correctness of Mult, with respect to the precondi-
tion/postcondition pair given in Figure 2.2. This can be stated as follows:

Theorem 2.7 If m ∈ N and n ∈ Z, then Mult(m,n) terminates and returns m · n.

As with the proof of correctness of BinSearch we will prove this theorem in two parts:

(a) Partial Correctness: If m,n ∈ Z and Mult(m,n) terminates, then it returns m · n.

(b) Termination: If m ∈ N and n ∈ Z, then Mult(m,n) terminates.

One interesting detail is that in (a) we only require that m and n be integers, while in (b) and
the Theorem, m must be a nonnegative integer. Of course, (a) would still be true (a fortiori)
if we required m to be nonnegative but, as it turns out, it is not necessary to do so. On the
other hand, it is necessary to require m to be nonnegative for (b); as we will see, Termination
would not hold otherwise!

2.4.1 Partial correctness of Mult

To prove partial correctness, we will prove that at the end of each iteration of the loop,
z = mn − xy. In Section 2.4.3 we will explain how it ever occurred to us to prove that

4To help you see why, think of the corresponding operations in decimal notation: To multiply a number by
10, we append a 0 to its decimal representation; to integer-divide a number by 10, we drop the rightmost digit.
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z = mn−xy is a loop invariant. For now, we just concentrate on proving this fact. We will use
the notation we developed in the proof of correctness of BinSearch: A variable v subscripted
with a natural number i denotes the value of the variable v at the end of the i-th iteration of
the loop (if such an iteration exists).

Lemma 2.8 Suppose m,n ∈ Z. For each i ∈ N, if the loop of Mult(m,n) is executed at
least i times, then zi = mn− xiyi.

5

Proof. Let P (i) be the predicate defined as follows:

P (i) : if the loop is executed at least i times, then zi = mn− xiyi.

We will use induction to prove that P (i) holds for all i ∈ N.

Basis: i = 0. We have z0 = 0, x0 = m and y0 = n. Hence, z0 = mn− x0y0, and P (0) holds.

Induction Step: Let j be an arbitrary natural number, and assume that P (j) holds; i.e., if
the loop is executed at least j times, then zj = mn− xjyj. We must prove that P (j+1) holds
as well; i.e., if the loop is executed at least j + 1 times, then zj+1 = mn− xj+1yj+1.

First note that if the loop is executed at least j + 1 times then

• xj+1 = xj div 2. Thus,

xj =

{
2xj+1, if xj mod 2 = 0

2xj+1 + 1, if xj mod 2 = 1
(2.6)

• yj+1 = 2yj. Thus,

yj = yj+1/2. (2.7)

Consider the effect of the (j + 1)-st iteration on z. This depends on whether xj mod 2 is 0 or
1. Thus, there are two cases:

Case 1. xj mod 2 = 0. Then

zj+1 = zj [because line 5 is not executed, in this case]

= mn− xjyj [by induction hypothesis]

= mn− (2xj+1)(yj+1/2) [by (2.6) and (2.7) above]

= mn− xj+1yj+1

as wanted.

5We do not subscript m and n because these variables’ values do not change in the loop.
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Case 2. xj mod 2 = 1. Then

zj+1 = zj + yj [because line 5 is executed, in this case]

= mn− xjyj + yj [by induction hypothesis]

= mn− (2xj+1 + 1)(yj+1/2) + yj+1/2 [by (2.6) and (2.7) above]

= mn− xj+1yj+1

as wanted.

Corollary 2.9 Suppose the precondition of Mult holds before the program starts. If the
program terminates then, when it does, the postcondition holds.

Proof. Suppose the precondition holds and the program terminates. Since the program
terminates, the loop is executed a finite number of times, say k. By the exit condition of the
loop, xk = 0. By Lemma 2.8, zk = mn − xkyk. But since xk = 0, we have that zk = mn.
Since the program returns the value of z when the loop terminates, i.e., zk, the postcondition
holds.

There are many assertions that qualify as invariants for the loop of Mult, in the sense
that they are true at the end of each iteration. For example, a straightforward induction shows
that yi = 2i · n is true at the end of each iteration. What distinguishes zi = mn − xiyi from
these, and the reason we chose it as our loop invariant, is that this assertion, in conjunction
with the loop exit condition, immediately implies the postcondition. In contrast, for example,
the (true) assertion that yi = 2i · n, together with the loop exit condition, does not imply the
postcondition.

2.4.2 Termination of Mult

To prove that Mult terminates it is sufficient to show that the loop in lines 4–8 terminates,
since all other statements of the program obviously do. We will prove that loop of Mult
terminates by following the approach we used in Section 2.3.2 to prove that the loop of Bin-
Search terminates. Namely, we will associate with each iteration i of the loop a number ki
with the properties that (i) each ki is a natural number, and (ii) the sequence 〈k0, k1, k2, . . .〉
is decreasing. Then the loop must terminate, by Theorem 2.5.

In Mult we can simply associate with iteration i the value xi. This choice reflects the
intuition that the loop of Mult terminates because the value of x gets smaller and smaller.
The fact that xi is a natural number can be shown by a straightforward induction.6 It remains

6It is precisely in the base case of this induction where we need the precondition that m ∈ N (rather than
the weaker assumption that m ∈ Z). This fact, which is critical for the termination — and thus the correctness
— of the program, is only needed in this seemingly humble step. This is another instance of the phenomenon
illustrated in Example 1.8. By leaving out the basis case of this induction we could claim to have “proved” that
Mult(m,n) is a correct multiplication program for all m,n ∈ Z; in actuality it is correct only for all m ∈ N

and n ∈ Z.
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to show that the sequence 〈x0, x1, x2, . . .〉 is decreasing. More precisely, we must show that if
the loop is executed at least i+ 1 times, then xi+1 < xi. This is true because xi+1 = xi div 2.
We have already argued that xi is a natural number; since xi 6= 0 (otherwise, there would be
no (i+ 1)-st iteration), it follows that xi div 2 < xi, so xi+1 < xi.

2.4.3 Deriving the invariant in Mult

We now return to the question: How on earth did we ever think of the invariant zi = mn −
xi · yi in our proof of partial correctness of Mult? The mystery vanishes as soon as we
understand how this program works. Mult multiplies numbers by the standard elementary
school algorithm, except that it views numbers in binary, rather than in decimal. How do we
multiply numbers in binary? We consider the multiplier m bit-by-bit from right to left, and
maintain a running total. If the i-th bit of the multiplier is 1, we add to this running total
the multiplicand n padded with i 0s to the right; if the i-th bit is 0, we add nothing to the
running total. In terms of the program in Figure 2.2, the padding of the multiplicand with 0s
is accomplished by the multiplication in line 7, and the dropping of the multiplier’s bits that
have already been considered is accomplished by the integer division in line 6. The running
total is accumulated in variable z.

With this in mind, it is not hard to see what is going on in Mult: At the end of the i-th
iteration of the loop, the value of z is equal to n multiplied by the number formed by the i
rightmost bits of m. That is, zi = n · (rightmost i bits of m).

Now, the rightmost i bits of m can be expressed as m− (m div 2i) · 2i. To see this, observe
that we can obtain the rightmost i bits by shifting m i bits to the right (thus making the i
leftmost bits 0s), then shifting the resulting number i bits to the left (thus restoring the bits
from positions i + 1 on to their proper places), and finally subtracting the resulting number
from m (thus turning into 0s the bits to the left of the i rightmost ones). In other words, we
have

zi = n · (rightmost i bits of m)

= n ·
(
m− (m div 2i) · 2i

)

= nm− (m div 2i)(n · 2i)

It is easy to see (and to prove by induction!) that yi = n · 2i and xi = m div 2i. Putting
everything together we have zi = mn− xiyi, which was our invariant.

2.5 A more interesting proof of termination

Consider the loop shown in Figure 2.3. Does this loop terminate with respect to its precondi-
tion? (We are not really interested in what this loop does other than whether it terminates.
For this reason the postcondition is the assertion “true” — or, if you prefer, something like
x = x — which is satisfied no matter what the loop does!)

We can informally describe what the program does as follows: It decrements the value of
x until it becomes 0; it then sets x to 16 and decrements y once. This is repeated until both x



2.5. A MORE INTERESTING PROOF OF TERMINATION 59

◮ Precondition: x, y ∈ N.
◮ Postcondition: True.

1 while x 6= 0 or y 6= 0 do
2 if x 6= 0 then
3 x := x− 1
4 else
5 x := 16
6 y := y − 1
7 end if
8 end while

Figure 2.3: A loop with an interesting proof of termination

and y become 0. In view of this description, it appears plausible to conjecture that, if x and
y are both nonnegative integers before the loop starts, then the loop does, in fact, terminate.
Let’s now prove this by following the methodology we used in Sections 2.3.2 and 2.4.2, to
prove that the loops of BinSearch and Mult terminate. We want to associate with each
iteration of the loop some natural number so that the sequence of numbers that correspond to
successive iterations is decreasing. A moment’s thought shows that the number we associate
with an iteration cannot be the value of x: This is because iterations in which x 6= 0 cause x to
decrease, but iterations in which x = 0 actually cause x to increase (from 0 to 16) — thus the
value of x does not always decrease. Also, the number we associate with an iteration cannot
be the value of y: This is because in iterations where x 6= 0, the value of y does not decrease.

However, an expression that involves both x and y will do the trick. Specifically, assuming
that x, y are natural numbers before the loop starts, we can prove that the value of 17y + x is
always a natural number that decreases in each iteration of the loop. The fact that 17y + x is
always a natural number can be shown by a straightforward induction, which we omit. (The
basis of this induction uses the precondition that x, y ∈ N.) We now prove that the value of
17y + x decreases in each iteration of the loop. As usual, vi denotes the value of variable v at
the end of iteration i, if such an iteration exists.

Lemma 2.10 For each i ∈ N, if the loop in Figure 2.3 is executed at least i + 1 times, then
17yi+1 + xi+1 < 17yi + xi.

Proof. There are two cases:

Case 1. xi 6= 0. By the algorithm, xi+1 = xi − 1 and yi+1 = yi. Thus, 17yi+1 + xi+1 =
17yi + xi − 1 < 17yi + xi.

Case 2. xi = 0. By the algorithm, xi+1 = 16 and yi+1 = yi − 1. Thus, 17yi+1 + xi+1 =
17(yi − 1) + 16 = 17yi − 1 < 17yi = 17yi + xi.

In either case then, 17yi+1 + xi+1 < 17yi + xi, as wanted.
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Where did the expression 17y + x come from? The informal description of the loop given
earlier (decrement x until it becomes 0, then set it to 16, decrement y once and repeat until
both x and y are 0) suggests the following interpretation for this loop. Think of x and y
as the digits of a two-digit number in base 17, where x is the low-order digit and y is the
high-order digit. (Thus, x and y are integers in the range 0 to 16.) The action of the loop
corresponds to decrementing by 1 the base-17 number represented by the two digits. This
number is simply 17y+ x. (To see why, think of the analogous situation in base 10: If x and y
represent, respectively, the low-order and high-order digits of a number in base 10, the number
represented by these two digits is 10y + x.)

2.6 Comments on proving the correctness of iterative programs

The correctness proofs of BinSearch and Mult, detailed in Sections 2.3 and 2.4, exemplify
some general points regarding correctness proofs of iterative programs. We first summarise
these points, and then elaborate on them.

• Correctness proofs of iterative programs are typically divided into two parts: one proving
partial correctness (i.e., that the program is correct assuming it terminates); and another
proving termination (i.e., that the program does indeed terminate).

• The proof of termination typically involves associating a decreasing sequence of natural
numbers with the iterations of the loop, and appealing to Theorem 2.5 (i.e., to the
well-ordering principle).

• The proof of partial correctness of an iterative program is typically based on a loop
invariant. Proving that a statement is a loop invariant involves induction.

When proving termination it is generally a bad idea to try proving directly that the loop exit
condition will eventually become true. It is best to do so indirectly, by exhibiting a quantity
(expressed in terms of the program’s variables) that (i) always takes on nonnegative integer
values, and (ii) always decreases in each iteration of the loop. Informal arguments of the type
“quantity such-and-such gets smaller and smaller in each iteration” may be informative but
are not entirely convincing: A quantity can get smaller and smaller in each iteration but the
loop may not terminate, if the quantity can take on negative or noninteger values. So, it is
important to make sure that the quantity in question has property (i). Furthermore, it is
important to make sure that the quantity strictly decreases in each iteration. (See Exercise 2,
for example.)

When proving partial correctness, the most vexing question confronting people who are new
to program correctness is: “How do I know what the loop invariant should be?” Unfortunately,
there is no mechanical way to determine an appropriate loop invariant — that is, one that helps
us establish partial correctness. Finding such an invariant is a creative process, and is usually
the most difficult part of the proof. It is fair to say that to determine an appropriate loop
invariant one must achieve a very clear understanding of what the loop does and be able to
verbalise that understanding.
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From this point of view, determining loop invariants is important not only for proving
program correctness (an activity which, for better or worse, is not very common), but also for
understanding programs and documenting them. Of course this implies that loop invariants
are also important for developing programs, since one can’t write a good program without
understanding or documenting it! Indeed, some software development organisations require,
as part of their programming style guidelines, that their programming staff annotate the loops
of their programs with appropriate invariants. These invariants (as well as other things) are
scrutinised by the team of quality control inspectors whose job is to ensure that the software
produced by the programmers meets the organisation’s standards of quality.

In some cases, programming style guidelines require loop invariants that are not merely
manually inspected, but are actually executed. Here is how this works. Some program devel-
opment environments incorporate something called an assert statement. This is a statement
of the form “assert B”, where B is a Boolean expression involving (some of) the program’s
variables. Putting such a statement in a particular point of a program asserts that, at that
point of the program, B is (supposed to be) true. (Thus, an assert statement at the beginning
of a loop is an invariant for that loop.) If, at run time, the Boolean expression of an assert
statement evaluates to false, an error message is generated to indicate that something went
wrong: A fact that was supposed to be always true, was actually found to be false in some
execution of the program. Assert statements are included in the code during the debugging
and testing phase of software development, but are removed when the program is used in pro-
duction to avoid the overhead of executing them. Some software development organisations
have programming style guidelines which require the inclusion of appropriate assert statement
in loops — i.e., loop invariants. The points raised in the last two paragraphs should convince
you that loop invariants and program correctness are not just pie-in-the-sky theoretical flights
of fancy. The associated techniques and concepts are practical and useful, and it is important
that you should understand and be capable of using them.

Although it is not possible to mechanically derive a loop invariant that is sufficient to prove
partial correctness, it is possible to do so through an iterative process of trial-and-error that
involves the following steps:

(i) First we must try to understand what the loop does and how its function is related to
the correctness of the program.

(ii) On the basis of our (perhaps incomplete) understanding in step (i), we formulate a
candidate statement as our proposed loop invariant.

(iii) We check to see if the proposed loop invariant is sufficient to prove partial correctness.
Typically, this involves combining the loop invariant with the exit condition of the loop
and the preconditions of the program and seeing if these, taken together, imply the
postcondition.

(iv) If the answer in step (iii) is negative, then we repeat the above three steps, trying to
deepen our understanding of the loop. This should result in a more refined candidate for
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loop invariant. This process is repeated until we produce a proposed loop invariant that
is sufficient to prove partial correctness.

(v) Finally, we prove that the proposed statement that meets the requirement of step (iii)
really is a loop invariant. This proof involves induction. If we cannot carry out this
induction, we must again revise the proposed loop invariant, repeating the above steps.

An important remark regarding step (v) is now in order. Suppose we have a candidate
loop invariant P (i), which we have determined is sufficient for partial correctness. We must
now prove, using induction, that P (i) really is an invariant. Sometimes, in the induction step
of this proof we discover that P (j) is not enough to let us prove P (j + 1), and a stronger
induction hypothesis P ′(j) is needed. This is a classic instance of the phenomenon discussed
at some length in Example 1.10 (see page 35).

We cannot, of course, simply use the stronger induction hypothesis P ′(j), to prove P (j+1),
as this would be an invalid proof. We can, however, revise our loop invariant from P (i) to P ′(i),
and attempt to prove that P ′(i) is a loop invariant. Note that strengthening the invariant is
certainly not going to hurt its utility in proving the correctness of the program: Since P ′(i)
holds at the end of each iteration, certainly P (i) holds as well (that’s what it means to say that
P ′(i) is stronger than P (i)); and since we have already established that P (i) is good enough
to prove the correctness of the program, so is P ′(i). If we succeed in proving that P ′(i) is a
loop invariant, then all is well and good. But we might not: it is possible that we strengthened
the predicate too much and, in fact, P ′(i) is not an invariant for our loop. If that’s the case,
we can now try changing our candidate for a loop invariant to another predicate P ′′ which is
stronger than P (and thus still useful for proving the correctness of the program) but weaker
than P ′, and repeat this process.

The process of formulating candidate loop invariants and revising them (strengthening or
weakening them) until we succeed in proving that our candidate is what we want — is quite
common. For a reasonably complicated iterative program, even after achieving a fairly good
grasp of what the loop does, it is rare that our first attempt at formulating a loop invariant
will be just right. The iterative process outlined above, if carried out intelligently, will allow
us to zero into the right invariant after a few trials.

2.7 Proof of correctness of recursive programs

In this section we illustrate, by means of an example, the process of proving the correct-
ness of recursive programs. Consider the program shown in Figure 2.4, which is a recursive
version of binary search. The program consists of two parts, a recursive program RecBin-
Search which does all the work, and the main program MainBinSearch which merely calls
RecBinSearch with the right parameters.

Informally, the recursive program works as follows. It takes as parameters: the array A
to be searched, two indices f and ℓ which delimit the portion of A to be searched, and the
element x for which A[f..ℓ] is to be searched. If x is in the subarray A[f..ℓ], then the program
returns the index of an element in the subarray that contains x; otherwise it returns 0. Thus,
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MainBinSearch(A, x)
◮ Precondition: A is a sorted array of length at least 1.
◮ Postcondition: Return t such that 1 ≤ t ≤ length(A) and A[t] = x, if such a t exists;
◮ otherwise return 0.

return RecBinSearch(A, 1, length(A), x)

RecBinSearch(A, f, ℓ, x)
1 if f = ℓ then
2 if A[f ] = x then
3 return f
4 else
5 return 0
6 end if
7 else
8 m := (f + ℓ) div 2
9 if A[m] ≥ x then
10 return RecBinSearch(A, f,m, x)
11 else
12 return RecBinSearch(A,m+ 1, ℓ, x)
13 end if
14 end if

Figure 2.4: Recursive binary search

to find an index of A that contains x (if x appears in A), all the main program has to do is
call RecBinSearch(A, 1, length(A), x).

The correctness proof of MainBinSearch(A, x) involves the following three steps:

• First, we give a careful specification for the correctness of the recursive program RecBin-
Search. This specification formalises the informal description given above.

• We then prove that RecBinSearch is correct with respect to this specification.

• Finally, we prove that MainBinSearch meets its specification using the correctness of
RecBinSearch established in the previous step.

We now carry out these three steps.
The specification of RecBinSearch(A, f, ℓ, x) consists of the following precondition/

postcondition pair.

Precondition: 1 ≤ f ≤ ℓ ≤ length(A) and A[f..ℓ] is sorted.

Postcondition: Return t such that f ≤ t ≤ ℓ and A[t] = x, if such a t exists; otherwise,
return 0.
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Next we prove that RecBinSearch(A, f, ℓ, x) is correct with respect to this specification.
More precisely,

Lemma 2.11 Suppose that f and ℓ are integers such that 1 ≤ f ≤ ℓ ≤ length(A), and
that A[f..ℓ] is sorted when RecBinSearch(A, f, ℓ, x) is called. Then this call terminates and
returns t such that f ≤ t ≤ ℓ and A[t] = x, if such a t exists; otherwise it returns 0.

Proof. We will prove this lemma using induction. But induction on what exactly? The
call RecBinSearch(A, f, ℓ, x) searches for x in the subarray A[f..ℓ]. The induction will be
on the length of this subarray. Intuitively this means that we will prove that the recursive
algorithm works correctly on subarrays of length 1 (the basis of the induction); and that is
works correctly on subarrays of arbitrary length i > 1, assuming that it works correctly on
subarrays of length less than i (the induction step). Notice that the recursive call made by
RecBinSearch(A, f, ℓ, x) is for searching a subarray whose length is roughly half the length
of A[f..ℓ]. It is therefore necessary to use complete induction.

We now show the proof in detail. Notice that if 1 ≤ f ≤ ℓ ≤ length(A), then length(A[f..ℓ]) =
ℓ− f + 1. Let P (k) be the following predicate:

P (k) : if f, ℓ are integers such that 1 ≤ f ≤ ℓ ≤ length(A) and length(A[f..ℓ]) = k,

and A[f..ℓ] is sorted when RecBinSearch(A, f, ℓ, x) is called,

then this call terminates and returns some t such that f ≤ t ≤ ℓ and A[t] = x,

if such a t exists; otherwise it returns 0.

Intuitively P (k) states that RecBinSearch correctly searches subarrays of length k. Using
complete induction, we will prove that P (k) holds for all integers k ≥ 1. This means that
RecBinSearch correctly searches subarrays of any length.

Let i be an arbitrary integer such that i ≥ 1. Assume that P (j) holds for all j such that
1 ≤ j < i. We must prove that P (i) holds as well.

Case 1. i = 1. Let f, ℓ be integers such that 1 ≤ f ≤ ℓ ≤ length(A) and length(A[f..ℓ]) = 1.
This means that the subarray A[f..ℓ] has only one element. Thus, ℓ = f , and the “if” branch in
lines 1–6 is executed. Therefore, RecBinSearch(A, f, ℓ, x) terminates by returning in line 3
or 5. Since there is only one element in A[f..ℓ], if x is in A[f..ℓ] it must be that A[f ] = x and
so RecBinSearch(A, f, ℓ, x) returns f in line 3; if, on the other hand, x is not in A[f..ℓ],
A[f ] 6= x and so RecBinSearch(A, f, ℓ, x) returns 0 in line 5. In either case, the call returns
the right value. Thus, P (1) holds.

Case 2. i > 1. Let f, ℓ be integers such that 1 ≤ f ≤ ℓ ≤ length(A) and length(A[f..ℓ]) = i,
and suppose that A[f..ℓ] is sorted when RecBinSearch(A, f, ℓ, x) is called. Since
length(A[f..ℓ]) = i and i > 1, it follows that f < ℓ. Therefore the “else” branch in lines 7–14
is executed. Let m = (f + ℓ) div 2 (cf. line 8). By Lemma 2.2,

f ≤ m < ℓ (2.8)

There are two subcases, depending on the outcome of the comparison in line 9:
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Subcase 2(a). A[m] ≥ x. In this case, RecBinSearch(A, f,m, x) is called in line 10.
Let j = length(A[f..m]). By (2.8), 1 ≤ j < i. Therefore, by induction hypothesis, P (j)
holds.

Furthermore, 1 ≤ f ≤ m ≤ length(A) (by (2.8) and the assumption that 1 ≤ f ≤
ℓ ≤ length(A)), and A[f..m] is sorted when RecBinSearch(A, f,m, x) is called in line 10
(because, by assumption, A[f..ℓ] is sorted when RecBinSearch(A, f, ℓ, x) is called, and
RecBinSearch does not change A). Therefore, we know from P (j) that the call
RecBinSearch(A, f,m, x) terminates, and hence so does RecBinSearch(A, f, ℓ, x). It
remains to prove that RecBinSearch(A, f, ℓ, x) returns the right value.

First suppose x is in A[f..ℓ]. Then x must be in A[f..m]. This is obvious if A[m] = x.
To see why it is also true if A[m] 6= x note that then A[m] > x (since, by the hypothesis
of the subcase, A[m] ≥ x). But then, since A[f..ℓ] is sorted, A[t] > x for all t such that
m + 1 ≤ t ≤ ℓ. Since x is in A[f..ℓ] but is not in A[m + 1..ℓ], x must be in A[f..m].
Since x is in A[f..m], we know from P (j) that the call RecBinSearch(A, f,m, x) returns
some t such that f ≤ t ≤ m and A[t] = x. By line 10, the same t is returned by
RecBinSearch(A, f, ℓ, x). So, in this case RecBinSearch(A, f, ℓ, x) returns the right
value.

Finally, suppose x is not in A[f..ℓ]. Obviously, x is not in A[f..m]. Therefore, from P (j)
we know that the callRecBinSearch(A, f,m, x) returns 0. So, RecBinSearch(A, f, ℓ, x)
also returns 0 in line 10. In this case too, RecBinSearch(A, f, ℓ, x) returns the right value.

Subcase 2(b). A[m] < x. This is similar to the previous subcase and is omitted.

Finally, we use the correctness of RecBinSearch to prove that MainBinSearch is
correct with respect to its own specification.

Corollary 2.12 Suppose that when the program MainBinSearch(A, x) is started A is a
sorted array of length at least 1. Then the program terminates and returns some t such that
1 ≤ t ≤ length(A) and A[t] = x, if such a t exists; otherwise it returns 0.

Proof. By the hypothesis, whenMainBinSearch callsRecBinSearch(A, 1, length(A), x),
A is a sorted array of length at least 1. By Lemma 2.11, this call terminates, and thus so does
MainBinSearch. Also by Lemma 2.11, this call returns t such that 1 ≤ t ≤ length(A) and
A[t] = x, if such a t exists; otherwise, it returns 0. MainBinSearch(A, x) returns the same
value, as wanted.

It is perhaps instructive to compare the overall structure of this proof with the correctness
proof of the iterative version of binary search, discussed in Section 2.3. The first step of
the proof (formulation of the correctness specification for RecBinSearch) is analogous to
formulating an invariant for the loop of BinSearch. (Note the similarity of the loop in lines
2–9 in Figure 2.1, and lines 7–14 in Figure 2.4.)

The second step (proving that RecBinSearch is correct with respect to its specification)
has many similarities to the proof that the statement that we came up as a loop invariant for
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BinSearch is, in fact, an invariant. Both proofs essentially show that each recursive call —
or each iteration of the loop — “does the right thing”, and they do so by using induction.
There are some differences, however. The proof of the loop invariant uses simple induction:
iteration i + 1 does the right thing assuming iteration i did the right thing. The correctness
proof of the recursive program may need to use complete induction: a recursive call on inputs
of size i does the right thing assuming recursive calls on inputs of any size less than i (not
necessarily inputs of size i − 1) do the right thing. Also note that in the correctness proof of
the recursive program we need to show that the recursive calls made by the program are on
inputs of smaller size than the original call. This is similar to proving termination of iterative
programs where we have to show that some nonnegative integer quantity (here, some measure
of the input size) decreases.

Finally, the third step (proving that the overall program is correct using the fact that the
recursive program is) is analogous to proving that the loop invariant and the loop exit condition
yield the postcondition of binary search.

2.8 Correctness of a recursive sorting program

Let A be an array of numbers that we wish to sort. That is, we want to rearrange the elements
of A so that, when the algorithm is done,

A[i] ≤ A[i+ 1] for each i ∈ N such that 1 ≤ i < length(A).

(Recall that arrays are indexed starting at position 1, and that length(A) denotes the number
of elements of array A.) We will now introduce a recursive sorting algorithm called Mergesort
and will prove its correctness. Mergesort is very important in practice, as it is the basis of
almost all utilities for sorting large files stored in secondary storage (i.e., on disk or tape).

2.8.1 How Mergesort works

The basic idea behind Mergesort is quite simple. To sort the array A we proceed as follows:

1. If length(A) = 1 then we are done: the array is already sorted!

2. Otherwise, let A1 and A2 be the two halves of array A, as suggested in the figure below

A1 A2

Recursively sort A1 and A2. Notice that each of A1 and A2 has about length(A)/2 elements.
More precisely, one of them has ⌈length(A)/2⌉ and the other has ⌊length(A)/2⌋ elements.

3. Merge the two (now sorted) subarrays A1 and A2 into a single sorted array.

Consider the third step of this algorithm, where we must merge two sorted subarrays.
Recall that, for any integers i and j such that 1 ≤ i ≤ j ≤ length(A), A[i..j] denotes the
subarray of A between indices i and j, inclusive. Note that length(A[i..j]) = j − i+ 1.
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In the case of Mergesort, the two sorted subarrays that we want to merge are consecutive
subarrays of A. That is, the low index of the second (A2, in the previous figure) is one more
than the high index of the first (A1, in the previous figure). Suppose that

(a) f,m, ℓ are integers such that 1 ≤ f ≤ m < ℓ ≤ length(A) (f stands for “first”, m for
“middle”, and ℓ for “last”); and

(b) A[f..m] and A[m+ 1..ℓ] are both sorted.

Then the algorithmMerge(A, f,m, ℓ) shown in Figure 2.5 merges these two subarrays, placing
the resulting sorted array in A[f..ℓ]. The idea is to scan the two subarrays simultaneously,
considering the elements of each in increasing order; indices i and j keep track of where we
are in subarrays A[f..m] and A[m+ 1..ℓ], respectively. We compare A[i] and A[j], outputting
the smaller of the two into an auxiliary array and advancing the corresponding index. We
continue in this fashion until we have exhausted one of the two subarrays, at which point we
simply transfer the remaining elements of the other subarray to the auxiliary array. Finally,
we transfer the elements from the auxiliary array back to A[f..ℓ].

Using this procedure, we can now write the Mergesort algorithm as shown in Figure 2.6.
The procedure Mergesort(A, f, ℓ) sorts subarray A[f..ℓ], where 1 ≤ f ≤ ℓ ≤ length(A). To
sort the entire array A, we simply call Mergesort(A, 1, length(A)).

2.8.2 The correctness of Mergesort

We now address the correctness of Mergesort. There are two parts to proving this program
correct. First, we prove that the Merge algorithm in Figure 2.5 is correct. Using this, we
then prove that Mergesort is correct.

First we briefly look at the correctness of Merge(A, f,m, ℓ). This requires us to prove
that if the preconditions of the algorithm hold before it is invoked (i.e., if 1 ≤ f ≤ m <
ℓ ≤ length(A) and A[f..m], A[m + 1..ℓ] are sorted) then the algorithm (a) terminates and
(b) when it does, A[f..m] is sorted and all other elements of A are unchanged. Since Merge
is an iterative program, this proof can be carried out by using the techniques discussed in
Section 2.1. We leave this proof as an interesting exercise.

Next we address the correctness ofMergesort(A, f, ℓ). The methodology is similar to that
of the proof of correctness of the recursive version of binary search, discussed in Section 2.7.
We must prove that if the preconditions of the algorithm hold before it is invoked (i.e., if
1 ≤ f ≤ ℓ ≤ length(A)) then the algorithm (a) terminates, and (b) when it does, A[f..ℓ] is
sorted7 and all other elements of A are unchanged. We will prove this fact using complete
induction.

7We use the phrase “A[f..ℓ] is sorted” as an abbreviation for the longer but more precise statement “A[f..ℓ]
contains the same elements as before the invocation, in nondecreasing order”.
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Merge(A, f,m, ℓ)
◮ Preconditions: (a) 1 ≤ f ≤ m < ℓ ≤ length(A), and
◮ (b) A[f..m] and A[m+ 1..ℓ] are sorted
◮ Postcondition: A[f..ℓ] has the same elements as before invocation, in sorted order; and
◮ all other elements of A are unchanged

1 i := f ; j := m+ 1 ◮ indices into A
2 k := f ◮ index into aux

◮ Merge subarrays until one of the two is exhausted
3 while i ≤ m and j ≤ ℓ do
4 if A[i] < A[j] then
5 aux[k] := A[i]
6 i := i+ 1
7 else
8 aux[k] := A[j]
9 j := j + 1
10 end if
11 k := k + 1
12 end while

◮ Determine bounds of the rest of the unexhausted subarray
13 if i > m then ◮ first subarray was exhausted
14 low := j
15 high := ℓ
16 else ◮ second subarray was exhausted
17 low := i
18 high := m
19 end if

◮ Copy the rest of the unexhausted subarray into aux
20 for t := low to high do
21 aux[k] := A[t]
22 k := k + 1
23 end for

◮ Copy aux back to A[f..ℓ]
24 for t := f to ℓ do
25 A[t] := aux[t]
26 end for

Figure 2.5: The Merge algorithm
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Mergesort(A, f, ℓ)
◮ Precondition: 1 ≤ f ≤ ℓ ≤ length(A)
◮ Postcondition: A[f..ℓ] has the same elements as before invocation, in sorted order; and
◮ all other elements of A are unchanged

1 if f = ℓ then ◮ Subarray is already sorted
2 return
3 else
4 m := (f + ℓ) div 2 ◮ m: index of the middle element of A[f..ℓ]
5 Mergesort(A, f,m) ◮ sort first half
6 Mergesort(A,m+ 1, ℓ) ◮ sort second half
7 Merge(A, f,m, ℓ) ◮ merge the two sorted parts
8 end if

Figure 2.6: Mergesort

Let P (k) be the predicate:

P (k) : if f, ℓ are integers such that 1 ≤ f ≤ ℓ ≤ length(A) and length(A[f..ℓ]) = k

then Mergesort(A, f, ℓ) terminates and, when it does, A[f..ℓ] is sorted and

all other elements of A are unchanged

Thus, P (k) states that Mergesort correctly sorts subarrays of length k. Using complete
induction, we will prove that P (k) holds for all integers k ≥ 1. This implies that Mergesort
correctly sorts subarrays of any length, i.e., that Mergesort is correct.

Let i be an arbitrary integer such that i ≥ 1. Assume that P (j) holds for all j such that
1 ≤ j < i. We must prove that P (i) holds as well.

Case 1. i = 1. Let f, ℓ be integers such that 1 ≤ f ≤ ℓ ≤ length(A) and length(A[f..ℓ]) = 1.
This means that the subarray A[f..ℓ] has only one element. Recall that length(A[f..ℓ]) =
ℓ − f + 1; so in this case we have ℓ = f . By lines 1 and 2 (all lines in this proof refer
to Figure 2.6 on page 69), the algorithm terminates and, trivially, A[f..ℓ] is sorted and all
elements of A are unchanged. Thus, P (1) holds.

Case 2. i > 1. Let f, ℓ be integers such that 1 ≤ f ≤ ℓ ≤ length(A) and length(A[f..ℓ]) = i.
We must prove that Mergesort(A, f, ℓ) terminates and, when it does, A[f..ℓ] is sorted and
all other elements of A are unchanged. Since length(A[f..ℓ]) = i and i > 1, we have that
ℓ− f + 1 > 1, i.e., f < ℓ. Let m = (f + ℓ) div 2 (cf. line 4). By Lemma 2.2, we have

f ≤ m < ℓ (2.9)

Using (2.9), as well as the facts that length(A[f..m]) = m−f+1 and length(A[m+1..ℓ]) = ℓ−m,
we can conclude that

1 ≤ length(A[f..m]) < i and 1 ≤ length(A[m+ 1..ℓ]) < i
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By induction hypothesis, then, P (length(A[f..m])) and P (length(A[m+1..ℓ])) both hold. From
(2.9) and the fact that 1 ≤ f ≤ ℓ ≤ length(A), it follows that

1 ≤ f ≤ m ≤ length(A) and 1 ≤ m+ 1 ≤ ℓ ≤ length(A)

Therefore,

• Mergesort(A, f,m) terminates and, when it does, A[f..m] is sorted and all other ele-
ments of A are unchanged; and

• Mergesort(A,m+1, ℓ) terminates and, when it does, A[m+1..ℓ] is sorted and all other
elements of A are unchanged.

Thus, lines 5 and 6 terminate and, just before line 7 is executed, 1 ≤ f ≤ m < ℓ ≤ length(A),
and A[f..m] and A[m + 1..ℓ] are sorted and all other elements of A are unchanged.8 By the
correctness of the Merge(A, f,m, ℓ) algorithm, line 7 terminates and, when it does, A[f..ℓ] is
sorted and all other elements of A are unchanged, as wanted.

This completes the proof that P (k) holds for every integer k ≥ 1, and therefore thatMergesort
is correct.

8Notice that at this point we are making use of the fact that each recursive call leaves the other elements of
A unchanged. The facts that Mergesort(A, f,m) sorts A[f..m] and Mergesort(A,m+1, ℓ) sorts A[m+1..ℓ]
do not (by themselves) imply that after both of these calls are made, the entire subarray A[f..ℓ] is sorted. For
example, this would not be true if the second call, Mergesort(A,m+ 1, ℓ), messed up the results of the first
call, Mergesort(A, f,m), by rearranging elements of A[f..m]. It is for precisely this reason that we needed to
include in the predicate P (k) the property that each recursive call leaves the other elements of A unchanged.
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Exercises

1. Prove that Theorem 2.5 is equivalent to the principle of well-ordering (see Section 1.1.1);
i.e., each implies the other.

2. Consider the binary search program in Figure 2.1. Suppose that we change line 7 to
f := m (instead of f := m + 1). Is the resulting program correct? If so, prove that it is, by
explaining what changes need to be made to the proof given in Section 2.3. If the program
is not correct, state whether it is partial correctness or termination (or both) that is violated.
If you say that a property (partial correctness or termination) is violated, show an input that
causes the violation of the property. If you say that a property is not violated, explain why.

3. The binary search program in Figure 2.1 compares the middle element, A[m], of A[f..ℓ] to
x. The comparison is two-way: If A[m] ≥ x then the search is confined to A[f..m]; if A[m] < x
the search is confined to A[m+1..ℓ]. Suppose that, instead we do a three-way comparison: We
first test if A[m] = x and, if so, we immediately return m; otherwise, if A[m] > x we confine
the search to A[f..m − 1], and if A[m] < x we confine the search to A[m + 1..ℓ]. Write a
program that implements this version of binary search and prove that your program is correct.

4. The algorithm Occur(A, f, ℓ, x) below returns the number of occurrences of x in array A
between positions f and ℓ. More precisely, it satisfies the following precondition/postcondition
pair:

Precondition: A is an array, and f and ℓ are integers such that 1 ≤ f ≤ ℓ ≤ length(A).

Postcondition: The integer returned by the algorithm is |{j : f ≤ j ≤ ℓ and A[j] = x}|.

Occur(A, f, ℓ, x)
t := 0
i := f
while i ≤ ℓ do

if A[i] = x then t := t+ 1 end if
i := i+ 1

end while
return t

Prove that Occur is correct with respect to the given specification.

5. The algorithm Mod(x,m) below returns the remainder of the division of x by m. More
precisely, it satisfies the following precondition/postcondition pair:

Precondition: x,m ∈ N and m 6= 0.

Postcondition: The integer r returned by the algorithm is such that (a) 0 ≤ r < m and (b)
there is some q ∈ N such that x = qm+ r.

Mod(x,m)
r := x
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while r ≥ m do
r := r −m

end while
return r

Prove that Mod is correct with respect to the given specification.

6. Change the Boolean condition on line 4 of Mult from x 6= 0 to x > 0. Does the program
remain correct? Justify your answer by either giving a counterexample (an input on which
the program does not terminate or returns an incorrect output) or describing the parts in the
proof of correctness given in Section 2.4 that must be changed as a result of this modification.

7. Prove that the program Mult3 below is correct with respect to its specification.
Hint: This is similar to the program discussed in Section 2.4, except that instead of viewing
m and n in binary, here we view them in ternary (i.e., base-3).

Mult3(m,n)
◮ Precondition: m ∈ N and n ∈ Z.
◮ Postcondition: Return m · n.

x := m; y := n; z := 0
while x 6= 0 do

if x mod 3 = 1 then
z := z + y
x := x div 3

else if x mod 3 = 0 then
x := x div 3

else
z := z − y
x := (x+ 1) div 3

end if
y := y ∗ 3

end while
return z

8. Prove that the loop below terminates if the precondition holds before the loop starts.

◮ Precondition: x, y ∈ N and x is even.
1 while x 6= 0 do
2 if y ≥ 1 then
3 y := y − 3; x := x+ 2
4 else
5 x := x− 2
6 end if
7 end while
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Repeat the same exercise if the assignment to y in line 3 is changed to y := y − 1 (instead of
y := y − 3).

9. Prove that the following program halts for every input x ∈ N.

◮ Precondition: x ∈ N.
1 y := x ∗ x
2 while y 6= 0 do
3 x := x− 1
4 y := y − 2 ∗ x− 1
5 end while

Hint: Derive (and prove) a loop invariant whose purpose is to help prove termination.
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Chapter 3

FUNCTIONS DEFINED BY
INDUCTION

Induction can be used not only to prove mathematical statements but also to define mathe-
matical objects. In this chapter we will see how induction can be used to define functions and
to prove properties of functions defined inductively. In Chapter 4 we will see how induction
can be used to define other mathematical objects and to prove properties of objects defined
in this manner. Inductive definitions are “constructive”: in addition to defining an object,
they effectively provide a recursive algorithm to construct it. For this reason, they are also
called recursive definitions. Because of their “constructive” nature, recursive definitions are
especially common and useful in computer science.

3.1 Recursively defined functions

We begin with an example and then give a general form for recursive definition of functions.

Example 3.1 Let f : N→ N be the function defined as follows:

f(n) =

{
0 if n = 0

f(n− 1) + 2n− 1 if n > 0
(3.1)

This is a recursive definition. It defines the value of the function at some natural number n in
terms of the function’s value at the previous number, n − 1; and it defines the function at 0
explicitly, since there is no natural number “previous” to 0. We will refer to the first part of
the definition as the “basis” and to the second part as the “inductive step” of the recursion.

We can compute f(n) for an arbitrary value n by “unwinding” the recursion. For example,

• to compute f(4) we need to first compute f(3),

• for which we need to first compute f(2),

• for which we need to first compute f(1),

75
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• for which we need to first compute f(0), which is given explicitly.

Now working forward, we get:

• f(0) = 0

• f(1) = f(0) + 2 · 1− 1 = 0 + 2− 1 = 1

• f(2) = f(1) + 2 · 2− 1 = 1 + 4− 1 = 4

• f(3) = f(2) + 2 · 3− 1 = 4 + 6− 1 = 9

• f(4) = f(3) + 2 · 4− 1 = 9 + 8− 1 = 16

Given these calculations, it looks as though the function f simply computes the square of its
argument! We prove that this is, in fact, the case.

Proposition 3.1 For any n ∈ N, f(n) = n2.

Proof. Let P (n) be the predicate defined by:

P (n) : f(n) = n2

We use induction to prove that P (n) holds for all n ∈ N.

Basis: We have,

f(0) = 0 [by definition of f ]

= 02

Thus, P (0) holds.

Induction Step: Let i be an arbitrary natural number, and suppose that P (i) holds; i.e.,
suppose that f(i) = i2. We will prove that P (i+1) holds as well; i.e., that f(i+1) = (i+1)2.
Indeed we have,

f(i+ 1) = f(i) + 2(i+ 1)− 1 [by definition of f , since i+ 1 > 0]

= i2 + 2(i+ 1)− 1 [by induction hypothesis]

= i2 + 2 · i+ 1

= (i+ 1)2

as wanted.

This example illustrates a general phenomenon. When an object (like the function f) is
defined recursively, it is natural to try proving properties of the object (in this case that f is

the square function) by using induction. End of Example 3.1
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Why exactly do we accept Equation (3.1) as a bona fide definition of a function? This is
not an idle question — there are certainly other equations that look very much like (3.1) but
which are not proper definitions of functions. For instance, the equation

h(n) = h(n− 1) + 5, for all n > 0 (3.2)

does not define a function. Intuitively, the reason is that this equation does not specify a basis
case, so we can’t tell what h(0) is — or, for that matter, what h(k) is for any k ∈ N. Indeed,
there are infinitely many functions from N to N that satisfy (3.2): we obtain a different one
for each choice of a value for the basis.

The equation

h′(n) =

{
0, if n = 0

h′(n− 2) + 5, if n > 0

also fails to properly define a function. Now the problem is not the lack of a basis in the
definition. Rather, the induction step does not properly define the value of a function when
n = 1 and, more generally, for any odd value of n.

Similarly, the equation

h′′(n) =

{
0, if n = 0

h′′(⌈n/2⌉) + 5, if n > 0

fails to properly define a function, because in the induction step, for n = 1, h′′(1) is defined in
terms of h′′(1), which is circular.

How about the following equation?

f ′(n) =

{
0, if n = 0

f ′(n+ 1)− 2n− 1, if n > 0
(3.3)

This also seems to not define a function properly. Superficially, the reason appears to be that
it defines f ′(n) in terms of the value of f ′ at a larger argument, f ′(n+ 1). It is true that (3.3)
does not define a function, but our reasoning as to why that is so is not adequate: A seemingly
minor modification of this equation (which also appears to define f(n) in terms of f(n+1)) is
really just a different way of writing (3.1)

f(n) =

{
0, if n = 0

f(n+ 1)− 2n− 1, if n ≥ 0
(3.4)

To see why (3.4) is the same thing as (3.1), note that the induction step of (3.1) can be
rewritten as

f(n− 1) = f(n)− 2n+ 1, if n > 0

By replacing n− 1 by n (and, therefore, n by n+ 1) this is the same as

f(n) = f(n+ 1)− 2(n+ 1) + 1, if n+ 1 > 0

= f(n+ 1)− 2n− 1, if n ≥ 0
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which is just the “induction step” of (3.4). Since we are happy with (3.1) as defining a function,
we ought to be just as happy with (3.4).

The conclusion to be drawn from these examples is that there is something rather subtle
going on with recursive definitions in the style of (3.1), and we need a firm grounding on which
to base such definitions. The following Principle provides just that.

Principle of function definition by recursion: Let b ∈ Z, and g : N × Z → Z be a
function. Then there is a unique function f : N→ Z that satisfies the following equation:

f(n) =

{
b, if n = 0

g(n, f(n− 1)), if n > 0
(3.5)

The definition of f(n) in Example 3.1 follows this principle, where b = 0, and g(n,m) =
m+ 2n− 1. Therefore, assuming this principle is valid, f(n) is properly defined. It is possible
to prove that the principle of induction implies the principle of function definition by recursion.
Thus, if we are prepared to accept the validity of the the principle of induction (or any of the
other two that are equivalent to it: complete induction or well-ordering) we must thereby also
accept the validity of the principle of function definition by recursion.

Our next example shows a recursive definition of a function based on complete, rather than
simple, induction.

Example 3.2 Consider the function F : N→ N defined as follows:

F (n) =





0, if n = 0

1, if n = 1

F (n− 1) + F (n− 2), if n > 1

(3.6)

Notice that the basis in this definition encompasses two numbers, 0 and 1, while the induction
step defines the value of F at point n in terms of the values of the function at the previous two
points: n− 1 and n− 2. The function defined by (3.6) is called the Fibonacci function, and
the infinite sequence of integers 〈F (0), F (1), F (2), . . .〉 is called the Fibonacci sequence. It
comes up in a surprising number of settings.

Perhaps surprisingly, we can give a “closed-form formula” for F (n), i.e., a simple formula
to compute F (n) given n and without having to explicitly compute F (n − 1) and F (n − 2).1

1A closed-form formula is one that allows us to calculate a function by applying only a fixed number
of “basic” operations to its argument(s) — where by “basic” operations we mean ones such as addition,
subtraction, multiplication, division, and exponentiation. An expression such as “1 + 2 + . . . + n” is not
considered closed-form, because although the operations are basic (just addition), their number is not fixed.
An expression such as F (n − 1) + F (n − 2) is not considered closed-form, because although the number of
operations is fixed (two applications of F and an addition), one of the operations (applying F ) is not “basic”.
The term “closed-form formula” is not entirely precise because there is some ambiguity as to what constitutes
a “basic” operation.
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Let φ = 1+
√
5

2
and φ̂ = 1−

√
5

2
. The quantity φ is approximately equal to 1.6180 . . . and is known

as the “golden ratio”.2

Theorem 3.2 For any n ∈ N, F (n) = φn−(φ̂)n√
5

.

Proof. Let P (n) be the predicate defined as:

P (n) : F (n) =
φn − (φ̂)n√

5
.

We use complete induction to prove that P (n) holds for all n ∈ N.

Let i be an arbitrary natural number, and assume that P (j) holds for all j < i; i.e., for

any j such that 0 ≤ j < i, F (j) = φj−(φ̂)j√
5

. We will prove that P (i) holds as well; i.e., that

F (i) = φi−(φ̂)i√
5

.

Case 1. i = 0. We must prove that F (0) = φ0−(φ̂)0√
5

. The left-hand side is 0 by the definition
of the Fibonacci function, and straightforward arithmetic shows that the right-hand side is 0
as well. Thus, the desired equation holds in this case.

Case 2. i = 1. We must prove that F (1) = φ1−(φ̂)1

2
. The left-hand side is 1 by the definition

of the Fibonacci function. For the right-hand side we have:

φ1 − (φ̂)1√
5

=
1√
5
·
(1 +

√
5

2
− 1−

√
5

2

)
=

1√
5
· 2
√
5

2
= 1.

Thus, the desired equation holds in this case.

Case 3. Let i > 1 be an arbitrary natural number. Then 0 ≤ i− 1, i− 2 < i. Therefore, by

2This quantity has been of interest to mathematicians since antiquity. It has the following interesting
geometric interpretation: Suppose we are given a line segment and we wish to divide it into two parts, so that
the ratio of the larger part to the smaller is the same as the ratio of the entire segment to the larger. Then,
φ is that ratio. Euclid’s Elements (ci. 300 BCE) contain a geometric construction (using only straight edge
and compass) to achieve such a division of a line segment, and evidence suggests that this construction was
already known to Pythagoras (ci. 500 BCE). The architects and sculptors of classical Greece were fond of
rectangular shapes in which the ratio of the longer side to the shorter side is equal to φ, believing these to
be the most aesthetically pleasing rectangles. Indeed, the association of the letter φ with this quantity is in
honour of Φǫιδίας (Phidias), the greatest sculptor of classical Greece.
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induction hypothesis, P (i− 1) and P (i− 2) hold. We have,

F (i) = F (i− 1) + F (i− 2) [by (3.6), since i > 1]

=
φi−1 − (φ̂)i−1

√
5

+
φi−2 − (φ̂)i−2

√
5

[by induction hypothesis]

=
1√
5
·
(
φi−2(φ+ 1)− (φ̂)i−2(φ̂+ 1)

)

=
1√
5
· (φi−2φ2 − (φ̂)i−2(φ̂)2) [because φ2 = φ+ 1 and (φ̂)2 = φ̂+ 1,

by simple arithmetic]

=
φi − (φ̂)i√

5

as wanted.

End of Example 3.2

Definition (3.6) does not quite fit the principle of function definition by recursion, since it
has multiple base cases. There is a more general principle that allows us to define function by
recursion that encompasses (3.6).

Principle of function definition by complete recursion: Let k, ℓ be positive integers,
b0, b1, . . . , bk−1 be arbitrary integers, h1, h2, . . . , hℓ : N→ N be functions such that hi(n) < n
for each i, 1 ≤ i ≤ ℓ and each n ≥ k, and g : N × Z

ℓ → Z be a function (Zℓ denotes the
ℓ-fold Cartesian product of set Z). Then there is a unique function f : N→ Z that satisfies
the following equation:

f(n) =

{
bn, if 0 ≤ n < k

g(n, f(h1(n)), f(h2(n)), . . . , f(hℓ(n))), if n ≥ k
(3.7)

To see how the Fibonacci function fits this pattern of definition, notice that we can obtain
(3.6) from (3.7) by taking k = ℓ = 2, b0 = 0, b1 = 1, h1(n) = n − 1, h2(n) = n − 2, and
g(n, i, j) = i + j. Also, it is easy to see that the recursive definition (3.5) is the special case
of (3.7) where k = 1 (i.e., only one basis case), ℓ = 1 and h1(n) = n − 1. The validity of the
principle of function definition by complete recursion can be shown by induction.

Function definitions that fit this general pattern are also called recurrence equations,
recurrence relations or simply recurrences. The latter two terms are more general in that
they also refer to recursive formulas in which the equality is replaced by an inequality (≤, <, ≥
or >). In this case, the recurrence does not define a single function but the family of functions
that satisfy the specified inequality.
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3.2 Divide-and-conquer recurrences

Inductively defined functions arise naturally in the analysis of many recursive algorithms —
especially, though not exclusively, the time complexity analysis of such algorithms. The general
idea is that by examining the recursive structure of the algorithm we can come up with an
inductive definition of a function that describes the quantity we wish to analyse — say, the
time complexity of the algorithm.

There is an important class of recursive algorithms, called divide-and-conquer algo-
rithms, that includes binary search and mergesort. The time complexity of such algorithms is
described by recurrence relations of a particular form. We will study these so-called divide-
and-conquer recurrences in this section. We will see how, from the structure of a divide-
and-conquer algorithm, we can extract a recurrence relation that describes its time complexity.
Furthermore, we will see how to “solve” this recurrence relation — that is, how to obtain the
function in closed-form (see footnote 1). We do this first through a specific example of a
divide-and-conquer algorithm and then by considering a general form of divide-and-conquer
recurrences.

3.2.1 The time complexity of MergeSort

Recall the mergesort algorithm discussed in Section 2.8 and shown in Figure 2.6. For any
positive integer n, define T (n) to be the maximum number of steps executed by a call to
MergeSort(A, f, ℓ), where n is the size of the subarray being sorted, i.e., n = ℓ− f +1. The
function T describes the (worst-case) time complexity of MergeSort(A, f, ℓ) as a function of
the size of the subarray A[f..ℓ] being sorted. We claim that the following recurrence relation
describes T (n), where c and d are positive real constants (i.e., quantities independent of n):

T (n) =

{
c, if n = 1

T (⌈n/2⌉) + T (⌊n/2⌋) + dn, if n > 1
(3.8)

The basis of this recurrence reflects the fact that when the subarray being sorted has length
1 the algorithm executes some number of steps, which we designate c. The exact value of c
depends on what exactly we count as a step, a detail that is not particularly relevant to our
analysis. The induction step reflects the fact that to sort a subarray of length n > 1, we must

• Recursively sort the first “half” of the subarray. By definition of T , this takes T (⌈n/2⌉)
steps.

• Recursively sort the second “half” of the subarray. By definition of T , this takes T (⌊n/2⌋)
steps.

• Merge the two sorted “halves”, using the Merge procedure. It is not hard to see
that the merging algorithm takes time proportional to n. Again, the exact constant of
proportionality depends on how one would count steps, an unimportant detail that we
sidestep by using an unspecified constant d.
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We must verify that equation (3.8) is a proper recursive definition. For this we need to
ensure that for any integer n > 1, 1 ≤ ⌈n/2⌉ < n and 1 ≤ ⌊n/2⌋ < n. The following lemma
shows that this is the case.

Lemma 3.3 For any integer n > 1, 1 ≤ ⌊n/2⌋ ≤ ⌈n/2⌉ < n.

Proof. If n is odd then ⌈n/2⌉ = n+1
2
; if n is even then ⌈n/2⌉ = n/2 < n+1

2
. Thus, for any

n ∈ N, ⌈n/2⌉ ≤ n+1
2
. By hypothesis, n > 1; by adding n to both sides of this inequality we

get 2n > n + 1, and therefore n+1
2

< n. Combining with the previous inequality we get that,
for any integer n > 1, ⌈n/2⌉ < n. It remains to show that 1 ≤ ⌊n/2⌋ ≤ ⌈n/2⌉. This follows
immediately from the definition of the floor and ceiling functions, and the fact that n > 1.

Our task now is to solve (3.8), i.e., to find a closed-form formula for T (n). Let us simplify
our task by eliminating the floors and ceilings in the induction step of (3.8). The reason for
the floors and ceilings, in the first place, is to handle the case where n is odd — and therefore
the two “halves” into which we divide the subarray are not of length n/2 each but, rather, of
length ⌈n/2⌉ and ⌊n/2⌋. Let us then assume that n is a power of 2, so that if we keep dividing
n into two halves we always get an even number — except in the very last step when we divide
a subarray of length 2 into two parts of length 1. So when n is a power of 2, we can simplify
(3.8) as follows:

T (n) =

{
c, if n = 1

2T (n/2) + dn, if n > 1
(3.9)

To find a closed-form formula for T (n) we can use a technique called repeated substitu-
tion. We “unwind” the recursive definition of T (n) by repeatedly applying the induction step
of the definition to smaller and smaller arguments of T . We keep doing this until we discover
a pattern that will help us obtain a closed-form formula. In our particular case, we proceed
as follows. Let n be an arbitrary power of 2; thus n/2i is also a power of 2 for every natural
number i ≤ log2 n. We can therefore legitimately substitute n/2i for n in (3.9) for any such i.
We have,

T (n) = 2T (n/2) + dn [by (3.9)]

= 2
(
2T (n/22) + dn/2

)
+ dn [by substituting n/2 for n in (3.9)]

= 22T (n/22) + 2dn

= 22
(
2T (n/23) + dn/22

)
+ 2dn [by substituting n/22 for n in (3.9)]

= 23T (n/23) + 3dn

...

= 2iT (n/2i) + idn [after i applications of the same substitution]
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Of course, the last step in this derivation is not rigorously justified. After unwinding the
recursion for a couple of steps it looks as though we have discovered a pattern that will persist
if we continue this process, but we don’t really have a convincing proof that it does. So really,
at this point we have only formulated a plausible conjecture regarding the value of T (n). Not
surprisingly, we can verify our conjecture by using induction. Specifically:

Lemma 3.4 If n is a power of 2, for any natural number i ≤ log2 n, the function defined by
(3.9) satisfies the following equation: T (n) = 2iT (n/2i) + idn.

Proof. Let P (i) be the predicate

P (i) : For each n ∈ N that is a power of 2 such that i ≤ log2 n, T (n) = 2iT (n/2i) + idn

We will use induction to prove that P (i) holds for all i ∈ N.

Basis: i = 0. In this case, the right-hand side of the equation is 20T (n/20) + 0 · dn, which is
obviously equal to T (n). Thus P (0) holds.

Induction Step: Let j be an arbitrary natural number. Assume that P (j) holds; i.e., for
each n ∈ N that is a power of 2 such that j ≤ log2 n, T (n) = 2jT (n/2j) + jdn. We must
show that P (j + 1) holds as well. Consider an arbitrary n ∈ N that is a power of 2 such that
j + 1 ≤ log2 n. We must prove that T (n) = 2j+1T (n/2j+1) + (j + 1)n. Since n is a power of 2
and j < log2 n, it follows that n/2

j is a power of 2 greater than 1. Therefore,

T (n) = 2jT (n/2j) + jdn [by induction hypothesis]

= 2j
(
2T (n/2j+1) + dn/2j

)
+ jdn [by (3.9), since n/2j is a power of 2 greater than 1]

= 2j+1T (n/2j+1) + (j + 1)dn

as wanted.

Using this lemma we can now obtain a closed-form formula for T (n), when n is a power
of 2.

Theorem 3.5 If n is a power of 2, the function defined by (3.9) satisfies the following equation:
T (n) = cn+ dn log2 n.

Proof. We have,

T (n) = 2log2 nT (n/2log2 n) + (log2 n)dn [by Lemma 3.4, for i = log2 n]

= nT (1) + dn log2 n

= cn+ dn log2 n,

as wanted.
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What can we say about T (n) if n is not a power of 2? Although the simple closed-form
formula we derived for T (n) in Theorem 3.5 does not apply exactly in that case, we will prove
that the result is “essentially” valid for arbitrary n. Specifically, we will show that there is a
positive constant κ so that for all integers n ≥ 2,

T (n) ≤ κn log2 n (3.10)

(Readers familiar with the so-called “big-oh” notation will observe that this means precisely
that T (n) is in O(n log n).) The value of κ depends on the constants c and d. Although the
inequality (3.10) does not tell us exactly what T (n) is, it gives us valuable information about
it: Within the constant factor κ, T (n) grows no faster than the function n log2 n. In fact,
using techniques very similar to those we will use to prove 3.10 it is also possible to derive
a corresponding lower bound, namely, that there is a positive real number κ′ so that for all
integers n ≥ 2, T (n) ≥ κ′n log2 n.

First we need a preliminary result. A function f on numbers is called nondecreasing
if the function’s value never decreases as its argument increases. More precisely, for every
numbers m,n in the range of f , if m < n then f(m) ≤ f(n).

Lemma 3.6 The function T (n) defined by recurrence (3.8) is nondecreasing.

Proof. Let P (n) be the following predicate:

P (n) : for every positive integer m, if m < n then T (m) ≤ T (n)

We use complete induction to prove that P (n) holds for all integers n ≥ 1. Let k be an arbitrary
integer such that k ≥ 1. Suppose that P (ℓ) holds for all integers ℓ such that 1 ≤ ℓ < k. We
must prove that P (k) holds as well.

Case 1. k = 1. P (1) holds trivially since there is no positive integer m < 1.

Case 2. k = 2. Using (3.8) we compute the values of T (1) and T (2):

T (1) = c

T (2) = T (1) + T (1) + 2d = 2c+ 2d

Since c, d ≥ 0, T (1) ≤ T (2) and so P (2) holds.

Case 3. k > 2. In this case, 1 ≤ k − 1 < k and, by Lemma 3.3, 1 ≤ ⌊k/2⌋ ≤ ⌈k/2⌉ < k.
Therefore, by induction hypothesis, P (k− 1), P (⌊k/2⌋) and P (⌈k/2⌉) all hold. Since P (k− 1)
holds, to prove that P (k) holds as well, it suffices to prove that T (k − 1) ≤ T (k). Indeed we
have,

T (k − 1) = T (⌊k−1
2
⌋) + T (⌈k−1

2
⌉) + d(k − 1) [by (3.8), since k > 2 and so k − 1 > 1]

≤ T (⌊k/2⌋) + T (⌈k/2⌉) + dk [by P (⌊k/2⌋), P (⌈k/2⌉) and the fact that d ≥ 0]

= T (k) [by (3.8)]

Therefore, T (k − 1) ≤ T (k), as wanted.
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We are now ready to prove the desired bound on the function defined by recurrence (3.8).

Theorem 3.7 There is a constant κ ≥ 0 (whose value depends on c and d), so that the
function T (n) defined by recurrence (3.8) satisfies: T (n) ≤ κn log2 n, for all integers n ≥ 2.

Proof. Let n be an arbitrary positive integer such that n ≥ 2, and let n̂ = 2⌈log2 n⌉; i.e., n̂ is
the smallest power of 2 that is greater than or equal to n. Thus,

n̂

2
< n ≤ n̂ (3.11)

For every integer n ≥ 2, we have:

T (n) ≤ T (n̂) [by (3.11) and Lemma 3.6]

= cn̂+ dn̂ log2 n̂ [by Theorem 3.5, since n̂ is a power of 2]

≤ c(2n) + d(2n) log2(2n) [since n̂ < 2n, by (3.11)]

= 2cn+ 2dn+ 2dn log2 n

≤ 2cn log2 n+ 2dn log2 n+ 2dn log2 n [since n ≥ 2 and so log2 n ≥ 1]

= κn log2 n

where κ = 2c + 4d. Note that since c, d ≥ 0, we also have that κ ≥ 0. Therefore, there is a
κ ≥ 0 so that for all n ≥ 2, T (n) ≤ κn log2 n, as wanted.

3.2.2 General form of divide-and-conquer recurrences

Divide-and-conquer algorithms

Mergesort and Binary Search are examples of a general problem-solving technique known as
divide-and-conquer. This technique can be used to solve efficiently many different problems.
We now informally describe the general structure of divide-and-conquer algorithms. Suppose
we are given a computational problem such as sorting an array or multiplying two numbers.
An instance of the problem is a legitimate input for that problem (in the case of sorting, an
array). A solution of an instance is an output for that instance (in the case of sorting, the
given array with its elements rearranged in nondecreasing order). Each instance has a size,
expressed as a natural number. What exactly is the size of an instance depends on the problem
in question. For example, in the case of sorting, the size of an instance might be taken to be
the number of elements that must be sorted; in the case of multiplying two numbers, the size
of an instance might be taken to be the total number of bits needed to represent them. With
this terminology in mind, we can describe a divide-and-conquer algorithm for a problem as
follows: To solve a “large” instance of the problem, we

(a) Divide up the given instance of size n into a smaller instances of the same problem, each
of size roughly n/b.
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(b) Recursively solve each of the smaller instances (this can be done because they are instances
of the same problem).

(c) Combine the solutions to the smaller instances into the solution of the given “large” in-
stance.

If the given instance is “small enough” then we solve it directly using an ad hoc method. In
some cases this is completely trivial — e.g., as in sorting an array of one element.

In this general scheme, a represents the number of subinstances into which we divide up
the given one, and b represents the factor by which we reduce the input size in each recursive
step. Therefore, a and b are positive integers, and b > 1 so that n/b < n.

In the above description of divide-and-conquer algorithms we said that we divide up a
large instance of size n into a instances each of size roughly n/b. The qualification “roughly”
is necessary because n/b might not be a natural number. Typically, some of the subinstances,
say a1 of them, are of size ⌈n/b⌉ and the remaining, say a2, are of size ⌊n/b⌋, where a1 and a2
are natural numbers so that a1 + a2 = a ≥ 1.

A general divide-and-conquer recurrence

Consider a divide-and-conquer algorithm of the type just described and let T (n) be the max-
imum number of steps that the algorithm requires for instances of size n. Assume that the
number of steps required for parts (a) and (c) of the algorithm — i.e., dividing up the given
instance and combining the solutions to the smaller instances — is given by the polynomial
dnℓ, where d and ℓ are nonnegative real constants (i.e., quantities that do not depend on n).
Then the following recurrence relation describes T (n):

T (n) =

{
c, if 1 ≤ n < b

a1T (⌈nb ⌉) + a2T (⌊nb ⌋) + dnℓ, if n ≥ b
(3.12)

where, as discussed before, a1 and a2 are natural numbers such that a = a1 + a2 ≥ 1, b is a
natural number such that b > 1, and c, d, ℓ are nonnegative reals. For example the mergesort
recurrence (3.8) is an instance of the above general form with a1 = a2 = 1, b = 2 and ℓ = 1.

To keep the recurrence relation relatively simple, we assume that all base cases take the
same number of steps, c. We have chosen the base cases to be the values of n such that
1 ≤ n < b. In this way, and because b is an integer greater than 1 (so b ≥ 2), in the induction
step the values of n are such that 1 ≤ ⌊n/b⌋ ≤ ⌈n/b⌉ < n, and so (3.12) is well-defined.

The induction step of the definition reflects the number of steps required by the three parts
of the divide-and-conquer paradigm: The recursive solution of the smaller problem instances
requires a1T (⌈nb ⌉)+a2T (⌊nb ⌋) steps: this is the number of steps required to solve the a1 instances
of size ⌈n

b
⌉, and the a2 instances of size ⌊n

b
⌋. The term dnℓ is the number of steps required to

divide up the input and to combine the solutions to the smaller instances.
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Solving the divide-and-conquer recurrence

Our task now is to find a closed-form formula for the function T (n) defined by (3.12). Actually,
the recurrence is complex enough that it is not possible to obtain a simple closed-form formula,
even for values of n that are powers of b. We can, however, derive tight upper and lower bounds
for T (n) that are expressed as simple closed-form formulas.

As with the solution of the Mergesort recurrence (cf. Section 3.2.1) the first step is to
simplify our task by considering only values of n that are powers of b. In this case, (3.12) can
be simplified as follows. For any n that is a power of b,

T (n) =

{
c, if n = 1

aT (n
b
) + dnℓ, if n > 1

(3.13)

where a = a1+a2. The following theorem gives upper bounds for the function T (n) defined by
(3.13), when n is a power of b. The form of the upper bound depends on whether a is smaller,
equal to, or greater than bℓ.

Theorem 3.8 There is a constant κ ≥ 0 (that depends on a, b, c, d and ℓ) so that, for all
integers n ≥ b that are powers of b, the function T (n) defined by recurrence (3.13) satisfies the
following inequality:

T (n) ≤





κnℓ, if a < bℓ

κnℓ logb n, if a = bℓ

κnlogb a, if a > bℓ

Proof. Since n is a power of b, by applying repeated substitution to (3.13) we obtain:

T (n) = aT (n
b
) + dnℓ

= a
(
aT ( n

b2
) + d(n

b
)ℓ
)
+ dnℓ

= a2T ( n
b2
) +

(
a
bℓ

)
dnℓ + dnℓ

= a2
(
aT ( n

b3
) + d( n

b2
)ℓ
)
+
(

a
bℓ

)
dnℓ + dnℓ

= a3T ( n
b3
) +

(
a
bℓ

)2
dnℓ +

(
a
bℓ

)
dnℓ + dnℓ

...

= aiT ( n
bi
) + dnℓ

i−1∑

j=0

( a
bℓ
)j [after i applications, where i ≤ logb n]

(The last step in this sequence of equations is, of course, informal; it can justified rigorously
using induction as in the proof of Lemma 3.4.) Taking i = logb n we have:

T (n) = alogb nT (1) + dnℓ

logb n−1∑

j=0

( a
bℓ
)j = cnlogb a + dnℓ

logb n−1∑

j=0

( a
bℓ
)j (3.14)
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(In the last step of (3.14) we used the following property of logarithms: for any x, y > 0,
xlogb y = ylogb x. It is easy to verify this identity by taking base-b logarithms of both sides.)

For convenience, let α = a/bℓ. Using the formula for the geometric series, we have

logb n−1∑

j=0

αj =

{
1−αlogb n

1−α
, if α 6= 1

logb n, if α = 1

Therefore, by (3.14),

T (n) =

{
cnlogb a + dnℓ

(
1−αlogb n

1−α

)
, if a 6= bℓ (i.e., α 6= 1)

cnℓ + dnℓ logb n, if a = bℓ (i.e., α = 1)
(3.15)

(For the second case note that since a = bℓ, logb a = ℓ and so nlogb a = nℓ.) Now consider each
of the three cases in the statement of the theorem, i.e. a < bℓ, a = bℓ and a > bℓ. In each case
we will manipulate the expression on the right-hand side of (3.15), resulting in a simple upper
bound for T (n).

Case 1. a < bℓ (i.e., α < 1). In this case we have

T (n) = cnlogb a + dnℓ
(

1−αlogb n

1−α

)
[by (3.15)]

≤ cnlogb a + d
(

1
1−α

)
nℓ [because 1− αlogb n ≤ 1]

≤ cnℓ +
(

d
1−α

)
nℓ [because a < bℓ ⇒ logb a < ℓ]

= κnℓ

where κ = c + d
1−α

. Since c, d ≥ 0 and 1 − α > 0, we have that κ ≥ 0. So, in this case,

T (n) ≤ κnℓ for some constant κ ≥ 0 that depends on a, b, c, d and ℓ.

Case 2. a = bℓ (i.e., α = 1). In this case we have

T (n) = cnℓ + dnℓ logb n [by (3.15)]

≤ cnℓ logb n+ dnℓ logb n [because n ≥ b⇒ logb n ≥ 1]

= κnℓ logb n

where κ = c + d. Since c, d ≥ 0, we have that κ ≥ 0. So, in this case, T (n) ≤ κnℓ logb n for
some constant κ ≥ 0 that depends on c and d.
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Case 3. a > bℓ (i.e., α > 1). In this case we have

1− αlogb n

1− α
=

αlogb n − 1

α− 1

= β(nlogb α − 1) [where β = 1/(α− 1); recall that xlogb y = ylogb x]

= β(nlogb(a/b
ℓ) − 1) [recall that α = a/bℓ]

= β(nlogb a−logb b
ℓ − 1)

= β(nlogb a−ℓ − 1)

≤ βnlogb a−ℓ [since β > 0]

Therefore, by (3.15),

T (n) ≤ cnlogb a + dnℓβnlogb a−ℓ

= cnlogb a + dβnlogb a

= κnlogb a

where κ = c+dβ. Since c, d ≥ 0 and β > 0, we have that κ ≥ 0. So, in this case, T (n) ≤ κnlogb a

for some constant κ ≥ 0 that depends on a, b, c, d and ℓ.

We can prove that the same result actually holds for all n ≥ b, not only for values of n
that are powers of b.

Theorem 3.9 There is a real constant λ ≥ 0 (that depends on a, b, c, d and ℓ) so that, for all
integers n ≥ b, the function T (n) defined by recurrence (3.12) satisfies the following inequality:

T (n) ≤





λnℓ, if a < bℓ

λnℓ logb n, if a = bℓ

λnlogb a, if a > bℓ

This can be proved in a way similar to that we used in Section 3.2.1 to extend the applicability
of Lemma 3.4 to all values of n, not only powers of 2. We leave the proof of this theorem as
an exercise (see Exercise 10).

Theorem 3.9 gives simple closed-form formulas that bound from above the function defined
by the recurrence (3.12). How tight are these bounds? It turns out it that they are quite
tight, because we can also establish corresponding lower bounds. In particular, the following
theorem holds:

Theorem 3.10 There is a real constant λ′ > 0 (that depends on a, b, c, d and ℓ) so that, for all
integers n ≥ b, the function T (n) defined by recurrence (3.12) satisfies the following inequality:

T (n) ≥





λ′nℓ, if a < bℓ and d > 0

λ′nℓ logb n, if a = bℓ and d > 0

λ′nlogb a, if a > bℓ or d = 0
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Notice that in the upper bound (Theorem 3.9) we require the constant λ to be nonnegative,
while here we require λ′ to be strictly positive. Otherwise, Theorem 3.10 would be trivial by
taking λ′ = 0. Also note the additional constraints regarding the value of d (we now require
d > 0 in the first two cases). This is related to the requirement that λ′ be positive. The
proof of this theorem is similar to the proof of the upper bound and is left as an exercise (see
Exercise 11).

Other divide-and-conquer recurrences

There are divide-and-conquer algorithms whose time complexity can’t be described as an in-
stance of recurrence (3.12). For example, in some algorithms the factor b > 1 by which we
reduce the size of the problem in each recursive call is not an integer — e.g., it could be 3/2.
(Our proof crucially depended on the fact that b is an integer since in Theorem 3.8 we assumed
that powers of b are positive integers, so that they are legitimate arguments of T .)

Another reason why recurrence (3.12) is not completely general is that there are divide-
and-conquer algorithms in which the smaller subproblems are not of “roughly” the same size.
For example, an input of size n can be divided up into two smaller inputs, of sizes ⌈n/5⌉ and
⌊4n/5⌋.

Although (3.12) does not apply to all divide-and-conquer algorithms, it applies to many, and
so Theorems 3.9 and 3.10 are important tools for analysing the time complexity of algorithms.
In addition, the techniques discussed in this chapter can be used to solve other types of divide-
and-conquer recurrences. Exercises 8 and 9 provide examples of such recurrences.

3.3 Another recurrence

Consider the recurrence

T (n) =

{
1, if n = 1

2T (⌊n
2
⌋) + ⌊log2 n⌋, if n > 1

(3.16)

This does not quite fit the general divide-and-conquer recurrence (3.12) because the term
⌊log2 n⌋ in the induction step is not a polynomial.

Actually, we can apply the results of the previous section to obtain an upper (and lower)
bound for the function T (n) defined by (3.16). To see how, consider the recurrence

T ′(n) =

{
1, if n = 1

2T ′(⌊n
2
⌋) +√n, if n > 1

(3.17)

This is a special case of recurrence (3.12), where a = b = 2, c = d = 1, and ℓ = 1/2 (recall
that ℓ was a nonnegative real, and so it can take on the value 1/2). So, in this case a > bℓ and
by Theorem 3.9 we conclude that there is a constant λ ≥ 0 so that T ′(n) ≤ λn, for all n ≥ 1.
Using the definitions of T (n) and T ′(n), it is easy to show (by complete induction) that for all
n ≥ 1, T (n) ≤ T ′(n). Therefore, we get that T (n) ≤ λn, for all n ≥ 1.
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With this background, let us now try to prove the same bound for T (n) from “first princi-
ples”, i.e., without explicitly relying on results of the previous section. In other words, we will
prove that there is a constant c ≥ 0 such that T (n) ≤ cn, for all integers n ≥ 1. It is natural
to try proving this by induction on n. Let P (n) be the predicate

P (n) : T (n) ≤ cn

for some, as yet unspecified, constant c ≥ 0. We will attempt to prove that P (n) holds for every
integer n ≥ 1 using complete induction. In the course of this proof we will try to determine
the unspecified nonnegative constant c.

Basis: n = 1. We want to prove that T (1) ≤ c 1. By (3.16), T (1) = 1, so the basis holds as
long as c ≥ 1.

Induction Step: Let i be an arbitrary integer such that i > 1. Assume that P (j) holds for
all integers j such that 1 ≤ j < i; i.e., T (j) ≤ cj, for all 1 ≤ j < i. We must prove that P (i)
holds as well, i.e., that T (i) ≤ ci. We have:

T (i) = 2T (⌊i/2⌋) + ⌊log2 i⌋ [by (3.16), since i > 1]

≤ 2
(
c⌊i/2⌋

)
+ ⌊log2 i⌋ [by induction hypothesis; note that 1 ≤ ⌊i/2⌋ < i, since i > 1]

≤ 2
(
c(i/2)

)
+ log2 i [because ⌊i/2⌋ ≤ i/2 and ⌊log2 i⌋ ≤ log2 i, by definition of

the floor function]

≤ ci+ log2 i

So, to prove the desired inequality T (i) ≤ ci, it would suffice to show that ci + log2 i ≤ ci.
This, however, is obviously false because log2 i > 0, for all i > 1. So, this particular tack gets
us nowhere.

Notice, however, that we are not too far off from what we want: We wanted to prove that
T (i) ≤ ci, and in the induction step we were able to show that T (i) ≤ ci + log2 i; the term
log2 i is small, compared to ci. Of course, this does not mean that we can simply drop it,
but this observation raises the possibility of circumventing the difficulty by strengthening the
predicate we are trying to prove. (Recall the discussion on page 35 in Chapter 1.) In view of
our failed first attempt, a reasonable next step is to consider the following predicate

P ′(n) : T (n) ≤ cn− d log2 n

for some, as yet unspecified, constants c, d > 0. We will now prove that P ′(n) holds for all
n ≥ 1 using complete induction, in the course of which we will also determine the unspecified
positive constants c and d. Note that if we prove this, it follows immediately that P (n) holds
for all n, since P ′(n) is stronger than P (n).

Basis: n = 1. We want to prove that T (1) ≤ c 1 − d log2 1 = c. By (3.16), T (1) = 1, so the
basis holds as long as

c ≥ 1 (3.18)
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Induction Step: Let i be an arbitrary natural number such that i > 1. Assume that P ′(j)
holds for all integers j such that 1 ≤ j < i; i.e., T (j) ≤ cj − d log2 j, for all 1 ≤ j < i. We
must prove that P ′(i) holds as well, i.e., that T (i) ≤ ci− d log2 i. Indeed, we have:

T (i) = 2T (⌊ i
2
⌋) + ⌊log2 i⌋ [by (3.16), since i > 1]

≤ 2(c⌊ i
2
⌋ − d log2 ⌊ i2⌋) + ⌊log2 i⌋ [by induction hypothesis; note that

1 ≤ ⌊ i
2
⌋ < i, since i > 1]

≤ 2c i
2
− 2d log2

i−1
2

+ log2 i [because i−1
2
≤ ⌊ i

2
⌋ ≤ i

2
, by definition of

the floor function]

= ci− 2d
(
log2(i− 1)− log2 2

)
+ log2 i

= ci− 2d log2(i− 1) + 2d+ log2 i

≤ ci− 2d
(
(log2 i)− 1

)
+ 2d+ log2 i [because i > 1, so log2(i− 1) ≥ (log2 i)− 1]

= ci− 2d log2 i+ 4d+ log2 i

Therefore, for the desired inequality, T (i) ≤ ci − d log2 i, to hold, it suffices to show that
ci− 2d log2 i+ 4d+ log2 i ≤ ci− d log2 i. For log2 i > 4, i.e., i > 16, this is equivalent to

d ≥ log2 i

(log2 i)− 4
(3.19)

It is easy to see that the right-hand side of (3.19) decreases as i increases, and since we must
have i > 16, the right-hand side of (3.19) attains its maximum value at i = 17. Using a
calculator we can compute this value to be log2 17

(log2 17)−4
= 46.7337 . . . To satisfy (3.19) we can

therefore pick d = 47.
This choice of d ensures that the induction step of the proof can be carried out provided

i ≥ 17. We do not know that it works for values of i in the range 1 ≤ i ≤ 16. Therefore, we
must make sure that, for these values of i too, T (i) ≤ ci− 47 log2 i (note that 47 is the value
we have chosen for d). This means that c should be chosen so that

c ≥ T (i) + 47 log2 i

i
for all i such that 1 ≤ i ≤ 16 (3.20)

To find a value of c that satisfies (3.20), we compute the value of T (i) for 1 ≤ i ≤ 16 using
the definition (3.16). Using a simple program or calculator, we can then compute the value
of

(
T (i) + 47 log2 i

)
/i, for every i such that 1 ≤ i ≤ 16. If we do this, we will find that the

maximum value of this quantity in this interval is 25.4977 . . . (attained when i = 3). To satisfy
constraint (3.20) we can then choose any value of c greater than that — for example, c = 26.
Note that this choice automatically satisfies the other constraint we need on c, namely (3.18).

We have therefore shown that, for c = 26 and d = 47, T (n) ≤ cn − d log2 n, for all n ≥ 1.
Hence there is a constant c ≥ 0 (namely, c = 26) so that for all n ≥ 1, T (n) ≤ cn, as wanted.
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Exercises

1. Let f : N→ N be defined by

f(n) =





3, if n = 0

6, if n = 1

5f(n− 1)− 6f(n− 2) + 2, if n > 1

Prove that f(n) = 1 + 2n + 3n for all n ≥ 0.

2. Let f : N→ N be the function defined recursively as follows.

f(n) =





1, if n = 0

4, if n = 1

f(n− 1) + 12f(n− 2), if n > 1

Prove that for every n ∈ N, f(n) = 4n.

3. Let f : N→ N be the function defined by

f(n) =





1, if n = 0

2, if n = 1

4f(n− 2) + 2n, if n > 1

Prove that for every integer n ≥ 3, f(n) ≤ 3 · n · 2n−2.

4. Let f : N→ N be defined as follows:

f(n) =

{
6, if n = 0

5f(n− 1) + 3n−1, if n > 0

Use induction to prove that for some positive constant c and for all n ∈ N, f(n) ≤ c · 5n.
Hint: Prove first the stronger statement that, for all n ∈ N, f(n) ≤ 7 · 5n − 3n.

5. Consider the following recurrence defining a function f : N→ N:

f(n) =

{
10, if n = 0

100 f(⌊n/5⌋) + n23n if n > 0

Prove that there is a constant c > 0 so that for all sufficiently large integers n f(n) ≤ cn23n.
(“All sufficiently large integers n” means “all integers larger than or equal to some constant
n0”, which you should determine.)



94 CHAPTER 3. FUNCTIONS DEFINED BY INDUCTION

6. Consider the following recurrence defining a function f : N→ N:

f(n) =

{
4, if n = 0

7f(⌊n
3
⌋) + 5n2, if n > 0

Without using Theorem 3.9, prove that there is a constant c > 0 such that for all sufficiently
large integers n, f(n) ≤ cn2.

7. The height of a binary tree is the number of edges on the longest path from the root to
a leaf. (Thus, the height of a binary tree that consists of a single node, its root, is zero.) A
height-balanced tree is a binary tree where every node x satisfies the following property: If
x has only one child, then the subtree rooted at that child has height 0; if x has two children,
then the heights of the subtrees rooted at those children differ by at most one. Height-balanced
trees play an important role in data structures.
Define g(h) to be the smallest possible number of nodes in a height-balanced tree of height h.

(a) Prove that g is strictly increasing; that is for h, h′ ∈ N, if h < h′ then g(h) < g(h′).

(b) Prove that

g(h) =





1, if h = 0

2, if h = 1

g(h− 1) + g(h− 2) + 1, if h ≥ 2

(Hint: Use part (a).)

(c) Prove that g(h) ≥ 1.6h for every h ≥ 0. (Hint: Use part (b).)

Note: This result implies that the height of a height-balanced tree is at most logarithmic
in its size, an important fact for algorithms operating on such trees.

(d) It turns out that 1.6h is not quite the best exponential lower bound for g(h). What is the
largest real number c such that for every h ≥ 0, g(h) ≥ ch? Justify your answer.

8. Consider the following recurrence:

T (n) =

{
c, if 1 ≤ n ≤ 3

T (⌈3
4
n⌉) + T (⌈1

5
n⌉) + dn, if n > 3

Prove that there are constants λ′, λ > 0 so that for all sufficiently large values of n, λ′n ≤
T (n) ≤ λn.

Note: This recurrence actually comes up in the time complexity analysis of a divide-and-
conquer algorithm for finding the median of a list of elements. The algorithm divides up the
input into two parts one of which is about three-quarters the original size and the other is
about one-fifth the original size. Note that the sum of the sizes of the two subproblems is
strictly less than the size of the original problem. This is crucial in yielding a linear solution.
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9. Following is a general form of a recurrence describing the time complexity of some divide-
and-conquer algorithms that divide up the input into inputs of unequal size.

T (n) =

{
1, if 0 ≤ n ≤ n0∑k

i=1 aiT (⌊n/bi⌋) + c · nd, if n > n0.

In this recurrence n0 ≥ 0 is a constant representing the number of base cases and k ≥ 1 is
a constant representing the number of different sizes of smaller inputs into which the given
input is divided up. For each i = 1, 2, . . . , k, the ith input size is shrunk by a factor of bi
where bi > 1, and the divide-and-conquer algorithm requires solving ai instances of the ith size
where ai ≥ 1. (Note that the recurrence of Exercise 8 is a special case of this recurrence where
n0 = 3, k = 2, a1 = a2 = 1, b1 = 4/3 and b2 = 5.)

Prove the following generalisation of Exercise 8: If
∑k

i=1 aib
d
i < 1, then there are constants

λ′, λ > 0 so that for all sufficiently large values of n, λ′n ≤ T (n) ≤ λn.

10. Prove Theorem 3.9. (Hint: Prove that the function T (n) defined by (3.12) is nondecreas-
ing, and use Theorem 3.8.)

11. Prove Theorem 3.10.
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Chapter 4

SETS DEFINED BY INDUCTION
AND STRUCTURAL INDUCTION

4.1 Defining sets recursively

Induction can also be used to define sets. The idea is to define a set of objects as follows:

(i) We define the “smallest” or “simplest” object (or objects) in the set.

(ii) We define the ways in which “larger” or “more complex” objects in the set can be con-
structed out of “smaller” or “simpler” objects in the set.

Clause (i) of such a recursive definition is called the basis, and clause (ii) is called the induction
step.

Example 4.1 Suppose we want to define the set of “well-formed”, fully parenthesised al-
gebraic expressions involving a certain set of variables and a certain set of operators. To
be more concrete, let us say that the variables in question are x, y and z, and the oper-
ators are +, −, × and ÷. We want to define an infinite set E of strings over alphabet
Σ = {x, y, z,+,−,×,÷, (, )}. Not every string in Σ∗ should be in this set, of course. A
well-formed expression, like ((x + y) + (z ÷ (y × z))) should be in the set, while ill-formed
expressions, such as (x + y and x + (÷y) should not be. We can achieve this by using the
following recursive definition.

Definition 4.1 Let E be the smallest set such that

Basis: x, y, z ∈ E .
Induction Step: If e1, e2 ∈ E then the following four expressions are also in E : (e1 + e2),
(e1 − e2), (e1 × e2), and (e1 ÷ e2).

Note the requirement that E be the smallest set that satisfies the conditions spelled out in the
basis and induction step of the definition. We should clarify that when we say that a set X is
the smallest set to satisfy a property P , we mean that X is a subset of every set that satisfies

97
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P — or, equivalently, that X is the intersection of all sets that satisfy P . Why do we need
to say this about E? Without this proviso Definition 4.1 would not specify a unique set, but
an infinite number of sets, all of which satisfy the basis and induction step clauses and are
supersets of the set E we are interested in.

To see this consider the set F defined as above except that the basis case also stipulates
that variable w is in F . Consider as well the set G defined similarly except that the induction
step also stipulates that if e is G then so is −e. Both F and G (and infinitely many other sets)
satisfy the basis and induction step clauses of the recursive Definition 4.1. By requiring E to
be the smallest set that satisfies these properties, we avoid this indeterminacy. Another way of
achieving the same effect is to add a third clause to the recursive definition stating “Nothing
else is in the defined set, except as obtained by a finite number of applications of the basis and
induction step”. End of Example 4.1

We will now state the general principle that justifies recursive definitions of sets, such as
Definition 4.1. First we need some terminology. Let S be a set. A k-ary operator on S
is simply a function f : Sk → S. (Sk is the k-fold Cartesian product of S.) We say that a
subset A of S is closed under f if, for all a1, a2, . . . , ak ∈ A, f(a1, a2, . . . , ak) ∈ A as well. For
example, addition and subtraction are binary operators on the set of integers Z. The subset
N of Z is closed under addition but is not closed under subtraction. We have:

Theorem 4.2 Let S be a set, B be a subset of S, m be a positive integer, and f1, f2, . . . , fm
be operators on S of arity k1, k2, . . . , km, respectively. Then, there is a unique subset S of S
such that

(a) S contains B;

(b) S is closed under f1, f2, . . . , fm; and

(c) any subset of S that contains B and is closed under f1, f2, . . . , fm contains S.

This theorem can be proved without using induction. We leave the proof as an exercise,
with the hint that the set S which the theorem asserts that exists is the intersection of all
subsets of S that contain B and are closed under f1, f2, . . . , fm.

As a result of this theorem we know that Definition 4.1 (and others like it) is proper. To see
why, let us cast that definition in the terms of Theorem 4.2. The set S is the set of all strings
over the alphabet Σ = {x, y, z, (, ),+,−,×,÷}. The set B is {x, y, z}. The integer m is 4.
There are four binary operators: Plus, Minus, Times and Div, where Plus (e1, e2) = (e1 + e2),
and similarly for the other three operators.1 Definition 4.1 defines E to be the smallest subset
of S that contains {x, y, z} and is closed under Plus, Minus, Times and Div. Theorem 4.2
assures us that this set exists.

1Note that Plus(e1, e2) is not the addition operator on integers. It takes as arguments two strings, e1 and
e2, and produces as output a string, by concatenating a left parenthesis, followed by its first argument e1,
followed by the symbol +, followed by its second argument e2, followed by a right parenthesis.
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The connection of this style of definition to induction is due to a different characterisation
of the “smallest subset of S that contains B and is closed under a set of operators”. The idea
is as follows. Suppose S is a set, and f1, f2, . . . , fm are operators on S. Let B be a subset of
S and define an infinite sequence of sets S0, S1, S2, . . . as follows:

S0 = B

S1 = S0 ∪ the set obtained by applying f1, . . . , fm to elements of S0

S2 = S1 ∪ the set obtained by applying f1, . . . , fm to elements of S1

S3 = S2 ∪ the set obtained by applying f1, . . . , fm to elements of S2

...

Si = Si−1 ∪ the set obtained by applying f1, . . . , fm to elements of Si−1

...

The infinite union of all the Si’s

S0 ∪ S1 ∪ S2 ∪ · · · ∪ Si ∪ · · ·

is the smallest subset of S that contains B and is closed under f1, f2, . . . , fm. More precisely,

Principle of set definition by recursion: Let S be a set, B be a subset of S, m be a
positive integer, and f1, f2, . . . , fm be operators on S of arity k1, k2, . . . , km, respectively. Let

Si =




B, if i = 0

Si−1 ∪
(⋃m

j=1{fj(a1, a2, . . . , akj) : a1, a2, . . . , akj ∈ Si−1}
)
, if i > 0

Then ∪i∈NSi is the smallest subset of S that contains B and is closed under f1, f2, . . . , fm.

This principle can be proved by using the principle of induction (or of well-ordering).

4.2 Structural induction

Once we have provided a recursive definition of a set it is natural to prove properties of its
elements by using induction. A variant of induction, called structural induction, is especially
well-suited to this purpose. Suppose we have defined a set X using induction, and we now wish
to prove that every element of X has a certain property P . A proof by structural induction
proceeds in two steps.

Basis: We prove that every “smallest” or “simplest” element of X (i.e., every element that is
in the set by virtue of the basis of the recursive definition) satisfies P .

Induction Step: We also prove that each of the (finitely many) ways of constructing “larger”
or “more complex” elements out of “smaller” or “simpler” ones (i.e., each of the constructions
in the induction step of the recursive definition) preserves property P . That is, if all the
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“smaller” elements that are being combined by the construction have property P , then the
“larger” element that results from the construction will necessarily have property P , too.

If we prove these two facts, then structural induction allows us to conclude that all elements
in X have property P . We now illustrate this proof technique and explain why it is valid.

Example 4.2 Consider the set E of well-formed algebraic expressions defined recursively in
Definition 4.1. By following the rules of that definition we can form the expression

(((x+ x)− (x÷ y)) + z)

In this expression the variable x appears three times, while y and z appear once each. Similarly,
the operator + appears twice, while − and ÷ appear once each. The total number of variable
occurrences is 5 and the total number of operator occurrences is 4. That is, in this expression
the number of variable occurrences is one more than the number of operator occurrences.
This is no accident: the same relationship between the number of variable occurrences and the
number of operator occurrences holds in any expression that belongs to E . Let us prove this fact
using structural induction. To simplify the presentation we introduce the following notation:
If e is a string, vr(e) and op(e) denote the number of variable and operator occurrences,
respectively, in e.

Proposition 4.3 For any e ∈ E , vr(e) = op(e) + 1.

Proof. Let P (e) be the following predicate (of strings):

P (e) : vr(e) = op(e) + 1

We prove that P (e) holds for each e ∈ E by using structural induction.

Basis: There are three cases: e = x, e = y and e = z. In each case, vr(e) = 1 and op(e) = 0,
so P (e) holds for the basis.

Induction Step: Let e1, e2 be arbitrary elements of E such that P (e1) and P (e2) hold; i.e.,
vr(e1) = op(e1) + 1 and vr(e2) = op(e2) + 1. We will prove that P (e) also holds for any
e ∈ E that can be constructed from e1 and e2. There are four cases, depending on how e is
constructed from e1 and e2: e = (e1 + e2), e = (e1 − e2), e = (e1 × e2) and e = (e1 ÷ e2). In
each case we have

vr(e) = vr(e1) + vr(e2) (4.1)

op(e) = op(e1) + op(e2) + 1 (4.2)

Thus,

vr(e) = vr(e1) + vr(e2) [by (4.1)]

= (op(e1) + 1) + (op(e2) + 1) [by induction hypothesis]

=
(
op(e1) + op(e2)

)
+ 2

=
(
op(e)− 1

)
+ 2 [by (4.2)]

= op(e) + 1
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as wanted.

A mistake that is sometimes committed in structural induction proofs such as the one just
presented, is that the form of the expressions being considered in the induction step is not the
most general possible. For instance, instead of considering expressions of the form (e1 ⊙ e2),
where e1, e2 ∈ E and ⊙ is one of the symbols +,−,×,÷, one might (erroneously) consider only
expressions of the form (e1 ⊙ x) and (x ⊙ e2). This is not sufficient, because in this case the
induction step covers only a limited number of expressions, not the entire set E .

Why does a structural induction proof like the one of Proposition 4.3 prove that every
e ∈ E satisfies the property P (e) in question? To understand this, recall the alternative
characterisation of a recursively defined set that is given by the principle of set definition by
recursion. According to that characterisation, the set of algebraic expressions E is equal to
the union of the infinitely many sets in the sequence 〈E0, E1, E2, . . .〉 where E0 is the set of
simplest algebraic expressions (i.e., the set {x, y, z}) and for each i > 0, Ei is the set obtained
by applying the four operators (Plus, Minus, Times and Div) to the algebraic expressions in
Ei−1. It is easy to see that the basis and induction step in the above structural induction proof
amount to proving, respectively:

Basis: Every e ∈ E0 satisfies P (e).

Induction Step: Let i be an arbitrary natural number. If every e ∈ Ei satisfies P (e), then
every e ∈ Ei+1 satisfies P (e).

Thus, a proof by structural induction amounts to a proof (by simple induction) of the
statement:

For all i ∈ N, every e ∈ Ei satisfies P (e). (4.3)

Since E = E0 ∪ E1 ∪ · · · ∪ Ei ∪ · · · , a proof of (4.3) is a proof that every e ∈ E satisfies P (e) —

which is the desired goal. End of Example 4.2

Example 4.3 To prove that an element or a set of elements belongs to a recursively defined

set X all we have to do is specify a way of constructing the element(s) in question using
the rules in the recursive definition, and then prove that the specified construction yields the
desired element(s). But how do we prove the opposite, i.e., that an element or set of elements
does not belong to X? Interestingly, structural induction can be used to this end. The idea
is to identify a property P which all the elements of X must have, but which the specified
element(s) do not. Structural induction is used to prove that, in fact, all elements of X have
property P .

For example, consider the string e = (x + (÷y)). We can prove that e does not belong
to the set E of well-formed algebraic expressions, by appealing to Proposition 4.3. Obviously,
vr(e) = op(e) = 2. Thus, vr(e) 6= op(e) + 1 and, by Proposition 4.3, e /∈ E .

Here is another, perhaps more interesting, example in which we show that E does not
contain any of infinitely many strings that have a particular form.
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Proposition 4.4 For any natural number i 6= 0, the expression consisting of i left parentheses,
followed by the variable x, followed by i right parentheses, does not belong to E . That is, for
all natural numbers i 6= 0,

((. . . (︸ ︷︷ ︸
i times

x ) . . .))︸ ︷︷ ︸
i times

/∈ E

Proof. Let pr(e) be the number of parentheses in string e, and Q(e) be the predicate

Q(e) : pr(e) = 2 · op(e).

We use structural induction to prove that Q(e) holds for every e ∈ E .
Basis: There are three cases: e = x, e = y and e = z. In each case, pr(e) = op(e) = 0, so
Q(e) holds for the basis.

Induction Step: Let e1, e2 be arbitrary elements of E such that Q(e1) and Q(e2) hold; i.e.,
pr(e1) = 2 · op(e1) and pr(e2) = 2 · op(e2). We will prove that Q(e) also holds for any
e ∈ E that can be constructed from e1 and e2. There are four cases, depending on how e is
constructed from e1 and e2: e = (e1 + e2), e = (e1 − e2), e = (e1 × e2) and e = (e1 ÷ e2). In
each case we have

pr(e) = pr(e1) + pr(e2) + 2 (4.4)

op(e) = op(e1) + op(e2) + 1 (4.5)

Thus,

pr(e) = pr(e1) + pr(e2) + 2 [by (4.4)]

= 2 · op(e1) + 2 · op(e2) + 2 [by induction hypothesis]

= 2 ·
(
op(e1) + op(e2) + 1

)

= 2 · op(e) [by (4.5)]

as wanted.

We have therefore proved

for any e ∈ E , pr(e) = 2 · op(e). (4.6)

Now, let e be any string of the form

i times︷ ︸︸ ︷
((. . . ( x

i times︷ ︸︸ ︷
) . . .)), for some natural number i 6= 0. We want

to prove that e /∈ E . Clearly, pr(e) = 2 · i, while op(e) = 0. Since i 6= 0, pr(e) 6= 2 · op(e).
Thus, by (4.6), e /∈ E , as wanted.

End of Example 4.3
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4.3 An alternative to structural induction proofs

Instead of using structural induction to prove properties of recursively defined sets it is possible
to use complete induction. The idea is to associate with each object in the recursively defined
set a measure of its “size”. This measure is related to the number of applications of the rules
needed to construct the object, and there may be several different natural choices for it. In our
example of the set of well-formed algebraic expressions E , natural choices include the length of
an expression (as a string), the number of operators in the expression, or the maximum level
of nesting of parentheses. Instead of proving that every e ∈ E satisfies a predicate P (e) by
structural induction, we can accomplish the same thing by using complete induction to prove
that for any value n of the measure of “size”, every e ∈ E of “size” n, satisfies the predicate
P (e).

Example 4.4 It is intuitively clear that every e ∈ E has an equal number of left and
right parentheses. We can prove this by using structural induction. In this example, we use
complete induction on the length of e instead, To simplify the presentation we introduce some
notation. For any string e, let lp(e) and rp(e) denote the number of left and right parentheses
(respectively) in e. Recall that |e| denotes the length of string e, i.e., the number of symbols
in it.

Proposition 4.5 For any e ∈ E , lp(e) = rp(e).

Proof. Let R(n) be the predicate (on natural numbers) defined as

R(n) : for any e ∈ E such that |e| = n, lp(e) = rp(e).

We use complete induction to prove that R(n) holds for every n ∈ N.

Case 1. n ≤ 1. There are only three strings in E that have length at most one: x, y and z.
In each case, the string has equally many left and right parentheses, namely zero. Thus, R(n)
holds when n ≤ 1.

Case 2. Let i > 1 be an arbitrary natural number, and suppose that R(j) holds for each
integer j such that 0 ≤ j < i. That is, for any such j, and any e ∈ E such that |e| = j,
lp(e) = rp(e). We must prove that R(i) holds as well.

Consider an arbitrary e ∈ E such that |e| = i; We must prove that lp(e) = rp(e). Since
|e| > 1, e does not satisfy the basis case in the definition of E . Therefore, there must exist
e1, e2 ∈ E such that e is of the form (e1 ⊙ e2), where ⊙ is one of the four operator symbols
+,−,×,÷. Since e has strictly more symbols than either e1 or e2, 0 ≤ |e1|, |e2| < i. Thus, by
induction hypothesis, lp(e1) = rp(e1) and lp(e2) = rp(e2). We have:

lp(e) = lp(e1) + lp(e2) + 1 [because e = (e1 ⊙ e2)]

= rp(e1) + rp(e2) + 1 [by induction hypothesis]

= rp(e) [because e = (e1 ⊙ e2)]
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as wanted.

Therefore, R(n) holds for all n ∈ N. Since every string has a length that is a natural number,
the Proposition follows.

End of Example 4.4

As an exercise, you should prove Proposition 4.5 using structural induction. Whenever
we need to prove that all objects of a recursively defined set satisfy some property, structural
induction and complete induction are both natural approaches. The choice between the two is
strictly a matter of convenience and taste.

4.4 Elements of recursively defined sets as trees

Objects that belong to recursively defined sets can be represented as trees, and this represen-
tation can sometimes be very useful. A “simplest” object (those defined in the basis clause of
the recursive definition) is represented by either an empty tree, or a single node (depending
on what most naturally captures the situation). A “compound” object constructed out of
“simpler” objects (as described in the induction step clause of the definition) is represented as
a tree whose subtrees are precisely the trees representing these “simpler” objects.

Example 4.5 Consider the tree in Figure 4.1. The entire tree, i.e., the tree rooted at the

a

b

f ×d e

c

g

h i

z

÷

y z

x y

+

+

Figure 4.1: Binary tree of an algebraic expression

node labeled ‘a’, corresponds to the algebraic expression ((x+ y) + (z ÷ (y× z))) ∈ E . Its two
subtrees, rooted at nodes ‘b’ and ‘c’, correspond to the expressions (x+ y) and (z ÷ (y × z)),
out of which the entire expression is constructed.

The subtrees of the tree rooted at ‘b’ (which corresponds to (x+ y)), i.e., the trees rooted
at nodes ‘d’ and ‘e’ correspond to the expressions x and y, out of which (x+y) is made. These
two expressions are leaves, because they are among the “simplest” ones, defined in the basis
of the recursive definition.

Similarly, the subtrees of the tree rooted at ‘c’ (which, recall, corresponds to the expression
(z ÷ (y × z))), i.e., the trees rooted at nodes ‘f’ and ‘g’ correspond to the expressions z and
(y × z), out of which ((z ÷ (y × z))) is made.
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We can continue this decomposition of the expression working from to top of the tree
downward. The careful reader will surely have noticed the similarity between this process and
the recursive structure of trees that we observed in Example 1.13 (see page 42).

The trees that correspond to the algebraic expressions in E (as defined in Definition 4.1)
are binary trees, in fact full binary trees. Notice that the nodes labeled with an operator (+,
−, × or ÷) are the internal nodes of the binary tree, while the nodes labeled with variables
are leaves. In view of these observations, the total number of nodes in the tree that represents
an expression e ∈ E is vr(e) + op(e). By Proposition 4.3, the total number of nodes in
the (full binary) tree representing e is 2 · op(e) + 1, i.e., an odd number. Compare this to

Proposition 1.15. End of Example 4.5

The tree representation of a recursively defined object gives us a great deal of information
about its structure and about how it was constructed. It is helpful both as a visual aid and also
as a way of representing the object in a computer’s memory. For example, when a compiler
or interpreter processes, say, a Java program, it builds a tree that represents the structure
of that program. Similarly, symbolic algebra systems such as Maple or Mathematica, store
the mathematical expressions they manipulate as trees. The precise definitions of the objects
manipulated by such programs (e.g., the syntax of Java programs or of Maple expressions)
are actually specified recursively. Many of the algorithms that create and manipulate these
trees “mimic” the recursive definitions. Many of the mathematical results underlying the
correctness of these algorithms are proved by using various forms of induction. In other words,
the techniques and ideas discussed in this section are very relevant in practice.

4.5 Inductive definition of binary trees

In Chapter 1 we reviewed the conventional, graph-based definition of binary trees (see page 32).
According to that definition, a binary tree is a tree (i.e., a directed graph which, if nonempty,
has a designated node r called the root, so that for every node u there is exactly one path from
r to u) every node of which has at most two children and every edge of which has a specified
direction (“left” or “right”). This definition is, of course, very useful but it obscures an impor-
tant feature of binary trees, namely their recursive structure: Each (nonempty) binary tree is
made up of smaller binary trees. In this section we provide an alternative characterisation of
binary trees that highlights this feature. We will give an inductive definition of the set T of
binary trees; at the same time, for every element T of this set we will define its set of nodes,
nodes(T ), its set of edges edges(T ), and if T is nonempty, its root, root(T ).

Definition 4.6 Let T be the smallest set such that

Basis: Λ is in T . We use the symbol Λ to represent the empty binary tree. We define
nodes(Λ) = edges(Λ) = ∅; root(Λ) is undefined.
Induction Step: Let T1 and T2 be elements of T such that nodes(T1)∩nodes(T2) = ∅, and
r /∈ nodes(T1)∪nodes(T2). Then the ordered triple T = (r, T1, T2) is also in T . Furthermore,
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we define

root(T ) = r,

nodes(T ) = {r} ∪ nodes(T1) ∪ nodes(T2),

edges(T ) = E ∪ edges(T1) ∪ edges(T2),

where E is the set that contains (r, root(T1)) if T1 6= Λ, (r, root(T2)) if T2 6= Λ, and nothing
else.

For example, using this definition, the binary tree shown diagrammatically in Figure 4.2 is
the following element of T :

(
a, (b,Λ,Λ),

(
c,
(
d,Λ, (e,Λ,Λ)

)
,Λ

))
(4.7)

To see this note that, by the basis of Definition 4.6, Λ is an element of T . Also, accord-

a

e

cb

d

Figure 4.2: A binary tree

ing to the basis of the definition, nodes(Λ) = ∅, and so nodes(Λ) ∩ nodes(Λ) = ∅ and
b /∈ nodes(Λ) ∪ nodes(Λ). So, by the induction step of the definition, (b,Λ,Λ) is also
an element of T . Similarly, we can argue that (e,Λ,Λ) is an element of T . From the
definition of nodes in the induction step, we have that nodes

(
(e,Λ,Λ)

)
= {e}. Thus,

nodes(Λ) ∩ nodes
(
(e,Λ,Λ)

)
= ∅, and d /∈ nodes(Λ) ∪ nodes

(
(e,Λ,Λ)

)
. So, by the in-

duction step of the definition,
(
d,Λ, (e,Λ,Λ)

)
is also an element of T . Continuing in the same

way, we can see that every triple that appears as a well-formed parenthesised subexpression
in (4.7) is an element of T and corresponds, in a natural way, to a subtree of the binary tree
shown in Figure 4.2.

Although this example makes plausible the claim that Definition 4.6 is an alternative char-
acterisation of the set of binary trees, it is certainly not a proof of this fact. When we say
that Definition 4.6 is “an alternative characterisation of the set of binary trees”, we mean
that there is a one-to-one correspondence between the objects of the set T defined in that
definition, and the kinds of directed graphs that we have defined as binary trees. We now
formalise this correspondence. Let T ∗ is a conventionally defined binary tree with node set V ,
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edge set E, and root r (if T ∗ is nonempty), and let T be an element of T . We say that T ∗

and T correspond to each other if and only if nodes(T ) = V , edges(T ) = E, and (if T ∗ is
nonempty) root(T ) = r.2

So, to say that T is an alternative characterisation of the set of binary trees means precisely
that:

(a) for every binary tree T ∗ there is a corresponding (in the above sense) T ∈ T ; and

(b) for every T ∈ T there is a corresponding binary tree T ∗.

We now sketch the arguments that prove these two facts.

To prove (a) we argue by contradiction: Suppose that there is at least one binary tree for
which there is no corresponding element in T . Thus, by the well-ordering principle, there is
such a binary tree, say T ∗, with the minimum possible number of nodes. T ∗ is not the empty
binary tree because there is an element of T , namely Λ, that corresponds to the empty binary
tree. Since T ∗ is nonempty, it has a root, say r. We will now define the left and right subtrees
of T ∗, denoted T ∗

1 and T ∗
2 .

If T ∗ has no edge (r, u) labeled “left”, then T ∗
1 is the empty binary tree. If T ∗ has an edge

(r, u) labeled “left”, the T ∗
1 is defined as follows: Let V1 be the subset of nodes of T ∗ that

includes every node v of T ∗ such that there is a (possibly empty) path from u to v; and let E1

be the subset of edges of T ∗ that connect nodes in V1. It is easy to verify that in the graph
(V1, E1) there is one and only one path from u to every node in V1. So we let T ∗

1 be the binary
tree with node set is V1, edge set is E1, and root u. In a similar way we define the right subtree
T ∗
2 of T ∗.
Since each of T ∗

1 and T ∗
2 has fewer nodes than T ∗, it follows from the definition of T ∗ that

there are elements T1 and T2 in T that correspond to T ∗
1 and T ∗

2 , respectively. By the induction
step of Definition 4.6, T = (r, T1, T2) is in T . It is easy to check that T corresponds to T ∗.
This contradicts the definition of T ∗. So, for every binary tree T ∗ there is a corresponding
element of T .

To prove (b) we proceed as follows. We first prove the following lemma.

Lemma 4.7 For every T = (r, T1, T2) ∈ T , there is no (u, v) ∈ edges(T ) such that u ∈
nodes(T1) and v ∈ nodes(T2) or vice-versa.

This can be proved easily by structural induction based on Definition 4.6. The proof, which
is omitted, makes use of the requirements, in the induction step of that definition, that
nodes(T1) ∩ nodes(T2) = ∅ and r /∈ nodes(T1) ∪ nodes(T2).

2Our notion of correspondence between binary trees and elements of T makes no reference to the direction
of edges. We could fix this by defining the direction of every edge in edges(T ), using the recursive definition
of T . This would make the subsequent arguments that establish the correspondance between binary trees and
elements of T more complete but more cumbersome without illuminating any important points. For this reason
we opt for the simpler notion of correspondence presented here.
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Next we use structural induction to prove that the predicate

P (T ) : there is a binary tree that corresponds to T

holds for every T ∈ T . We sketch this proof. The basis is obvious (the empty binary tree
corresponds to Λ). For the induction step, assume that T ∗

1 , T
∗
2 are binary trees that correspond

to T1, T2 ∈ T respectively. We must prove that if nodes(T1) ∩ nodes(T2) = ∅ and r /∈
nodes(T1) ∪ nodes(T2), then there is a binary tree T ∗ that corresponds to T = (r, T1, T2).

Let T ∗ be the graph with node set nodes(T ) and edge set edges(T ), and designate r as
its root. We will prove shortly that T ∗ is a binary tree. It is then straightforward to check
that T ∗ corresponds to T , and so P (T ) holds and (b) is established.

To prove that T ∗ is a binary tree it suffices to show that for each u ∈ nodes(T ), there is
a unique path from r to u in T ∗. The existence of such a path is easy to show: If u = r, the
empty path will do. If u ∈ nodes(T1) then, by the induction hypothesis, T ∗

1 is a binary tree
that corresponds to T1. So, there is a path from root(T1) to u that uses edges of T ∗

1 . Therefore,
there is a path in T ∗ that goes from r to u, which first uses the edge (r, root(T1)) and then
uses edges of T ∗

1 to go from root(T1) to u. Similarly if u ∈ nodes(T2). The uniqueness of
such a path can be shown as follows: If u = r we note that there is no edge in edges(T ) from
any node to r, and so the empty path is the only path from r to itself. If u ∈ nodes(T1), by
Lemma 4.7, any path from r to u must first use the edge (r, root(T1)) and cannot use any
edge in edges(T2). Therefore, if there are multiple paths from r to u in T ∗, there must be
multiple paths from root(T1) to u in T ∗

1 which contradicts the assumption that T ∗
1 is a binary

tree. Similarly if u ∈ nodes(T2).
This completes the justification of the claim that Definition 4.6 is an alternative characteri-

sation of the set of binary trees. As mentioned at the start of this section, this characterisation
lays bare the recursive structure of binary trees. It also opens the door to convenient recursive
definitions and structural induction proofs of various properties of binary trees. We illustrate
these in the following example.

Example 4.6 First we give a recursive definition of the height of a binary tree.

Definition 4.8 The height of any T ∈ T , denoted h(T ), is defined as follows:

Basis: If T = Λ then h(T ) = −1.
Induction Step: If T = (r, T1, T2) then h(T ) = max

(
h(T1), h(T2)

)
+ 1.

We can now use structural induction to prove the following important fact that relates the
number of nodes of a binary tree to its height:

Proposition 4.9 For any binary tree T , |nodes(T )| ≤ 2h(T )+1 − 1.

Proof. We use structural induction to prove that

P (T ) : |nodes(T )| ≤ 2h(T )+1 − 1
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holds for every T ∈ T .
Basis: T = Λ. Then |nodes(T )| = 0, and h(T ) = −1, so |nodes(T )| = 2h(T )+1 − 1 and P (T )
holds in this case.

Induction Step: Let T1, T2 ∈ T and suppose that P (T1), P (T2) hold. We must prove that
if nodes(T1) ∩ nodes(T2) = ∅ and r /∈ nodes(T1) ∪ nodes(T2), then P (T ) also holds, where
T = (r, T1, T2). Indeed we have:

|nodes(T )| = |nodes(T1)|+ |nodes(T2)|+ 1 [by Def. 4.6 and the fact that]
nodes(T1),nodes(T2) are disjoint]
and do not contain r]

≤
(
2h(T1)+1 − 1

)
+
(
2h(T2)+1 − 1

)
+ 1 [by induction hypothesis]

≤ 2max(h(T1),h(T2))+1 + 2max(h(T1),h(T2))+1 − 1 [because h(T1), h(T2) ≤ max
(
h(T1), h(T2)

)
]

≤ 2h(T ) + 2(T ) − 1 [by the def. of h(T )]

≤ 2h(T )+1 − 1

so P (T ) holds.

End of Example 4.6
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Exercises

1. Consider the set E defined in Definition 4.1. Show that for any strings x and y over the
alphabet {x, y, z,+,−,×,÷, (, )}, the string (x)(y) is not a member of E .

2. Consider the following recursive definition for the set B of binary strings (i.e., finite strings
of 0s and 1s): B is the smallest set such that

Basis: The empty binary string, denoted ǫ, is in B.
Induction Step: If x is in B then x0 and x1 (i.e., x followed by 0 or 1, respectively), is in B.
A binary string has odd parity if it has and odd number of 0s; it has even parity if it has an
even number of 0s. (Thus, the empty binary string has even parity.)
The concatenation of two binary strings x and y is the string xy obtained by appending y to
x. Concatenation is a function of two binary strings that returns a binary string.

(a) Give a recursive definition of the set of odd parity binary strings, and the set of even
parity binary strings. (Hint: Define both sets simultaneously!)

(b) Prove that your recursive definitions in (a) are equivalent to the non-recursive definitions
given previously (involving the number of 0s in the string).

(c) Give a more formal, recursive, definition of the concatenation function. (Hint: Use
induction on y.)

(d) Using your inductive definitions in (a) and (c), show that the concatenation of two odd
parity binary strings is an even parity binary string. (Hint: You may find it useful to
prove something else simultaneously.)



Chapter 5

PROPOSITIONAL LOGIC

5.1 Introduction

Propositional logic is the formalisation of reasoning involving propositions. A proposition is
a statement that is either true or false, but not both. Examples of propositions are “Ottawa
is the capital of Canada” (a true statement), “Ottawa is the largest city in Canada” (a false
statement), and “it rained in Paris on September 3, 1631” (a statement that is true or false,
although probably nobody presently alive knows which). There are statements that are not
propositions because they do not admit a truth value; examples are statements of opinion (“the
government must resign”) and interrogative statements (“how are you?”).

We can combine propositions to form more complex ones in certain well-defined ways. For
example, consider the propositions: “Mary studies hard”, “Mary understands the material”
and “Mary fails the course”. The negation (or denial) of the first proposition is the propo-
sition “Mary does not study hard”. The conjunction of the first two propositions is the
proposition “Mary studies hard and Mary understands the material”. The disjunction of
the first and third propositions is the proposition “Mary studies hard or Mary fails the course”.
We can also form the conditional of the second proposition on the first; this is the propo-
sition: “if Mary studies hard then Mary understands the material”. Finally, we can form
the biconditional of the first two propositions: “Mary studies hard if and only if Mary
understands the material”.

Since these ways of combining propositions produce new propositions, nothing can stop us
from applying them again on the constructed, more complex propositions, to produce even
more complex ones, such as: “if Mary studies hard and Mary understands the material, then
Mary does not fail the course”. Propositional logic allows us to recognise the fact that this
particular proposition states exactly the same thing as the following one: “it is not the case
that: Mary studies hard and Mary understands the material and Mary fails the course”. In
fact, here are two other propositions that also state the same thing:
• “If Mary studies hard, then if Mary fails the course then Mary does not understand the
material”; and
• “Mary does not study hard or Mary does not understand the material or Mary does not
fail the course”.

111
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It is often important to be able to tell whether two propositions express the same thing.
As the propositions get more and more complex, by combining simpler ones using negations,
conjunctions, conditionals and so on, it becomes increasingly difficult to tell whether two
propositions express the same thing. In this chapter we will define precisely what it means for
two propositions to “express the same thing”; we will also learn how to determine if they do.
In addition, we will examine the relationship between propositional logic and mathematical
proofs. Finally, we will explore some important connections of propositional logic to the design
of hardware.

5.2 Formalising propositional reasoning

5.2.1 Propositional formulas

First, we shall define a set of so-called propositional formulas. These are formal expressions
(i.e., strings over some alphabet) each of which is intended to represent a proposition. The
definition is recursive. We start with a set PV of propositional variables. These are
intended to represent the most primitive propositions that are relevant to our purposes. For
instance, in our previous example we might introduce three propositional variables: S for
“Mary studies hard”, U for “Mary understands the material”, and F for “Mary fails the
course”. When we don’t have a specific reason to use propositional variables whose names have
some mnemonic value, we use x, y, z, . . . for propositional variables. The set of propositional
variables may be infinite — e.g., {x0, x1, x2, . . .}.

Definition 5.1 Let PV be a set of propositional variables. The set of propositional for-
mulas (relative to PV ), denoted FPV (or simply F , if PV is clear from the context), is the
smallest set such that:

Basis: Any propositional variable in PV belongs to FPV .

Induction Step: If P1 and P2 belong to FPV then so do the following expressions: ¬P1,
(P1 ∧ P2), (P1 ∨ P2), (P1→P2) and (P1↔P2).

Thus, propositional formulas are strings made up of the following symbols: propositional
variables, left and right parentheses, ¬, ∧, ∨, → and ↔. The last five symbols are called
(Boolean or propositional) connectives. The connective ¬ is a unary connective, because
it is applied to one subformula; the other four are binary connectives, because each of them
is applied to two subformulas. Of course, not every string made up of such symbols is a
propositional formula. For instance, (x¬y) and ((→x) are not propositional formulas. The
strings that are propositional formulas are those that can be constructed by applying the basis
and induction step of Definition 5.1 a finite number of times.

The Boolean connectives correspond to the different constructions of more complex propo-
sitions out of simpler ones described in the previous section. More specifically, the connective
¬ corresponds to negation, ∧ to conjunction, ∨ to disjunction, → to conditional, and ↔ to
biconditional. Informally, if P and P ′ are formulas that represent two particular propositions,
then (P ∧ P ′) is a formula that represents the conjunction of those propositions. Similarly,
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¬P is a formula that represents the negation of the proposition represented by P . Analo-
gous remarks apply to the other Boolean connectives. So, for example, if S, U and F are
propositional variables (and therefore formulas) that represent the propositions “Mary stud-
ies hard”, “Mary understands the material”, and “Mary fails the course”, then (S ∧ U) is a
formula that represents the proposition “Mary studies hard and understands the material”,
and ((S ∧ U)→¬F ) is a formula that represents the proposition “If Mary studies hard and
understands the material, then she does not fail the course”.

As we discussed in Section 4.4, recursively defined objects can be fruitfully viewed as trees.
Thus, we can view each propositional formula as a tree. The subformulas from which the
formula is constructed correspond to the subtrees of the tree. The leaves of the tree correspond
to occurrences of propositional variables, and the internal nodes correspond to the Boolean
connectives. An internal node that corresponds to a binary connective has two children, while
an internal node that corresponds to a unary connective has only one child. Figure 5.1 shows
the tree that corresponds to a propositional formula.

→

¬

↔∧

∨ x ¬ z

x

z

y

Figure 5.1: The parse tree of
((

(y ∨ ¬z) ∧ x
)
→(¬x↔z)

)

5.2.2 The meaning of propositional formulas

It is important to understand the distinction between a propositional formula, which is simply
a syntactic object, and a proposition, which is an actual statement that is true or false. Given
a propositional formula, and no other information at all, it makes no sense to ask whether
the formula is true or false. To answer this question, we must be told whether the pieces
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out of which the formula is constructed represent propositions that are true or false. Since,
ultimately, a formula is made up of propositional variables (combined by connectives), to deter-
mine whether a propositional formula is true or false, we need to be told, for each propositional
variable that appears in the formula, whether it represents a true proposition or a false one.
This leads us to the concept of a truth assignment.

Definition 5.2 Let PV be a set of propositional variables. A truth assignment (to PV )
is a function τ : PV → {0, 1} — i.e., a function that assigns to each propositional variable a
truth value. (We use the binary values 0 and 1 to represent the truth values false and true,
respectively.)

Thus, a truth assignment tells us, for each propositional variable, whether it represents a
proposition that is true or false. Another way of thinking about a truth assignment is that it
describes a possible “state of the world” by asserting what is true and what is false in that
state. This interpretation assumes that the propositional variables capture all the aspects of
the world that we are interested in.

Example 5.1 Consider our example with propositional variables S, U and F . Here the only
aspects of the world that we are interested in are Mary’s study habits, her understanding of the
material and her success in the course. One possible truth assignment, τ1 is τ1(S) = τ1(F ) = 0
and τ1(U) = 1. This describes the state of affairs where Mary doesn’t study hard but somehow
she understands that material and does not fail the course. Another possible truth assignment
is τ2(S) = τ2(F ) = 1, τ2(U) = 0. This describes the state of affairs where Mary studies hard
but nevertheless she does not understand the material and fails the course.

Since we have three propositional variables in this example, there are eight distinct truth
assignments: one for each way of assigning the value true or false to each of the three vari-
ables. You should explicitly write down the remaining six truth assignments in this example,
and interpret the state of affairs that each of them describes as regards Mary’s studying, un-
derstanding the material, and passing the course. End of Example 5.1

A truth assignment τ specifies directly the truth values of the propositional variables. As
we will now show, it can be used to obtain the truth value of any propositional formula. In
mathematical terms, we wish to extend a truth assignment τ , which assigns truth values to the
propositional variables, to a function τ ∗ that assigns truth values to all propositional formulas
that can be built up from the propositional variables. The intention is that τ ∗(P ) is the truth
value of formula P when the truth values of the propositional variables are those specified by
τ . Formally, τ ∗ is defined by structural induction on the form of P (see Definition 5.1).

Definition 5.3 Let τ : PV → {0, 1}. We define a function τ ∗ : FPV → {0, 1} by structural
induction.

Basis: P ∈ PV (i.e., the formula P consists of just a propositional variable). In this case,
τ ∗(P ) = τ(P ).
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Induction Step: P /∈ PV . Then there are Q1, Q2 ∈ FPV such that P is one of the following
formulas: ¬Q1, (Q1 ∧Q2), (Q1 ∨Q2), (Q1→Q2), or (Q1↔Q2). We assume (inductively) that
we have determined τ ∗(Q1) and τ ∗(Q2). In each of these cases, τ ∗(P ) is defined as shown
below:

τ ∗
(
¬Q1

)
=

{
1, if τ ∗(Q1) = 0

0, otherwise

τ ∗
(
(Q1 ∧Q2)

)
=

{
1, if τ ∗(Q1) = τ ∗(Q2) = 1

0, otherwise

τ ∗
(
(Q1 ∨Q2)

)
=

{
0, if τ ∗(Q1) = τ ∗(Q2) = 0

1, otherwise

τ ∗
(
(Q1→Q2)

)
=

{
0, if τ ∗(Q1) = 1 and τ ∗(Q2) = 0

1, otherwise

τ ∗
(
(Q1↔Q2)

)
=

{
1, if τ ∗(Q1) = τ ∗(Q2)

0, otherwise

We refer to τ ∗(P ) as the truth value of formula P under the truth assignment τ . If
τ ∗(P ) = 1, we say that τ satisfies P ; if τ ∗(P ) = 0, we say that τ falsifies P .

The dependence of a formula’s truth value on the truth value(s) of its subformula(s) can
be conveniently summarised in the following table:

Q1 ¬Q1 Q1 Q2 (Q1 ∧Q2) (Q1 ∨Q2) (Q1→Q2) (Q1↔Q2)
0 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

1 0 0 1 0 0
1 1 1 1 1 1

The truth value of P under a truth assignment τ is given in the entry at the intersection of the
column that corresponds to the form of P and the row that corresponds to the truth value(s)
of the constituent part(s) of P under the truth assignment τ . For instance if P is of the form
(Q1→Q2), and the truth values of Q1 and Q2 under τ are 1 and 0 respectively, we look at the
third row of the column labeled (Q1→Q2) and find that the truth value of P under τ is 0.

Example 5.2 Using Definition 5.3, we can calculate the truth value of the formula ((S ∨
U) ∧ ¬F ) under the truth assignment τ1 described in Example 5.5.1. Since τ1(U) = 1, we
have that τ ∗1 (U) = 1 and therefore τ ∗1

(
(S ∨ U)

)
= 1. Similarly, since τ1(F ) = 0, we have that

τ ∗1 (F ) = 0 and therefore τ ∗1 (¬F ) = 1. Finally, since τ ∗1
(
(S ∨ U)

)
= τ ∗(¬F ) = 1, it follows that

τ ∗1
(
((S ∨ U) ∧ ¬F )

)
= 1. Therefore, τ1 satisfies ((S ∨ U) ∧ ¬F ).
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We can also determine the truth value of the same formula under the truth assignment τ2
described in Example 5.5.1: Since τ2(F ) = 1, it follows that τ ∗2 (¬F ) = 0. But then, τ ∗2

(
(P ∧

¬F )
)
= 0, for any formula P . In particular, τ ∗2

(
((S∨U)∧¬F )

)
= 0. End of Example 5.2

5.2.3 Some subtleties in the meaning of logical connectives

According to Definition 5.3, the formula (Q1 ∨ Q2) is true (under τ) provided that at least
one of Q1, Q2 is true. In particular, the formula is true if both Q1 and Q2 are true. This is
sometimes, but not always, consistent with the way in which the word “or” is used in English.
Consider, for example, the assertion that an individual is entitled to Canadian citizenship if
the individual’s father or mother is a Canadian citizen. This is understood as implying that a
person both of whose parents are Canadian is entitled to Canadian citizenship. In this case, the
word “or” is said to be inclusive. On the other hand, if mother tells Jimmy that he may have
cake or ice cream, we would probably consider Jimmy to be in violation of this instruction
if he were to have both. In this case, “or” is said to be exclusive. The definition of truth
value for the symbol ∨ reflects the inclusive interpretation of “or”. There is a different Boolean
connective (discussed later, in Section 5.11) that represents the exclusive meaning of “or”.

The definition of the truth value for conditional formulas, i.e., formulas of the form (Q1→Q2),
also requires some clarification. First, some terminology. The subformula Q1 is called the an-
tecedent, and the subformula Q2 is called the consequent, of the conditional. Some people
find it counterintuitive (or at least not obvious) that a conditional statement is considered to
be true if both the antecedent and the consequent are false. The following example might help
convince you that this way of defining the truth value of conditional statements is sensible.
Suppose M stands for the proposition “the patient takes the medicine”, and F stands for the
proposition “the fever will subside”. Consider now the doctor’s assertion: “if the patient takes
the medicine then the fever will subside” — this is represented by the formula (M→F ). Sup-
pose the patient does not take the medicine and the fever does not subside — this corresponds
to the truth assignment τ , where τ(M) = τ(F ) = 0. Most people would agree that the doctor’s
assertion cannot be viewed as false in this case. Since the assertion is not false, it must be
true. In other words, τ ∗

(
(M→F )

)
= 1.

5.2.4 Unique readability and conventions for omitting parentheses

Our definition of propositional formulas requires that every time we construct a larger formula
by applying a binary connective we enclose the constructed formula inside parentheses. With-
out these parentheses, the manner in which the formula was constructed from other formulas
is not uniquely determined. To see this suppose, for a moment, that we changed Definition 5.1
so that in the induction step we did not require parentheses for the binary connectives. Under
this modified definition the expression x ∧ y ∨ z would be a propositional formula. But is this
the formula obtained by first taking the conjunction of x with y, and then the disjunction of
the resulting formula with z — i.e., the formula written ((x ∧ y) ∨ z) in the original definition
that requires parentheses? Or is it the formula obtained by first taking the disjunction of y
with z and then the conjunction of x with the resulting formula — i.e., the formula written
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(x ∧ (y ∨ z)) in the original definition?
These two formulas are not only different in form — they have different meanings. To

see why, consider the truth assignment in which x and y are false, and z is true. Under this
truth assignment, the first formula is true, but the second formula is false. In other words, the
order of construction of x∧ y ∨ z matters for the meaning of the formula. Without an explicit
indication of which of the two orders is intended, the meaning of the formula is ambiguous. It
is to avoid this sort of ambiguity that we require the parentheses.

The fact that the use of parentheses avoids ambiguous parsing of propositional formulas
can be stated precisely as the following so-called “Unique Readability Theorem”.

Theorem 5.4 (Unique Reabability Theorem) For any propositional formulas P1, P2, Q1,
Q2 and binary connectives ⊕ and ⊖ (i.e., ⊕,⊖ ∈ {∧,∨,→,↔}), if (P1 ⊕ P2) = (Q1 ⊖ Q2)
then P1 = Q1, ⊕ = ⊖ and P2 = Q2.

Intuitively, this says that if there are two ways of constructing a formula, then the pieces
out of which it is constructed are identical — in other words, there is really only one way of
constructing a formula. As we discussed earlier, without the use of parentheses this is not true:
For instance, if P1 = x, ⊕ = ∧, P2 = y ∨ z, Q1 = x∧ y, ⊖ = ∨, P2 = z, it is certainly true that
P1 ⊕ P2 = Q1 ⊖Q2, but it is not true that P1 = Q1, ⊕ = ⊖ and P2 = Q2.

The proof of the Unique Readability Theorem is an interesting application of structural
induction and is left as an exercise (see Exercise 13).

Although the use of parentheses eliminates ambiguity in parsing propositional formulas, it
is true that including all the parentheses required by the definition leads to formulas that are
long and unnecessarily awkward to read. To avoid this problem, we adopt some conventions
regarding the precedence of the connectives that allow us to leave out some of the parentheses
without introducing ambiguities. Here are the conventions that we will use.

(a) We will leave out the outermost pair of parentheses (if one exists). For instance, we can
write x ∧ (y ∨ z) as shorthand for (x ∧ (y ∨ z)). Note that if we want to later use this
formula to construct a larger formula, we have to introduce the parentheses we left out,
since these are no longer the outermost parentheses! For example, if we want to form the
negation of the formula x ∧ (y ∨ z), we have to write ¬(x ∧ (y ∨ z)) — not ¬x ∧ (y ∨ z),
which is a different formula, with a different meaning!

(b) ∧ and ∨ have precedence over→ and↔. Thus, x∧y→ y∨z is short for ((x∧y)→ (y∨z)).

(c) ∧ has precedence over ∨. Thus, x ∧ y ∨ z is short for ((x ∧ y) ∨ z)). Combining with the
previous rule, we have that x ∨ y↔x ∨ y ∧ z is short for ((x ∨ y)↔ (x ∨ (y ∧ z))).

(d) When the same binary connective is used several times in a row, grouping is assumed to
be to the right. Thus, x→ y→ z is short for (x→ (y→ z)).

Note that according to Definition 5.1, no parentheses are used when we apply the ¬ con-
nective. This has the implicit consequence of assigning to this connective higher precedence
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than all the others. For instance, ¬x ∧ y ∨ z is short for ((¬x ∧ y) ∨ z). This is quite different
from the formula ¬(x ∧ y ∨ z), which is short for ¬((x ∧ y) ∨ z).

These conventions are analogous to those used to omit parentheses in arithmetic expressions
without introducing ambiguities: For instance, −3× 5+10÷ 5 is short for (−3× 5)+ (10÷ 5).
Thus, multiplication and division have precedence over addition. Note that the unary − (to
indicate negative numbers) is similar to the ¬ symbol.

5.3 Truth tables

The truth table of a propositional formula P is a convenient representation of the truth value
of P under each possible truth assignment to the propositional variables that appear in P . As
we saw in Definition 5.3, to determine these truth values we must determine the truth values of
the subformulas out of which P is constructed; for this we must, in turn, determine the truth
values of the subformulas’ subformulas — and so on, down to the most primitive subformulas,
i.e., propositional variables, whose truth values are given directly by the truth assignment.

For example, consider the formula x∨ y→¬x∧ z. The truth table of this formula (and its
constituent subformulas) is shown below.

x y z x ∨ y ¬x ¬x ∧ z x ∨ y→¬x ∧ z
0 0 0 0 1 0 1
0 0 1 0 1 1 1
0 1 0 1 1 0 0
0 1 1 1 1 1 1
1 0 0 1 0 0 0
1 0 1 1 0 0 0
1 1 0 1 0 0 0
1 1 1 1 0 0 0

A slightly more succinct way of doing the truth table, that avoids rewriting the subformulas
in separate columns, is to write the truth value of each subformula underneath the last connec-
tive applied in the construction of that subformula, starting from the “innermost” subformulas
and working our way out. For instance, in the example we did above, we would proceed as
follows. First we write all the truth assignments to the propositional variables x, y and z.

x y z x ∨ y → ¬x ∧ z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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The “innermost” subformulas are x∨y and ¬x, so we can calculate their truth tables by writing
their truth values underneath the ∨ and ¬ symbols respectively. When we are done, we have:

x y z x ∨ y → ¬x ∧ z
0 0 0 0 1
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Now that we have computed the truth values of ¬x we can compute the truth values of ¬x∧z,
so we can now fill the column underneath the ∧ connective.

x y z x ∨ y → ¬x ∧ z
0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 1 1 0
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 1 0 0

Finally, having computed the truth values of x∨y and ¬x∧z, we can compute the truth values
of x∨ y→¬x∧ z, we can can now fill the column underneath the→ connective — this column
gives the truth values of the formula we are interested in:

x y z x ∨ y → ¬x ∧ z
0 0 0 0 1 1 0
0 0 1 0 1 1 1
0 1 0 1 0 1 0
0 1 1 1 1 1 1
1 0 0 1 0 0 0
1 0 1 1 0 0 0
1 1 0 1 0 0 0
1 1 1 1 0 0 0

Even so, however, it can be very tedious to write down the truth table of formulas of even
moderate size, because of the number of rows. There has to be one row for each possible truth
assignment, and if there are n propositional variables, then there are 2n truth assignments.
(This is because a truth assignment to n propositional variables can be viewed as a binary
string of length n, and we have already seen that there are 2n such strings.) Thus, the truth
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table of a propositional formula with only five variables has 25 = 32 rows — about a page
long. The truth table of a propositional formula with 10 variables has over 1,000 rows — out
of the question for most people to do manually. The truth table of a propositional formula
with just 30 variables has over 1 billion rows, and this would tax the abilities of even powerful
computers. For small formulas, however (up to five variables or so), truth tables can be very
useful.

5.4 Tautologies and satisfiability

If the truth value of a propositional formula P under truth assignment τ is 1, we say that τ
satisfies P ; otherwise, we say that τ falsifies P .

Definition 5.5 Let P be a propositional formula.
• P is a tautology (or a valid formula) if and only if every truth assignment satisfies P .
• P is satisfiable, if and only if there is a truth assignment that satisfies P .
• P is unsatisfiable (or a contradiction) if and only if it is not satisfiable (i.e., every
truth assignment falsifies P ).

For example, (x ∨ y) ∧ ¬x→ y is a tautology; (x ∨ y)→ x is a satisfiable formula but it is not
a tautology; and x∧¬(x∨ y) is unsatisfiable. These facts can be readily verified by looking at
the truth tables of these formulas.

It is immediate from Definition 5.5 that P is a tautology if and only if ¬P is unsatisfiable.

5.5 Logical implication and logical equivalence

In this section we introduce two extremely important concepts: logical implication and logical
equivalence.

Definition 5.6 A propositional formula P logically implies propositional formula Q if and
only if every truth assignment that satisfies P also satisfies Q.

For example, x∧ y logically implies x; x logically implies x∨ y; x∧ (x→ y) logically implies
y. Each of these logical implications can be verified by looking at the truth tables of the two
formulas involved.

It is important to understand properly the relationship between P →Q and “P logically
implies Q”. The former is a propositional formula. The latter is a statement about two
propositional formulas; it is not a propositional formula. Although P →Q and “P logically
implies Q” are beasts of a different nature, there is a close relationship between the two. The
following theorem states this relationship.

Theorem 5.7 P logically implies Q if and only if P →Q is a tautology.

Proof.
P logically implies Q

if and only if every truth assignment that satisfies P also satisfies Q
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[by the definition of “logically implies”]
if and only if every truth assignment satisfies P →Q

[by the definition of satisfying P →Q]
if and only if P →Q is a tautology

[by the definition of “tautology”]

From the definition of logical implication it follows immediately that a contradiction (an
unsatisfiable formula) P logically implies any formula Q whatsoever! This is because there
is no truth assignment that satisfies P (by definition of contradiction); vacuously, then, any
truth assignment that satisfies P satisfies Q — no matter what Q is. In view of Theorem 5.7,
the same observation can be stated by saying that, if P is a contradiction, then the formula
P →Q is a tautology, regardless of what Q is.

Definition 5.8 A propositional formula P is logically equivalent to propositional formula
Q if and only if P logically implies Q and Q logically implies P .

From this definition we have that P is logically equivalent to Q if and only if, for each truth
assignment τ , the truth value of P under τ is the same as the truth value of Q under τ . Another
way of saying the same thing is that any truth assignment that satisfies P also satisfies Q, and
any truth assignment that falsifies P also falsifies Q.

For example, x ∧ y is logically equivalent to ¬(¬x ∨ ¬y). In English, we can paraphrase
the former as “x and y are both true” and the latter as “it is not the case that either x or y
is false” — and indeed, the two statements say exactly the same thing. The fact that the two
formulas can be rendered in English by two expressions that “say the same thing” is only an
informal justification that they are logically equivalent. After all, how do we know that the
English “translations” of these formulas (especially of the second one) are really accurate? We
can, in any event, verify that the two formulas are equivalent by constructing the truth tables
of the two formulas and discovering that they are identical.

The following three properties of logical equivalence follow immediately from Definition 5.8:

Reflexivity: P is logically equivalent to P .

Symmetry: If P is logically equivalent to Q then Q is logically equivalent to P .

Transitivity: If P is logically equivalent to Q, and Q is logically equivalent to R, then P is
logically equivalent to R.

Remarks similar to those we made regarding the relationship between the formula P →Q
and the assertion that P logically implies Q apply to the relationship between the formula
P ↔Q and the assertion that P is logically equivalent to Q. This can be stated as the following
theorem, whose proof is very similar to the proof of Theorem 5.7, and is left as an exercise.

Theorem 5.9 P is logically equivalent to Q if and only if P ↔Q is a tautology.
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5.6 Some important logical equivalences

There are some logical equivalences that are important enough to have achieved the exalted
status of “laws”! Some of them, and their names, are listed below, where P , Q and R are
arbitrary propositional formulas (“leqv” is short for “is logically equivalent to”):

Law of double negation: ¬¬P leqv P
De Morgan’s laws: ¬(P ∧Q) leqv ¬P ∨ ¬Q

¬(P ∨Q) leqv ¬P ∧ ¬Q
Commutative laws: P ∧Q leqv Q ∧ P

P ∨Q leqv Q ∨ P
Associative laws: P ∧ (Q ∧R) leqv (P ∧Q) ∧R

P ∨ (Q ∨R) leqv (P ∨Q) ∨R
Distributive laws: P ∧ (Q ∨R) leqv (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R) leqv (P ∨Q) ∧ (P ∨R)
Identity laws: P ∧ (Q ∨ ¬Q) leqv P

P ∨ (Q ∧ ¬Q) leqv P
Idempotency laws: P ∧ P leqv P

P ∨ P leqv P
→ law: P →Q leqv ¬P ∨Q
↔ law: P ↔Q leqv P ∧Q ∨ ¬P ∧ ¬Q

Each of these logical equivalences can be readily verified by constructing the truth tables of
the two formulas involved.

In the Identity laws, note that the propositional formula (Q ∨ ¬Q) is a tautology, while
the propositional formula (Q ∧ ¬Q) is a contradiction. Thus, these laws say that a tautology
can be “cancelled” from a conjunction, and that a contradiction can be “cancelled” from a
disjunction.

Suppose we have a formula R and a formula S that appears as part of R. For example, R
might be x ∧ (¬y ∨ ¬z)→w, and S might be (¬y ∨ ¬z):

x ∧
S︷ ︸︸ ︷

(¬y ∨ ¬z) →w︸ ︷︷ ︸
R

By De Morgan’s laws, the formula S ′ = ¬(y ∧ z) is logically equivalent to S. Suppose now we
replace S by S ′ in R, obtaining a new formula R′:

x ∧
S′

︷ ︸︸ ︷
¬(y ∧ z) →w︸ ︷︷ ︸

R′

This formula is logically equivalent to R. We can verify this by truth tables, but we can
also reason in a simpler and more general way: The truth value of a formula under a truth
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assignment τ depends only on the truth values of its subformulas under τ . If S and S ′ are
logically equivalent, they have the same truth value under τ . This means that, replacing S
by S ′ in R will not affect the truth value of the resulting formula R′. In other words, for any
truth assignment τ , the truth value of R under τ is the same as the truth value of R′ under τ ;
i.e., R and R′ are logically equivalent.

Since this argument does not depend on the specific form of R, S and S ′ — but only on the
fact that S is a subformula of R and that S ′ is logically equivalent to S — we can generalise
our observation as the following theorem.

Theorem 5.10 Let R be any propositional formula, S be any subformula of R, S ′ be any
formula that is logically equivalent to S, and R′ be the formula that results from R by replacing
S with S ′. Then R′ is logically equivalent to R.

This theorem, in conjunction with the logical equivalences stated earlier, can be used to
prove that two propositional formulas are logically equivalent without having to go through
truth table constructions. Here is an example. Suppose we want to prove that ¬((x∧ y)→¬z)
is logically equivalent to x ∧ y ∧ z.

We proceed as follows. First, note that (x∧y)→¬z is logically equivalent to ¬(x∧y)∨¬z.
This follows from the the → law, P →Q leqv ¬P ∨ Q, by taking P = (x ∧ y) and Q = ¬z.
By Theorem 5.10, where R = ¬((x ∧ y)→¬z), S = (x ∧ y)→¬z and S ′ = ¬(x ∧ y) ∨ ¬z, it
follows that

¬((x ∧ y)→¬z) leqv ¬(¬(x ∧ y) ∨ ¬z) (5.1)

In addition,

¬(¬(x ∧ y) ∨ ¬z) leqv ¬¬(x ∧ y) ∧ ¬¬z (5.2)

This follows by DeMorgan’s law, ¬(P ∨ Q) leqv (¬P ∧ ¬Q), by taking P = ¬(x ∧ y) and
Q = ¬z. By (5.1), (5.2) and transitivity of logical equivalence,

¬((x ∧ y)→¬z) leqv ¬¬(x ∧ y) ∧ ¬¬z (5.3)

By the law of double negation, ¬¬(x ∧ y) is logically equivalent to x ∧ y, and ¬¬z is logically
equivalent to z. By applying Theorem 5.10 twice (once to replace ¬¬(x ∧ y) by its logically
equivalent x ∧ y, and once again to replace ¬¬z by its logically equivalent z), we get that

¬¬(x ∧ y) ∧ ¬¬z leqv x ∧ y ∧ z (5.4)

By (5.3), (5.4) and transitivity of logical equivalence we get the desired logical equivalence:

¬((x ∧ y)→¬z) leqv x ∧ y ∧ z

We can present this argument in the following more convenient form, where we omit any
reference to applications of Theorem 5.10 and to the transitivity of logical equivalence, and
simply note which law we use in each step:
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¬((x ∧ y)→¬z)
leqv ¬(¬(x ∧ y) ∨ ¬z) [by → law]
leqv ¬¬(x ∧ y) ∧ ¬¬z) [by DeMorgan’s law]
leqv x ∧ y ∧ z [by double negation law (applied twice)]

5.7 Conditional statements

In mathematics and computer science we often encounter conditional statements which assert
that if some hypothesis P holds, then some consequenceQ follows — i.e., statements of the form
P →Q. There are two other conditional statements that are related to P →Q: its converse,
i.e., the statement Q→P ; and its contrapositive, i.e., the statement ¬Q→¬P . Many logical
errors and fallacious arguments have their roots in confusing a conditional, its converse and its
contrapositive. Thus, it is very important to understand the relationship among these three
statements.

A conditional statement is logically equivalent to its contrapositive; i.e., P →Q is logically
equivalent to ¬Q→¬P . A conditional statement is not logically equivalent to its converse;
i.e., in general, P →Q is not logically equivalent to Q→P . You can verify the first of these
assertions by looking at the truth tables of the two statements, or by applying the following
sequence of logical equivalences from Section 5.6:

P →Q
leqv ¬P ∨Q [by → law]
leqv ¬P ∨ ¬¬Q [by double negation law]
leqv ¬¬Q ∨ ¬P [by commutative law]
leqv ¬Q→¬P [by → law]

The fact that P →Q is not, in general, logically equivalent to Q→P can be seen by noting
that a truth assignment that satisfies P and falsifies Q, falsifies P →Q but satisfies Q→P —
thus, in general, there is a truth assignment under which the two formulas do not have the
same truth value.

To see a more concrete example of this point, consider the statement “if the battery is
dead, then the car does not run”. This is a true statement. The converse of this statement is
“if the car does not run, then the battery is dead”. This is a false statement, because there are
other reasons why a car may not run, in addition to having a dead battery — for instance, it
may have run out of gas. The contrapositive of the original statement is “if the car runs, then
the battery is not dead”. This, like the original statement (to which it is logically equivalent),
is a true statement.

5.8 Analysis of three proof techniques

Three types of arguments that appear frequently in mathematics are indirect proofs, proofs
by contradiction, and proofs by cases. You have seen instances of such arguments in other
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mathematics courses in high school and university — and, indeed, in proofs we have done
earlier in this course. The reasoning that underlies each of these proof techniques is a logical
equivalence in propositional logic. It may be illuminating to reexamine these proof techniques
in more abstract terms now that we understand the concept of logical equivalence.

5.8.1 Indirect proof (or proof by contrapositive)

Many of the statements we wish to prove are conditionals. In general, we have to show that
if a certain hypothesis H holds, then a certain conclusion C follows. Symbolically, we have
to show that the statement H→C holds. In an indirect proof, we do so by proving that if
the conclusion C does not hold, then the hypothesis H is false. Symbolically, we prove that
the statement ¬C→¬H holds. In other words, instead of proving the desired conditional
statement, we prove its contrapositive. This is legitimate because the two statements, H→C
and ¬C→¬H, are logically equivalent. They express exactly the same thing, and thus a proof
of one constitutes a proof of the other.

An example of an indirect proof follows.

Theorem 5.11 For any natural number n, if n2 is even then n is even.

Proof. We prove the contrapositive, i.e., if n is not even, then n2 is not even.
Suppose that n is not even. Hence, n is odd, and we have that n = 2k+1, where k is some

natural number. Hence, n2 = (2k+1)2 = 2(2k2+2k)+ 1, which is an odd number. Therefore,
n2 is not even.

It is very important to understand that in an indirect proof of we prove the contrapositive of
the desired (conditional) statement, not its converse. A proof of the converse of a conditional
statement does not constitute a proof of that conditional statement. This is because, as we
saw earlier, a conditional and its converse are not logically equivalent.

This point is perhaps obscured in the preceding example because the converse of Theo-
rem 5.11 happens to be true as well. But consider the following example:

Theorem 5.12 For any natural number n, if n2 mod 16 = 1 then n is odd.

Proof. We prove the contrapositive, i.e., if n is not odd, then n2 mod 16 6= 1.
Suppose that n is not odd. Hence, n is even and so there is some k ∈ N so that n = 2k.

Therefore, n2 = 4k2. By the definition of the mod and div functions (see page 28),

4k2 = n2 = 16(n2 div 16) + (n2 mod 16)

and thus

n2 mod 16 = 4k2 − 16(n2 div 16) = 4
(
k2 − 4(n2 div 16)

)

This means that n2 mod 16 is a multiple of 4, and so it cannot be equal to 1.
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Notice that the converse of Theorem 5.12 is not true: The converse asserts that if n is odd
then n2 mod 16 = 1. It is easy to see that n = 3 is a counterexample to this assertion. Here
it is perfectly clear that the proof of the contrapositive is not proof of the converse — since,
in this case, the converse is not true!

5.8.2 Proof by contradiction

In this type of proof we are asked to show that some proposition P holds. Instead, we assume
that P is false and derive a contradiction. From this we can conclude that the proposition P
must be true. In other words, instead of proving P we prove that a statement of the form
¬P → (Q ∧ ¬Q) holds. (Note that Q ∧ ¬Q is a contradiction.) This is legitimate because P
is logically equivalent to ¬P → (Q ∧ ¬Q), and thus a proof of the latter constitutes a proof of
the former.

We can show this logical equivalence as follows:

¬P → (Q ∧ ¬Q)
leqv ¬¬P ∨ (Q ∧ ¬Q) [by → law]
leqv P ∨ (Q ∧ ¬Q) [by double negation law]
leqv P [by Identity law]

A beautiful and very famous example of proof by contradiction follows. Recall that a
rational number is one that can be expressed as a ratio of two integers, and an irrational
number is one that is not rational.

Theorem 5.13
√
2 is an irrational number.

Proof. Suppose, for contradiction, that
√
2 is a rational number. Thus, for two integers m

and n,
√
2 = m/n. Without loss of generality, we may assume that m and n have no common

prime factors — i.e., the fraction m/n is irreducible. (The reason why we may assume this
is that, if m and n had a common prime factor, and their highest common factor was h, we
could replace m and n by m′ = m/h and n′ = n/h to get two numbers m′ and n′ whose ratio
is
√
2 and which have no common factors.)

Since
√
2 = m/n, we have that 2 = m2/n2 and hence m2 = 2n2. This means that m2

is even and, by Theorem 5.11, m is even. Thus, for some integer k, m = 2k, and therefore
m2 = 4k2. Since m2 = 2n2, we get 4k2 = 2n2, and hence n2 = 2k2. This means that n2 is
even and, by Theorem 5.11, n is even. But since both m and n are even, they have a common
prime factor, namely 2. This contradicts the fact that m and n have no common factors.

Since we arrived at a contradiction, our original hypothesis that
√
2 is rational must be

false. Thus,
√
2 is irrational.
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5.8.3 Proof by cases

Sometimes when we want to prove that a statement P holds, it is convenient to consider two
cases that cover all possibilities — that Q holds (for some proposition Q) and that Q does
not hold — and prove that in each case P holds. In other words, instead of proving P , we
prove a statement of the form (Q→P ) ∧ (¬Q→P ). This is a legitimate proof of the original
statement P because (Q→P ) ∧ (¬Q→P ) is logically equivalent to P . Thus, a proof of the
former constitutes a proof of the latter.

We can show that P is logically equivalent to (Q→P ) ∧ (¬Q→P ) as follows:

(Q→P ) ∧ (¬Q→P )
leqv (¬Q ∨ P ) ∧ (¬¬Q ∨ P ) [by → law (applied twice)]
leqv (¬Q ∨ P ) ∧ (Q ∨ P ) [by double negation law]
leqv (P ∨ ¬Q) ∧ (P ∨Q) [by commutative law (applied twice)]
leqv P ∨ (¬Q ∧Q) [by distributive law]
leqv P ∨ (Q ∧ ¬Q) [by commutative law]
leqv P [by Identity law]

Following is an example of a proof by cases.

Theorem 5.14 For any natural number n, ⌊(n+ 1)/2⌋ = ⌈n/2⌉.

Proof. There are two cases.

Case 1. n is odd. Then n = 2k + 1, for some natural number k. We have,

⌊(n+ 1)/2⌋ = ⌊(2k + 2)/2⌋ = ⌊k + 1⌋ = k + 1

and

⌈n/2⌉ = ⌈(2k + 1)/2⌉ = ⌈k +
1

2
⌉ = k + 1.

Thus, in this case ⌊(n+ 1)/2⌋ = ⌈n/2⌉, as wanted.

Case 2. n is not odd. Then n is even, and hence n = 2k, for some natural number k. We
have,

⌊(n+ 1)/2⌋ = ⌊(2k + 1)/2⌋ = ⌊k +
1

2
⌋ = k

and

⌈n/2⌉ = ⌈2k/2⌉ = ⌈k⌉ = k.

Thus, in this case ⌊(n+ 1)/2⌋ = ⌈n/2⌉, as wanted.
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We can generalise the technique of proof by cases. Instead of considering only two cases
— those determined by a proposition Q and its negation ¬Q — we can instead consider an
arbitrary number of cases, determined by the propositions Q1, Q2, . . . , Qn−1, and the negation
of their disjunction ¬(Q1 ∨Q2 ∨ . . . ∨Qn−1). More specifically, to prove that the statement P
holds, we prove that P holds if Q1 is the case, that P holds if Q2 is the case, . . ., that P holds
if Qn−1 is the case, as well as that P holds if “none of the above” is the case — i.e., that P
holds if ¬(Q1 ∨Q2 ∨ . . .∨Qn−1). This is a legitimate way to prove P , because it can be shown
that the formula

(Q1→P ) ∧ (Q2→P ) ∧ . . . ∧ (Qn−1→P ) ∧ (¬(Q1 ∨Q2 ∨ . . . ∨Qn−1)→P )

is logically equivalent to P . (Prove this fact by induction on n ≥ 1.)

5.9 Normal forms for propositional formulas

In this section we introduce two normal forms for propositional formulas. A normal form is
a set of propositional formulas that are syntactically restricted in some way but, despite the
syntactic restrictions, they can “represent” all propositional formulas. More precisely, for each
propositional formula P , there is some formula P̂ that has the required syntactic form and is
logically equivalent to P . First we need some terminology.

Definition 5.15 We define various restricted types of propositional formulas.
• A literal is a propositional formula that consists only of a propositional variable or the
negation of a propositional variable.
• A minterm (or simply term) is a formula that is a literal, or a conjunction of two or
more literals.
• A maxterm (or clause) is a formula that is literal, or a disjunction of two or more
literals.
• A propositional formula is in disjunctive normal form (DNF) if it is minterm, or a
disjunction of two or more minterms.
• A propositional formula is in conjunctive normal form (CNF) if it is a maxterm, or
a conjunction of two or more maxterms.

Example 5.3 The formulas x, ¬x, y, ¬y are literals; the formulas ¬¬x, x ∧ y, ¬(x ∧ y),
x ∧ ¬y are not literals.

The formula x∧¬y∧¬z ∧w is a minterm, and x∨¬y∨¬z ∨w is a maxterm. The formula
x ∧ ¬y ∨ ¬z ∧ w is neither a minterm nor a maxterm. The formulas x and ¬y are both a
minterm and a maxterm.

The formula (x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬r) ∨ ¬z is in DNF, but is not in CNF. The formula
(x∨y∨¬z)∧(¬x∨¬r)∧¬z is in CNF, but it is not in DNF. The formulas (x∧y∧¬z)→ (x∧y)
and ((x ∨ y) ∧ ¬z) ∨ (x ∧ z) are neither in DNF nor in CNF. The formulas x ∧ ¬y ∧ ¬z and

¬x ∨ ¬y ∨ ¬z are both in DNF and in CNF. End of Example 5.3
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Notice that being in DNF or CNF is a syntactic property of a formula — it has to do with
the particular format of the formula, not with what the formula says. In fact, every formula
can be rewritten, equivalently, in each of these forms. More precisely, given any propositional
formula P , there is a DNF formula PD that is logically equivalent to P , and an CNF formula
PC that is logically equivalent to P . Hence, whenever we are dealing with a propositional
formula, it is always possible to replace it by one that says exactly the same thing (i.e., is
logically equivalent to it), and has the special form required by DNF or CNF. Being able to
focus only on formulas with this special format is useful for a variety of reasons. We will see
some applications in Sections 5.10 and 5.11.

5.9.1 DNF formulas

Let us first examine, by means of an example, how we can find a DNF formula that is logically
equivalent to a given one. Say that the given formula is P = x ∨ y→¬x ∧ z. Following is the
truth table of P .

x y z x ∨ y→¬x ∧ z
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Viewed in this manner we can think of P as asserting that it is a formula satisfied by exactly
three truth assignments to x, y and z — the ones that correspond to rows 1, 2 and 4 in the
truth table above. Thus P is logically equivalent to a formula that asserts:

I am satisfied by the truth assignment in row 1,
or I am satisfied by the truth assignment in row 2,
or I am satisfied by the truth assignment in row 4.

The truth assignment in row 1 makes all of x, y and z false; so the propositional formula
¬x∧¬y∧¬z is satisfied by this truth assignment and by no other truth assignment. Similarly,
the truth assignment in row 2 makes x, y false, and z true; so the propositional formula
¬x∧¬y∧z is satisfied by this truth assignment and by no other. Finally, the truth assignment
in row 4 makes x false, and y, z true; so the propositional formula ¬x ∧ y ∧ z is satisfied by
this truth assignment and by no other. Note that each of these formulas is a conjunction of
literals — i.e., a minterm. A formula that is satisfied by one of these three truth assignments
and by no other truth assignment is the disjunction of the three formulas that correspond to
the three truth assignments:

(¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ z)
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Note that this is a disjunction of minterms, i.e., a DNF formula. Since, by construction, this
formula is satisfied by precisely the same truth assignments as P , it is a DNF formula that is
logically equivalent to P .

We can generalise from this example to arrive at the following theorem.

Theorem 5.16 For every propositional formula P , there is a propositional formula P̂ in DNF
that is logically equivalent to P .

Proof. (This is an example or proof by cases.) There are two cases to consider:

Case 1. No truth assignment satisfies P : Then let P̂ = x1∧¬x1. Clearly P̂ is in DNF and it
is easy to verify that all truth assignments falsify P̂ , so that P and P̂ are logically equivalent,
as wanted.

Case 2. At least one truth assignment satisfies P : Let τ1, τ2, . . . , τk be all the truth assign-
ments to the propositional variables x1, x2, . . . , xn of P that satisfy P .

For any truth assignment τ to the propositional variables x1, x2, . . . , xn, let Cτ be the
formula

Cτ = ℓ1 ∧ ℓ2 ∧ . . . ∧ ℓn

where each ℓi, 1 ≤ i ≤ n, is the literal defined as follows:

ℓi =

{
xi, if τ(xi) = 1
¬xi, if τ(xi) = 0

Note that Cτ , being a conjunction of literals, is a minterm. It is straightforward to see that

Cτ is satisfied by τ and only by τ (∗)

Let P̂ = Cτ1 ∨Cτ2 ∨ . . .∨Cτk . P̂ is in DNF, because every Cτi is a minterm. (Note that, by

the assumption of Case 2, we know that k ≥ 1, so that P̂ is really a formula!) It remains to
show that P and P̂ are logically equivalent. That is, that any truth assignment that satisfies
P must also satisfy P̂ and, conversely, any truth assignment that satisfies P̂ must also satisfy
P . These two facts are shown in the next two paragraphs.

Let τ be any truth assignment τ that satisfies P . Therefore, τ must be one of τ1, τ2, . . . , τk.
By (∗), τ satisfies Cτ . Since P̂ is a disjunction of minterms one of which (namely Cτ ) is satisfied
by τ , it follows that P̂ is satisfied by τ .

Conversely, let τ be any truth assignment that satisfies P̂ . Since P̂ is the disjunction of
Cτ1 , Cτ2 , . . . , Cτk , τ must satisfy at least one of these formulas. Say it satisfies Cτi , where
1 ≤ i ≤ k. By (∗), the only truth assignment that satisfies Cτi is τi. Therefore, τ = τi. But,
by definition, each of τ1, τ2, . . . , τk satisfies P . Thus, τ satisfies P .
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5.9.2 CNF formulas

Now suppose we wanted to find a CNF (rather than a DNF) formula equivalent to the formula
P = x∨y→¬x∧z. Consider its truth table, which was given earlier. We arrived at a logically
equivalent DNF formula, by thinking of P as asserting that it is satisfied by exactly three
truth assignments. Now, we will arrive at a logically equivalent CNF formula, by thinking of
P , instead, as asserting that it is falsified — i.e., it is not satisfied — by exactly five truth
assignments — those corresponding to rows 3, 5, 6, 7 and 8 in its truth table. This is a formula
that is falsified by exactly the same truth assignments that falsify P , and hence it is logically
equivalent to P . The formula we have in mind will say, effectively,

I am not satisfied by the truth assignment in row 3,
and I am not satisfied by the truth assignment in row 5,
and I am not satisfied by the truth assignment in row 6,
and I am not satisfied by the truth assignment in row 7,
and I am not satisfied by the truth assignment in row 8.

We have already seen that the propositional formula ¬x ∧ y ∧ ¬z says “I am satisfied by the
truth assignment in row 3”. The negation of this, ¬(¬x∧ y ∧¬z), says, “I am not satisfied by
the truth assignment in row 3”. By applying DeMorgan’s law, and the law of double negation,
we can see that the above formula is logically equivalent to x ∨ ¬y ∨ z. This formula is a
maxterm (a disjunction of literals), that says “I am not satisfied by the truth assignment in
row 3”. We can obtain, in a similar fashion, a maxterm that says “I am not satisfied by the
truth assignment in row . . .”, for each of the remaining rows (5, 6, 7 and 8). By taking the
conjunction of these maxterms we get a CNF formula,

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

which says “I am not satisfied by any of the truth assignments is row 3, 5, 6, 7 or 8”. As we
argued earlier, this is logically equivalent to P .

We can generalise from this example to arrive at the following theorem.

Theorem 5.17 For every propositional formula P , there is a propositional formula P̂ in CNF
that is logically equivalent to P .

The proof of this theorem is analogous to the proof of Theorem 5.16 (with the modifications
suggested by the preceding example), and is left as an exercise.

5.10 Boolean functions and the design of digital circuits

A Boolean function of n inputs (or arguments) x1, x2, . . . , xn is a function f : {0, 1}n →
{0, 1} — i.e., a formula that takes n binary values as input and produces one binary value as
output. Here are some examples of Boolean functions of three inputs x, y and z: Majority(x, y, z)
is a Boolean function whose output is the majority value among its inputs. Agreement(x, y, z)
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is a Boolean function whose output is 1 if all three inputs are identical (all 0 or all 1), and 0
otherwise. Parity(x, y, z) outputs the parity of its three input bits. That is,

Parity(x, y, z) =

{
0 if the number of inputs that are 1 is even
1 otherwise

Definition 5.18 A propositional formula P with propositional variables x1, x2, . . . , xn repre-
sents a Boolean function f of n arguments x1, x2, . . . , xn, if and only if for any truth assignment
τ , τ satisfies P when f(τ(x1), . . . , τ(xn)) = 1 and τ falsifies P when f(τ(x1), . . . , τ(xn)) = 0.

For example, the propositional formula (x↔ y) ∧ (y↔ z) represents the Boolean function
Agreement(x, y, z) defined above. The same function is also represented by any propositional
formula that is logically equivalent to the above, such as, (x ∧ y ∧ z) ∨ ¬(x ∨ y ∨ z).

In fact, any Boolean function is represented by some propositional formula. To see this,
note that a Boolean function f of n inputs can be viewed as a truth table with n+ 1 columns
(one for each input xi, and one for the output f(x1, . . . , xn), and 2n rows (one for each possible
assignment of binary values to x1, x2, . . . , xn). In the first n columns of the each row we write
some combination of values for the inputs x1, x2, . . . , xn, respectively, and in the (n + 1)st
column we write the value of f(x1, . . . , xn) for the specified input values.

For example, the Boolean function Majority(x, y, z) can be written, in truth-table form, as
follows:

x y z Majority(x, y, z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

We just learned how to write down a DNF (or CNF) propositional formula whose truth table
is identical to a given truth table. For instance, the Majority(x, y, z) function is represented
by the following DNF formula

P1 = (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z) ∨ (x ∧ y ∧ z)

as well as by the following CNF formula

P2 = (x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z).

Thus, a general procedure for obtaining a propositional formula that represents a given Boolean
function is:

1. Write down the Boolean function in truth-table form.
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2. Write a CNF (or DNF) formula for that truth table.

There are many different formulas that represent a given Boolean function, and some of
them are not in DNF or CNF. For instance, in addition to P1 and P2, the Majority function,
is also represented by the following two propositional formulas, neither of which is in DNF or
CNF:

P3 = (¬x→ (y ∧ z)) ∧ (x→ (y ∨ z)) and P4 = (¬x ∧ (y ∧ z)) ∨ (x ∧ (y ∨ z)).

From the definitions of logical equivalence and of what it means for a formula to represent
a Boolean function, we can immediately conclude:

Theorem 5.19 Let P be a propositional formula that represents a Boolean function f . A
propositional formula Q also represents f if and only if Q is logically equivalent to P .

We have just shown that every Boolean function can be represented by a DNF or CNF
propositional formula. Since DNF and CNF formulas only contain the connectives ¬, ∧ and
∨ we have the following:

Theorem 5.20 For each Boolean function f there is a propositional formula that represents
f and uses only connectives in {¬,∧,∨}.

This simple and somewhat arcane fact is actually the basis of digital circuit design — an
extremely practical matter!

In digital circuit design, we are given a functional specification of a desired circuit,
and we are required to construct a hardware implementation of that circuit. We now
explain what we mean by “functional specification” and by “hardware implementation”. A
specification of a digital circuit consists of three things: (a) the number n of binary inputs to
the circuit, (b) the number m of binary output from the circuit, and (c) a description of what
the circuit does — i.e., what the outputs must be for each setting of the inputs. Part (c) of
the specification can be given as a collection of m Boolean functions, telling us how each of
the output bits depends on the input bits.

The required hardware implementation of the circuit consists of electronic devices called
logical gates. The inputs to these devices are wires whose voltage level represents a binary
value: voltage above a certain threshold represents the value 1 (true), while voltage below that
threshold represents the value 0 (false). Each logical gate is capable of performing a logical
operation on its input wire(s). An inverter, implements the ¬ operation. It has a single
wire as input, and its output is 1 (i.e., high voltage on the output wire) if its input is 0 (i.e.,
low voltage on the input wire); the output of the inverter is 0 if its input is 1. Similarly, an
and gate implements the ∧ operation. This gate has two wires as input, and its output is
1 if both its inputs are 1; otherwise, its output is 0. Finally, an or gate implements the ∨
operation. This gate also has two wires as input; its output is 1 if at least 1 of its inputs are
1; otherwise, its output is 0. These three logical gates have a diagrammatic representation,
shown in Figure 5.2.
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¬xx

x

x

y

y

x ∧ y

x ∨ y or-gate

and-gate

Inverter

Figure 5.2: Diagrammatic representation of logical gates

By hooking up logical gates together appropriately, we can “implement” any propositional
formula that contains only the connectives ¬, ∧ and ∨. For example, the diagram in Figure 5.3
shows how to connect gates together in order to create a circuit that implements formula P4.
Since P4 represents the Boolean function Majority(x, y, z), the circuit shown diagrammatically
in Figure 5.3 is a hardware implementation of the Majority function. As we can see, this circuit
has three inputs, labeled x, y and z, and produces as its output the function Majority(x, y, z).

x

y

z

Majority(x, y, z)

Figure 5.3: A circuit that computes Majority(x, y, z)

The overall process of designing a digital circuit from a functional specification then, consists
of the following steps:

1. Convert the specification of the circuit (i.e., a given Boolean function) into a propositional
formula that represents that function and uses only ¬, ∧ and ∨ connectives.

2. Convert the propositional formula into a circuit.

The process of constructing a circuit for a formula is an inductive one. We (recursively)
construct circuits for the subformulas that make up the formula, and then connect these
together by the appropriate gate. In the example shown in Figure 5.3 every gate has only
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one outgoing wire (the “fan-out” of each gate is one). This need not be the case, in general.
If the same subformula appears several times in a formula, we need only compute its value
once, and use multiple output wires to carry the computed value to all the gates at which it is
needed. This is illustrated in Figure 5.4, which shows a circuit for the formula ((w∧x)∨¬y)∨
(((w ∧ x) ∧ z) ∧ ¬y). Note that the subformula (w ∧ x) appears twice, and so there are two
wires carrying the output of the gate that computes this value. The same observation applies
regarding the subformula ¬y.

y

x

w

z

Figure 5.4: A circuit that reuses the outputs of common subexpressions

5.11 Complete sets of connectives

From Theorem 5.20 we know that any Boolean function can be represented by a formula that
contains only the connectives ¬, ∧ and ∨. Thus, in a sense, the other connectives, → and ↔
are redundant. We can leave them out without loss of expressive power. Whenever we have
to use → or ↔ we can “paraphrase” it by using the other connectives instead. In particular,
we can express P →Q as ¬P ∨Q; and we can express P ↔Q as (P ∧Q) ∨ (¬P ∧ ¬Q) (recall
the → and ↔ laws from Section 5.6). The idea that some set of connectives is sufficient to
represent all others leads us to the notion of a “complete” set of connectives.

Definition 5.21 A set of connectives is complete if and only if every Boolean function can
be represented by a propositional formula that uses only connectives from that set.

In view of this definition, Theorem 5.20 can be stated as follows:

Theorem 5.22 {¬,∧,∨} is a complete set of connectives.

In fact, an even stronger result holds:

Theorem 5.23 {¬,∧} is a complete set of connectives.

The intuition as to why this theorem is true is as follows. First, we know from Theorem 5.22
that any Boolean function f can be represented by a propositional formula Pf that uses only
connectives in {¬,∧,∨}. Next, we observe that by DeMorgan’s law and the law of double
negation, (P ∨Q) is logically equivalent to ¬(¬P ∧ ¬Q). Thus, we can systematically replace
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each ∨ connective in Pf by ¬ and ∧ connectives, while preserving logical equivalence. The
end result of this process will be a formula that represents f (since it is logically equivalent
to Pf — cf. Theorem 5.19) and uses only connectives in {¬,∧}. The proof below makes
this informal argument more rigorous. Notice how induction makes precise the process of
“systematically replacing” all ∨ by ¬ and ∧, and how the proof immediately suggests a simple
recursive algorithm to carry out this systematic replacement.

Proof of Theorem 5.23. We define the set G of propositional formulas that use only
connectives in {¬,∧,∨}, and the set G ′ of propositional formulas that use only connectives in
{¬,∧}. G is the smallest set that satisfies the following properties:

Basis: Any propositional variable is in G.
Induction Step: If P1 and P2 are in G, then so are ¬P1, (P1 ∧ P2) and (P1 ∨ P2).

G ′ is defined similarly, except that the induction step allows only for the first two constructions
(i.e., ¬P1 and (P1 ∧ P2), but not for (P1 ∨ P2)).

Let S(P ) be the following predicate about propositional formulas:

S(P ) : there is a propositional formula P̂ ∈ G ′ that is logically equivalent to P

We will use structural induction to prove that S(P ) holds for every formula P ∈ G.
Basis: P is a propositional variable. By the basis of the definition of G ′, P ∈ G ′. Since P is
logically equivalent to itself, it follows that by taking P̂ = P , S(P ) holds, in this case.

Induction Step: Let P1 and P2 be formulas in G such that S(P1) and S(P2) hold. That is,
there are formulas P̂1 and P̂2 in G ′ that are logically equivalent to P1 and P2, respectively. We
must show that S(P ) holds for each of the ways in which a formula P in G may be constructed
out of P1 and P2. From the induction step of the definition of G, there are three ways in which
P can be constructed from P1 and P2.

Case 1. P is of the form ¬P1. Let P̂ = ¬P̂1. Since P̂1 is logically equivalent to P1 (by
induction hypothesis), ¬P̂1 is logically equivalent to ¬P1. Thus, P̂ is logically equivalent to
P . Furthermore, since P̂1 is in G ′ (also by induction hypothesis), it follows (by the induction
step of the definition of G ′) that ¬P̂1, i.e., P̂ , is in G ′ as well. Therefore, P̂ has the desired
properties and so S(P ) holds, in this case.

Case 2. P is of the form (P1∧P2). Let P̂ = (P̂1∧P̂2). Since P̂1 and P̂2 are logically equivalent
to P1 and P2, respectively (by induction hypothesis), (P̂1∧P̂2) is logically equivalent to (P1∧P2).
Thus, P̂ is logically equivalent to P . Furthermore, since P̂1 and P̂2 are in G ′ (also by induction
hypothesis), it follows that (P̂1 ∧ P̂2), i.e., P̂ , is in G ′ as well. Therefore, P̂ has the desired
properties and so S(P ) holds, in this case.

Case 3. P is of the form (P1 ∨ P2). Let P̂ = ¬(¬P̂1 ∧ ¬P̂2). By DeMorgan’s law and the
law of double negation, ¬(¬P̂1 ∧¬P̂2) is logically equivalent to (P̂1 ∨ P̂2). Since P̂1 and P̂2 are
logically equivalent to P1 and P2, respectively (by induction hypothesis), (P̂1 ∨ P̂2) is logically
equivalent to (P1 ∨ P2). Thus, P̂ is logically equivalent to P . Furthermore, since P̂1 and P̂2
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are in G ′ (also by induction hypothesis), it follows that ¬(¬P̂1 ∧ ¬P̂2), i.e., P̂ , in in G ′ as well.
Therefore, P̂ has the desired properties and so S(P ) holds, in this case.

We have thus shown that for every propositional formula that uses only connectives in
{¬,∧,∨}, there is a logically equivalent formula that uses only connectives in {¬,∧}. From
this, and the fact that {¬,∧,∨} is complete, it follows that {¬,∧} is complete as well.

By a similar proof (left as an exercise), it can be shown that:

Theorem 5.24 {¬,∨} is a complete set of connectives.

Theorems 5.23 and 5.24 suggest that we can get away with surprisingly few connectives:
We only need ¬ and only one of ∧ or ∨. Are there other small sets of connectives that are
complete? It is not difficult to show, using similar techniques, that {¬,→} is also complete.
(Prove this!) On the other hand, it turns out that {∧,∨} is not a complete set of connectives.
To prove this, we need to show that there is some Boolean function that cannot be represented
using only ∧ and ∨. Equivalently, we need to show that there is some propositional formula P
(involving any connectives we like) for which there is no logically equivalent formula that uses
only ∧ and ∨.

Theorem 5.25 {∧,∨} is not a complete set of connectives.

The intuition as to why this theorem is true is as follows. Consider the truth assign-
ment that satisfies all propositional variables. The conjunction of true propositions is a true
proposition, and the disjunction of true propositions is also a true proposition. Therefore, any
formula that is constructed using only conjunctions and disjunctions will be satisfied by this
truth assignment. We know, however, that there are formulas that are not satisfied by the
truth assignment that satisfies all propositional variables: for example, the negation of a propo-
sitional variable such as ¬x; or, more dramatically, any unsatisfiable formula such as x ∧ ¬x.
Therefore a formula such as ¬x cannot be equivalent to any formula that is constructed using
only conjunctions and disjunctions, since their truth values will differ in at least one truth
assignment (namely the one that satisfies all propositional variables). This intuition is made
more precise in the proof below.

Proof of Theorem 5.25. Fix the set of propositional variables. We define, inductively,
the set H of propositional formulas with these propositional variables that use only connectives
in {∧,∨}. H is the smallest set so that:

Basis: Every propositional variable is in H.
Induction Step: If P1 and P2 are in H, then so are (P1 ∧ P2) and (P1 ∨ P2).

Let τ be the truth assignment that makes every propositional variable true. That is, τ(x) = 1
for every propositional variable x. Let S(P ) be the following predicate about propositional
formulas:

S(P ) : τ satisfies P

We will use structural induction to prove that S(P ) holds for every P ∈ H.
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Basis: P is a propositional variable. Obviously, τ satisfies P . So S(P ) holds in this case.

Induction Step: Assume that P1 and P2 are formulas in H such that S(P1) and S(P2) hold;
i.e., τ satisfies both P1 and P2. We must show that S(P ) holds for each of the ways in which a
formula P in H may be constructed out of P1 and P2. From the induction step of the definition
of H, there are two ways in which P can be constructed from P1 and P2.

Case 1. P is of the form (P1 ∧ P2). Since τ satisfies P1 and P2 (by induction hypothesis), τ
satisfies (P1 ∧ P2), i.e., it satisfies P . So S(P ) holds in this case.

Case 2. P is of the form (P1 ∨ P2). Since τ satisfies P1 and P2 (by induction hypothesis), τ
satisfies (P1 ∨ P2), i.e., it satisfies P . So, S(P ) holds in this case.

We have therefore shown that no formula in H is falsified by τ . Now consider the formula
¬x, where x is any propositional variable. This formula is falsified by τ . Since every formula
in H is satisfied by τ and ¬x is falsified by τ , it follows that no formula in H (i.e., no formula
that uses only connectives in {∧,∨}) can be logically equivalent to ¬x. Hence, {∧,∨} is not a
complete set of connectives.

We now introduce a new propositional connective, denoted | , known as nand or, more
classically, Sheffer’s stroke. This is a binary connective, so if P and Q are propositional
formulas we also define (P |Q) to be a propositional formula. Informally, this is intended to
say that P and Q are not both true. More precisely, the table below gives the truth value of
(P |Q) under a truth assignment τ , given the truth values of P and Q under τ .

P Q (P |Q)
0 0 1
0 1 1
1 0 1
1 1 0

This is a very interesting connective because, as it turns out, it is complete all by itself!

Theorem 5.26 { | } is a complete set of connectives.

We sketch the basic idea of the proof for this theorem. By Theorem 5.23, it is enough to
show that for any formula that uses only connectives in {¬,∧} there is an equivalent one that
uses only | . Informally, it is enough to express ¬P and (P ∧ Q) using only | . But this is
possible since (as it can be readily verified) ¬P is logically equivalent to (P |P ), and (P ∧Q) is
logically equivalent to (P |Q) | (P |Q). You are encouraged to produce a more rigorous proof
of Theorem 5.26 along the lines of the proof of Theorem 5.23, where the key ideas for the
induction step are embodied in the two equivalences above.

Theorem 5.26 has interesting practical implications. It turns out that it is easy to construct
a logical gate that implements the nand operation. This theorem then implies that we can
implement any Boolean function with circuits that only have that one kind of gate. We can
do away with ¬, ∧ and ∨ gates and only manufacture | gates.
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For reasons that have to do with electronics, not mathematics, it turns out that some logical
operations (such as | , ¬, ∧ and ∨) can be easily implemented directly, while others (such as→
and↔) are not so easy to implement directly. It takes about three times more microelectronic
components out of which gates are made (transistors, diodes etc) to make a → or ↔ gate,
than to make a | , or ∨ gate. Of course, we can implement these other operations indirectly,
by simple circuits of the easy-to-implement operations.

Another binary propositional connective is ↓, known as nor. Informally, P ↓ Q is intended
to say that P and Q are both false (i.e., that neither is true). The table below gives the truth
value of (P ↓ Q).

P Q (P ↓ Q)
0 0 1
0 1 0
1 0 0
1 1 0

Like | , this connective is also complete (see Exercise 8).
Another binary propositional connective is ⊕, called exclusive or. (P ⊕Q) is intended to

mean that exactly one of P and Q is true. Unlike ∨ (which is sometimes called the inclusive
or, to underscore the difference) the exclusive or of two formulas is false if both formulas are
true. The table below gives the truth value of (P ⊕Q).

P Q (P ⊕Q)
0 0 0
0 1 1
1 0 1
1 1 0

Exercises 9-11 give some additional examples of complete and incomplete sets of connectives
involving ⊕.
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Exercises

1. Does the associativity law apply for the connectives → and ↔? That is, are the formu-
las ((P →Q)→R) and (P → (Q→R)) logically equivalent (where P , Q and R are arbitrary
propositional formulas)? How about the formulas ((P ↔Q)↔R) and (P ↔ (Q↔R))?

2. Suppose P and Q are two unsatisfiable propositional formulas, and R is a tautology. For
each of the statements below, determine whether it is true or false, and justify your answer.

(a) P ↔Q is a tautology.

(b) P logically implies R.

(c) R logically implies P .

(d) P ↔R is unsatisfiable.

3. Using only logical equivalences from Section 5.6 (and, in particular, using no truth tables),
prove that

(a) (x↔¬y)→ z is logically equivalent to (x ∧ y) ∨ (¬x ∧ ¬y) ∨ z.

(b) (x↔¬y)→¬(x→y) is logically equivalent to y→x.

(c) x ∧ ¬y→¬z is logically equivalent to x ∧ z→ y.

4. For each of the following assertions state if it is true or false and justify your answer:

(a) (x→y) ∧ (x→z) is logically equivalent to x→(y ∧ z).

(b) (y→x) ∧ (z→x) is logically equivalent to (y ∧ z)→x

5. Let P1, P2, . . . , Pn be arbitrary propositional formulas. Prove that, for any n ≥ 2, the for-
mula P1→ (P2→ (· · · → (Pn−1→Pn) · · · )) is logically equivalent to (P1∧P2∧· · ·∧Pn−1)→Pn.
(Hint: Use induction on n.)

6. True or false?

(a) A maxterm is both a CNF formula and a DNF formula.

(b) A minterm is both a CNF formula and a DNF formula.

(c) If a formula is both in CNF and in DNF, then it is either a minterm or a maxterm.

7. Write DNF and CNF formulas that are logically equivalent to ((x→ y)∨(¬x∧z))↔ (y∨z).

8. Prove that {↓} is a complete set of connectives.

9. Prove that {¬,⊕,↔} is not a complete set of connectives.

10. Prove that {⊕,→} is a complete set of connectives.

11. Is {⊕,∧,∨} a complete set of connectives? Prove your answer.
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12. Let x and y be three-bit natural numbers. We can represent the value of x by using
three propositional variables: x2 (to denote the value of the most significant bit of x), x1

(to represent the middle bit of x), and x0 (to denote the value of the least significant bit of
x). More precisely, a truth assignment τ to x0, x1 and x2 represents the (three-bit) number
τ(x0)+2τ(x1)+4τ(x2). Similarly, we can represent the value of y by using three propositional
variables y2, y1, and y0.

The sum x+y is a four-bit natural number. For each of the four bits in the sum x+y, write
a propositional formula (with propositional variables x0, x1, x2, y0, y1, y2) which represents the
value of that bit. You should write four formulas F0, F1, F2, F3 where F0 represents the low-
order bit of the sum and F3 represents the high-order bit. Explain how you obtained your
propositional formulas. Your formulas may contain any of the propositional connectives we
have discussed (¬,∧,∨,→,↔,⊕, | , ↓).
Example: Consider the truth assignment which gives x the value 6 and y the value 5 That
is, the variables x2, x1, x0, y2, y1, y0 get, respectively, the values 1, 1, 0, 1, 0, 1. Since the sum
6 + 5 = 11, the values of the formulas F3, F2, F1, F0 under this truth assignment should be
(respectively) 1, 0, 1, 1.

Hint: This can certainly be done with a truth table that involves six propositional variables
(and therefore has 64 rows). This is too much boring work. Instead, think about how to
add numbers in binary, and represent the algorithm in terms of logical operations. This will
naturally lead you to the four formulas, via a probably faster (and surely intellectually more
interesting) path.

13. In this exercise we will develop a proof of the Unique Readability Theorem (see Theo-
rem 5.4) in three steps.

(a) The key to this proof is to establish some simple syntactic properties of propositional
formulas. Using structural induction on the definition of propositional formulas, prove
the following fact: For any propositional formula P ,

(i) P has the same number of ‘(’ and ‘)’ symbols.

(ii) Every proper prefix of P that has at least one ‘(’ symbol contains more ‘(’ than ‘)’
symbols.

(iii) Every proper prefix of P that has no ‘(’ symbol is a string of zero or more ‘¬’ symbols.

Hint: Prove the three parts simultaneously in the same induction.

(b) Use Part (a) to prove the following fact: For any propositional formula P , no proper
prefix of P is a propositional formula.

(c) Use Part (b) to prove the Unique Readability Theorem.
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Chapter 6

PREDICATE LOGIC

6.1 Introduction

6.1.1 Predicates and relations

Predicate logic is the formalisation of reasoning that involves predicates. It is a generalisation
of propositional logic because, as we will see shortly, a proposition is a very special kind of
predicate.

A predicate is a Boolean-valued function. The set D of possible values for a predicate’s
arguments is called its domain of discourse. The number n > 0 of a predicate’s arguments
is called its arity. Thus, an n-ary predicate with domain of discourse D is simply a function

P : D × · · · ×D︸ ︷︷ ︸
n times

→ {0, 1}

For example, “x is a sibling of y” is a binary (arity 2) predicate whose domain of discourse is
the set of all people. This predicate is true if x is Groucho and y is Harpo (two of the Marx
brothers), or if x is Emily and y is Charlotte (the Brontë sisters), or if x is Apollo and y is
Artemis (stretching our domain of discourse to include mythological figures). On the other
hand, this predicate is false if x is Cleopatra and y is Anthony, because these two were not
a sister-and-brother pair. Two unary (arity 1) predicates with the same domain of discourse
are “x is female” and “x is male”, and a ternary (arity 3) predicate with the same domain of
discourse is “x and y are the parents of z”.

Similarly, “x ≤ y” is a binary predicate whose domain of discourse is the set of, say, natural
numbers; “x is a prime number” is a unary predicate, and “x + y < z” is a ternary predicate
with the same domain of discourse.

We can think of a predicate as a relation, and vice-versa. Recall that, mathematically
speaking, an n-ary relation over domain D is a subset of the n-fold Cartesian product D ×
· · · × D. For example, we can view the predicate “x is a sibling of y” as the subset of the
Cartesian product P × P (where P is the set of people), consisting of all pairs (x, y) such
that x is a sibling of y. So, (Groucho,Harpo) and (Emily,Charlotte) belong to this set, but
(Cleopatra,Anthony) does not.

143
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In general, we can view an n-ary predicate A : D × · · · × D → {0, 1} as the relation
RA = {(d1, . . . , dn) : A(d1, . . . , dn) = 1}. Conversely, we can view an n-ary relation R ⊆
D× · · · ×D as the predicate AR : D× · · · ×D → {0, 1}, where AR(d1, . . . , dn) = 1 if and only
if (d1, . . . , dn) ∈ R.

6.1.2 Combining predicates to form more complex ones

Let us write S(x, y), M(x), F(x), and P(x, y, z) to denote the sibling-of, is-male, is-female and
parents-of predicates described earlier. We can combine these predicates using the connectives
of propositional logic to express more complex predicates. For instance, we can write the
predicate

S(x, y) ∧M(x)

which holds true if x is a sibling of y and x is male (for instance, it holds true if x is Groucho
and y is Harpo; it is false if x is Artemis and y is Apollo; it is also false if x is Anthony and y
is Cleopatra). As an other example, we can write the predicate

S(x, y) ∧ (M(x)↔F(y))

which is true of opposite-sex siblings x and y.
In addition to using our familiar propositional connectives, there is another way to construct

new predicates, namely by using the existential and universal quantifiers. Suppose A is
a predicate of x (and possibly other variables). We can construct two new predicates as
follows:
• ∃xA — this predicate is true if there is some x so that A holds; the symbol ∃ is called the
existential quantifier.
• ∀xA — this predicate is true if A holds for all x; the symbol ∀ is called the universal
quantifier.
Take, for example, the predicate S(x, y) — i.e., x is a sibling of y. We can use the existential

quantifier and this predicate to express the predicate “x has a sibling”. To say that x has a
sibling is to say that someone is x’s sibling; or, to put in yet another way, that there is someone,
call that person y, so that x is a sibling of y. Thus, we can express the predicate “x has a
sibling” as

∃y S(x, y).
The variable y that appears immediately after the existential quantifier names an object (in
our example, x’s sibling), whose existence the predicate asserts. Notice that the predicate
∃y S(x, y) is a predicate of only one argument, namely x. This is clear if we think of this
predicate as expressing “x has a sibling” (which is obviously a predicate of just x). However,
the symbolic representation ∃y S(x, y) may at first appear to obscure this fact since it contains
two variables, x and y. As we will see later (Sections 6.2.3 and 6.3.3, and Theorem 6.7) x and
y play quite different roles in this formula. x is the variable which this predicate is “about”
while y is a “dummy” variable whose purpose is to name an object to which a quantifier refers.
The predicate “x has a sibling” is expressed equally well as ∃z S(x, z): it is immaterial which
particular dummy variable, y or z or something else, we use to name the quantified object.
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Let L(x, y) be the binary predicate “x loves y”. We can use the universal quantifier and
this predicate to express the predicate “everybody loves x” as ∀y L(y, x). This is a predicate
of only one argument, x. It is true of any individual x whom everybody loves, and false of any
other individual. The variable y that appears in the symbolic expression for this predicate,
∀y L(y, x), is a dummy variable. As in the example of the previous paragraph, its role is merely
to name the object to which the quantifier refers.

The result of applying a quantifier to a predicate is another predicate. Thus, we can keep
applying repeatedly any of the available constructs (propositional connectives and quantifiers)
to create more and more complex predicates. Following are some examples involving the pred-
icates introduced earlier, along with a description, in English, of what the resulting predicate
expresses.

• ∃y (S(x, y) ∧ F(y)) — x has a sister.

• ∀y (S(x, y)→F(y)) — x has only sisters (or no siblings at all).

• ∃y S(x, y) ∧ ∀y (S(x, y)→F(y)) — x has at least one sibling and has only sisters.

• ∃v∃w (M(x) ∧ S(x, v) ∧ P(v, w, y)) — x is y’s uncle.

• ∃u∃v∃w (P(x, u, v) ∧ P(v, w, y)) — x is y’s grandparent.

6.2 The syntax of predicate logic

Expressions such as those we saw in the previous section are called predicate formulas,
or first-order formulas. We will now give the precise rules for correctly forming such
expressions.

6.2.1 First-order languages

A first-order language consists of:

• An infinite set of variables {x, y, . . .}1

• A set of predicate symbols {A1,A2, . . .}; associated with each predicate symbol is a
positive integer indicating its arity.

• A set of constant symbols {c1, c2, . . .}

The symbols of a first-order language, together with the propositional connectives (¬, ∧, ∨,
→ etc), quantifiers, parentheses and comma constitute the basic “vocabulary” of first-order
formulas.

For example, to create a vocabulary for expressing predicates such as those we discussed
in the previous section we might define the following first-order language:

1There are technical reasons why it is convenient to assume that we have an unlimited supply of variables
at our disposal.
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• Variables: An infinite set that includes u, v, w, x, y, z.
• Predicate symbols: P (of arity 3), S (of arity 2), L (of arity 2), M (of arity 1) and F (of
arity 1).
• Constant symbols: none.

We will subsequently refer to this particular first-order language as the language of familial
relationships, and denote it as LF .

As another example, suppose we want to express various facts concerning natural numbers
that involve the predicates x+y = z, x ·y = z, x < y, x = y, x is even, and x is odd. To create
the appropriate vocabulary to express such facts, we might define the following first-order
language:

• Variables: An infinite set that includes x, y, z
• Predicate symbols: S (of arity 3), P (of arity 3), L (of arity 2) and ≈ (of arity 2).
• Constant symbols: 0,1.

Here the intention is that S is a predicate symbol to denote the predicate “the sum of the first
two arguments is equal to the third”; P denotes the predicate “the product of the first two
arguments is equal to the third”; L denotes the predicate “the first argument is less than the
second”; and ≈ denotes the predicate “the first argument is equal to the second”.2 Also, the
intention is that the constant symbol 0 stands for the natural number zero, and the constant
symbol 1 stands for the natural number one. We will subsequently refer to this particular
first-order language as the language of arithmetic, and denote it as LA.

A first-order language with equality is simply one that includes, in its set of predicate
symbols, the binary predicate symbol ≈. As we will see later (in Section 6.3), this predicate
symbol has a special status. LA is a first-order language with equality, while LF is not.

It is important to emphasise that the choice of a first-order language amounts to the choice
of certain sets of symbols. These symbols are not endowed with any particular meaning,
although when we choose the symbols we may have in mind some particular interpretation for
them. For example, in LF we had the predicate “loves” in mind for the (binary) predicate
symbol L; while in LA we had the predicate “less than” in mind for the (binary) predicate
symbol L. We will discuss in detail how we give meanings to the predicate and constant
symbols of a first-order language in Section 6.3.

6.2.2 Formulas

Let us now fix a first-order language L. A term (of L) is a variable or a constant symbol of
L. An atomic formula (of L) is an expression of the form A(t1, t2, . . . , tn), where A is an
n-ary predicate symbol of L and each ti is a term of L.

For example, S(u, v) is an atomic formula of LF ; L(x, y) and P(x,1, z) are atomic formulas
of LA.

Atomic formulas are the most primitive first-order formulas — just like propositional vari-

2 We use the symbol ≈, rather than =, in order to emphasise the distinction between the formal symbol
that is used in first-order formulas to express the predicate “is equal to”, and the predicate itself which is
usually written as =.
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ables are the most primitive propositional formulas. The entire set of such formulas is defined
inductively.

Definition 6.1 The set of first-order formulas (of L) is the smallest set such that:

Basis: Any atomic formula (of L) is in the set.

Induction Step: If F1 and F2 are in the set, and x is a variable of L then the following are
also in the set: ¬F1, (F1 ∧ F2), (F1 ∨ F2), (F1→F2), (F1↔F2), ∀xF1, and ∃xF1.

In this definition, every time a binary propositional connective is used we are required to
enclose the resulting formula in parentheses. This is necessary in order to ensure that there is
only one way in which a complex formula is constructed from its constituent subformulas. The
reason for this “unique readability” was discussed in the context of propositional formulas. We
will adopt conventions analogous to those we used for propositional formulas which allow us
to omit parentheses without creating ambiguities. We draw special attention to the following
issue that arises from the fact that we often drop the outermost pair of parentheses from a
formula: The formula ∃xF1 ∨ F2, is an abbreviation of (∃xF1 ∨ F2) (by omitting the outer
parentheses) and is formed as the disjunction of ∃xF1 and F2. This is different from the
formula ∃x (F1 ∨F2) which is formed by existentially quantifying the disjunction (F1 ∨F2). In
the first formula the quantifier ∃x applies only to F1, while in the second it applies to both F1

and F2. Analogous remarks apply concerning the pair of formulas ∀xF1→F2 and ∀x (F1→F2),
and other similar constructs.

As with propositional formulas, it can be useful to view first-order formulas as trees. Fig-
ure 6.1 shows the tree that corresponds to a first-order formula of LF . The entire formula F is
represented by a tree whose subtrees represent the subformulas out of which F is constructed.
The leaves of the tree correspond to atomic formulas that occur in F , and the internal nodes
correspond to Boolean connectives and quantifiers. Note that the quantifiers, like negation,
are unary connectives: a node that corresponds to a quantifier has a single child.

6.2.3 Free variables

A first-order formula is an expression that is supposed to represent a predicate. But a predicate
of what? Let us look again at the formula ∃y S(x, y) of the first-order language LF . As we have
seen, this formula represents the predicate “x has a sibling”, and so it is about the variable x
— but it is not about the variable y. In general, the variables that appear in a formula are of
two kinds: those that name objects to which a quantifier refers (such as y in our example) and
those that do not (such as x in our example). The latter are called free variables. In general,
a formula represents a predicate of its free variables.

The precise definition of the set of free variables of a first-order formula F , free(F ), is by
structural induction. This definition is, in effect, a recursive program for computing the set
free(F ).

Basis: F is an atomic formula, say A(t1, . . . , tn), where A is an n-ary predicate symbol and
each ti is a term. In this case, free(F ) is the set of terms ti, 1 ≤ i ≤ n, that are variables.
(Recall that terms are either variables or constant symbols.)
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∃x

∀y

S(x, y)

S(u, x)

∃u

→

∧

¬

F(y)

Figure 6.1: The parse tree of ∃x
(
∀y

(
S(x, y)→¬F(y)

)
∧ ∃u S(u, x)

)

Induction Step: F is not an atomic formula. Then F is constructed from one or two
formulas F1, F2, using a propositional connective or a quantifier. Assume, by induction, that
we have determined the set of free variables of F1 and F2, free(F1) and free(F2). The set of
free variables of F are as follows, depending on how F is obtained from F1 and F2.
• F = ¬F1. Then free(F ) = free(F1).
• F = (F1 ∧ F2) or F = (F1 ∨ F2) or F = (F1→F2) or F = (F1↔F2). In each of these cases,
free(F ) = free(F1) ∪ free(F2).
• F = ∃xF1 or F = ∀xF1. In each of these cases, free(F ) = free(F1)− {x}.
If we apply this inductive definition to

∀z
(
P(x, y, z)→∃y

(
S(z, y) ∧ F(y)

))

we will determine that the set of free variables of this formula is {x, y}.3 What is interesting

3As we did in this formula, we will sometimes use different size parentheses as a visual aid to help identify
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about this particular formula is that y is free in it, although it is not free in the subformula
∃y (S(z, y)∧F(y)). The y that appears in the antecedent of the conditional refers to a different
object than the y that appears in the consequent. The former is free while the latter is not.
Thus, we can speak not only about whether a variable is free in a formula, but whether a
particular occurrence of a variable is free in a formula. More precisely,

Definition 6.2 An occurrence of variable x is free in F if and only if it does not occur within
a subformula of F of the form ∀xE or ∃xE.

A formula F that has no free variables (i.e., free(F ) = ∅) is called a sentence.
In terms of the tree representation of formulas, an occurrence of a variable x is free if

the path from the node that contains the occurrence of the variable to the root contains no
quantifier ∀x or ∃x.

6.3 Semantics of predicate logic

So far we have defined formulas (of a first-order language L) as strings of characters from a
certain vocabulary that are constructed according to certain syntactic rules. We have not yet
officially defined the meaning of these strings of characters. In this section, we define what it
means for a first-order formula to be true or false.

As in propositional logic, we cannot determine the truth value of a formula, unless we are
given some information that gives meaning to the basic vocabulary of our logic. In the case
of propositional logic the necessary information is a truth assignment which gives meaning to
the propositional variables. Now the situation is a little more complicated, because the basic
vocabulary of a first-order language is richer.

6.3.1 An example

Suppose we are working in a first-order language consisting of some set of variables (including
x and y), binary predicate symbols A and B, a unary predicate symbol C, and a constant
symbol c. Consider the formula ∃y (A(x, y) ∧ B(c, y) ∧ C(y)) in this first-order language. To
determine whether this formula is true or false we need some information:

1. We need to know what sorts of objects this formula is talking about; i.e., what are the
possible values of the variables. The set of all such values is called the domain (of
discourse).

2. We need to know the predicates to which the predicate symbols A, B and C correspond.

3. We need to know the domain element to which the constant symbol c refers.

4. Finally, we need to know the domain element to which x, the free variable of the formula,
refers.

matching pairs of parentheses. Keep in mind, however, that in the first-order languages over which formulas
are defined, there are only two parentheses symbols, ‘(’ and ‘)’ — not many pairs of symbols of different sizes.
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Suppose, for instance, that we are given the following information:

• The domain of discourse is the set of people.

• The predicate symbol A(x, y) stands for the predicate “x is a sibling of y”; the predicate
symbol B(x, y) stands for the predicate “x is a friend of y”; and the predicate symbol
C(x) stands for the predicate “x is female”.

• The constant symbol c refers to Groucho.

At this point we can interpret the formula ∃y (A(x, y) ∧ B(c, y) ∧ C(y)) as: there is some
person y, who is x’s sibling, who is Groucho’s friend and who is female. In other words, as the
predicate: “x has a sister who is Groucho’s friend”. This is a predicate which is true of certain
x’s and false of others. So, if we are now given the final piece of needed information, namely
who is the individual x, we can determine the truth value of the formula for the specified x.

The same formula would have an entirely different meaning if we were given different
information about the domain of discourse, the meaning of the predicate symbols or of the
constant symbol. For example, suppose we were told the following:

• The domain of discourse is the set of natural numbers.

• The predicate symbol A(x, y) stands for the predicate “x divides y”; the predicate symbol
B(x, y) stands for the predicate “x ≥ y”; and the predicate symbol C(x) stands for the
predicate “x is odd”.

• The constant symbol c refers to the number 100.

Now the formula ∃y (A(x, y)∧B(c, y)∧C(y)) is interpreted as: there is some number y, so
that x divides y, 100 ≥ y and y is odd. In other words, x divides an odd number that does not
exceed 100. This is a predicate that is true of some numbers and false of others. For instance,
it is true if x = 3; but it is false if x = 50.

6.3.2 Structures, valuations and interpretations

The example in the previous subsection shows that to determine the truth value of a formula
in some first-order language L we need four pieces of information. The first three pieces of
information define a “structure” for L. More precisely,

Definition 6.3 Let L be a first-order language. A structure S for L consists of

1. A nonempty set D, called the domain of S.

2. For each n-ary predicate symbol A of L, an n-ary relation AS ⊆ D × · · · ×D.

3. For each constant symbol c of L, an element cS ∈ D.
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An important note is in order if L is a first-order language with equality — i.e., it contains
the binary predicate symbol ≈. In this case we require that, in any structure S for L, the
binary relation that is associated with this symbol be the equality relation for the domain D of
S, i.e., the relation {(d, d) : d ∈ D}. Thus, we can construct structures that assign meanings
to the various predicate symbols in any way we wish, but we are not free to assign any meaning
to the symbol ≈. This symbol must be assigned the specific meaning “the first argument is
the same as the second argument”. The significance of this restriction will become evident
later in Section 6.5, when we discuss logical implication and logical equivalence.

To determine the truth value of a formula of L we need to be given, in addition to a structure
for L, the values of the formula’s free variables. Since we want to define the truth value of an
arbitrary formula we will actually specify the values of all variables. This is accomplished by
something called “valuation”.

Definition 6.4 Given a structure S for L, a valuation of S is a function σ that maps each
variable of L to some element of the structure’s domain D.

If σ is a valuation of structure S and v is an element of the structure’s domain D, σ|xv denotes
another valuation of S, namely the one defined by

σ|xv(y) =
{

σ(y) if y 6= x
v if y = x

That is, σ|xv maps x to v, and agrees with σ on all other variables.
A structure together with a valuation provide all the information necessary to determine

the truth value of any formula in L.

Definition 6.5 An interpretation I of L is a pair (S, σ), where S is a structure of L and σ
is a valuation of S.

Let I = (S, σ) be an interpretation and t be a term (i.e., a variable or constant symbol) of
L. Then tI denotes the element in the domain of S to which the term t refers. More precisely,

tI =

{
σ(x) if t is the variable x
cS if t is the constant symbol c

6.3.3 Truth value of a formula

We are finally in a position to formally define the truth value of formulas in a first-order
language L. The definition is by structural induction on the formulas.

Definition 6.6 Let L be a first-order language and S be a structure for L. The truth value
of a formula F in L in interpretation I = (S, σ), for any valuation σ of S, is defined as follows:

Basis: F is an atomic formula, say F = A(t1, . . . , tn), where A is an n-ary predicate symbol
of L and each ti is a term of L. In this case, F is true in (S, σ) if (tI1 , . . . , t

I
n) ∈ AS , and is false

otherwise.
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Induction Step: F is not an atomic formula. Then F is constructed from one or two
formulas F1, F2, using a propositional connective or a quantifier. Assume, by induction, that
we have determined the truth value of F1 and F2 in interpretation (S, σ), for each valuation
σ of S. The truth value of F in (S, σ), for any valuation σ of S, is now defined as follows,
depending on how F is obtained from F1 and F2.
• F = ¬F1. In this case, F is true in (S, σ) if F1 is false in (S, σ), and is false otherwise.
• F = (F1 ∧ F2). In this case F is true in (S, σ) if F1 and F2 are both true in (S, σ), and is
false otherwise.
• F = (F1∨F2). In this case F is true in (S, σ) if at least one of F1 and F2 is true in (S, σ),
and is false otherwise.
• F = (F1→F2). In this case F is false in (S, σ) if F1 is true and F2 is false in (S, σ), and
is true otherwise.
• F = (F1↔F2). In this case F is true in (S, σ) if F1 and F2 have the same truth value in
(S, σ), and is false otherwise.
• F = ∀xF1. In this case F is true in (S, σ) if F1 is true in (S, σ|xv) for every v in the domain
of S, and is false otherwise.
• F = ∃xF1. In this case F is true in (S, σ) if F1 is true in (S, σ|xv) for some v in the domain
of S, and is false otherwise.

If a formula F is true (respectively, false) in interpretation I, we will say that I satisfies
(respectively, falsifies) F .

Example 6.1 Let N be the following structure for the language of arithmetic LA:
• The domain is the set of natural numbers, N.
• The predicate symbol S(x, y, z) is interpreted as the predicate x + y = z; P(x, y, z) is
interpreted as the predicate x ·y = z; and L(x, y) is interpreted as the predicate x < y. (As
is always the case, ≈ is interpreted as the equality predicate.)
• The constant symbols 0 and 1 are interpreted by the natural numbers 0 and 1, respectively.

Let Z be another structure for LA that is identical to N except that the domain is the entire
set of integers Z, not only the natural numbers. Consider the following formula F1 of LA

F1 : P(x, x,1)

Informally, in both N and Z, F1 says that x
2 = 1. In the context of natural numbers, there is

only one number whose square is equal to 1, namely 1 itself. Thus,

an interpretation (N , σ) satisfies F1 if and only if σ(x) = 1. (6.1)

In the context of the integers, there are exactly two integers whose square is 1, namely −1 and
1. Thus,

an interpretation (Z, σ) satisfies F1 if and only if σ(x) = 1 or σ(x) = −1. (6.2)

Let F2 be the following formula of LA
F2 : ∃y

(
L(y, x) ∧ P(x, y,0)

)



6.3. SEMANTICS OF PREDICATE LOGIC 153

Informally, in both N and Z this formula says that

there is a number y < x such that x · y = 0. (6.3)

In the context of the natural numbers, (6.3) is true if x > 0: In this case, we can choose y to
be 0 and this satisfies both the requirement that y < x and the requirement that x · y = 0.
On the other hand, (6.3) is false if x = 0: In this case, there is no natural number less than x,
and so the first of the two requirements that y must satisfy fails. Therefore,

an interpretation (N , σ) satisfies F2 if and only if σ(x) > 0. (6.4)

In the context of the integers, (6.3) is true if x ≥ 0. If x > 0, this is so for the same reason
as we saw above; if x = 0 this is so because we can choose y to be any negative integer and
with this choice, both the requirement that y < x and the requirement that x · y = 0 are met.
On the other hand, (6.3) is false if x < 0. This is because then x is negative; so any integer
y < x is also negative, and the product of two negative integers cannot be 0. Thus, the two
requirements that y must satisfy (y < x and x · y = 0) cannot both be met. Therefore,

an interpretation (Z, σ) satisfies F2 if and only if σ(x) ≥ 0. (6.5)

Let F be the formula ∀x (F1 → F2); i.e.,

F : ∀x
(
P(x, x,1)→ ∃y

(
L(y, x) ∧ P(x, y,0)

))
(6.6)

First we consider the truth value of F in structure N . Let σ be an arbitrary valuation of N .
Consider the valuations that agree with σ in all variables other than x — that is, valuations
σ|xv , for all possible values of v ∈ N. If v 6= 1 then, by (6.1), (N , σ|xv) falsifies F1 and so it
satisfies F1 → F2. If v = 1 then, by (6.4), (N , σ|xv) satisfies F2 and so it also satisfies F1 → F2.
In other words, for all v ∈ N, (N , σ|xv) satisfies F1 → F2. This means that (N , σ) satisfies
∀x (F1 → F2), i.e., F . Since σ is an arbitrary valuation of N , it follows that

every interpetation (N , σ) satisfies F . (6.7)

Next we consider the truth value of F in structure Z. Let σ be an arbitrary valuation of Z.
Consider the valuation σ|x−1, which agrees with σ on all variables other than x and assigns to
x the value −1. By (6.2), (Z, σ|x−1) satisfies F1 and by (6.5) it falsifies F2. Therefore, (Z, σ|x−1)
falsifies F1 → F2. In other words, it is not the case that for all v ∈ Z, (Z, σ|xv) satisfies F1 → F2.
This means that (Z, σ) falsifies ∀x (F1 → F2), i.e., F . Since σ is an arbitrary valuation of Z,
it follows that

every interpetation (Z, σ) falsifies F . (6.8)

End of Example 6.1

The formulas F1 and F2 in Example 6.1 have only one free variable, namely x. Looking back
at (6.1), (6.2), (6.4) and (6.5) we notice that the truth value of F1 and F2 in interpretations of
N and Z depends only on what the valuation does to variable x, which happens to be the free
variable of these formulas. This reflects a general fact, expressed as the following theorem.
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Theorem 6.7 Let F be a formula of a first-order language L, S be a structure of L, and σ, σ′

be valuations of S so that, for any x that is free in F , σ(x) = σ′(x). Then F is true in (S, σ)
if and only if F is true in (S, σ′).

Informally, this theorem says that the values of variables that are not free in a formula do
not affect its truth value. The theorem can be proved by a straightforward (though tedious)
structural induction on F .

As a consequence of this theorem, we are now in a position to make more precise our
earlier remark that a first-order formula is “about” its free variables, or that it “represents”
a predicate of those variables — and not of variables that appear in the formula but which
name quantified objects. Given a structure of a first-order language, we can view a first-order
formula as a predicate of its free variables as follows: Let S be a structure of a first-order
language L, and D be the domain of S. A formula F of L with free variables x1, x2, . . . , xk

defines the k-ary predicate on D which is satisfied by a k-tuple (a1, a2, . . . , ak) ∈ Dk if and
only if F is satisfied by the interpretation (S, σ) for any valuation σ of S where σ(xi) = ai,
for all i such that 1 ≤ i ≤ k. (This predicate is well-defined because, by Theorem 6.7, F is
satisfied by all such interpretations or by none of them.) Therefore, we can view the formula
F as a function that maps structures of L into predicates. As we will see in Section 6.7, this
view of formulas is crucial in the important application of predicate logic to databases.

Example 6.2 As we saw in Example 6.1, in structure N , F1 represents the predicate “x =

1”, while in Z, it represents the predicate “x = −1 or x = 1” — cf. (6.1) and (6.2). Also, in
N , F2 represents the predicate “x > 0”, while in Z, it represents the predicate “x ≥ 0” — cf.
(6.4) and (6.5).

As another example, consider the formula ∃z P(x, z, y) of LA. In both N and Z, this
expressed the predicate “there is some number which multiplied by x is equal to y”, in other
words, the predicate “y is a multiple of x”. End of Example 6.2

Another consequence of Theorem 6.7 is that the truth value of a sentence (i.e., a formula
with no free variables) depends only on the structure, but not on the valuation: If an interpre-
tation (S, σ) satisfies a sentence F , then the interpretation (S, σ′), for any valuation σ′ of S,
also satisfies F . For this reason when F is a sentence, we sometimes speak of the truth value
of F in a structure, rather than in an interpretation.

Example 6.3 Note that the formula (6.6) in Example 6.1 is a sentence. As we saw in (6.7),
this sentence is true in every interpretation whose structure is N , regardless of the valuation;
so we say that the sentence is true in N . We also saw in (6.8) that this sentence is false in every
interpretation whose structure is Z, regardless of the valuation; so we say that the sentence is
false in Z. End of Example 6.3
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6.4 Validity and satisfiability

In Definition 5.5 we defined the notions of valid and satisfiable formulas in the context of
propositional logic. Analogous terms can be defined for first-order formulas.

Definition 6.8 Let F be a formula F of the first-order language L. F is
• valid if and only if it is satisfied by every interpretation of L;
• satisfiable if and only if it is satisfied by some interpretation of L; and
• unsatisfiable if and only if it is not satisfied by any interpretation of L.

This definition is very similar to the corresponding definition for propositional formulas. The
only difference is that we substituted the word “interpretation” for “truth assignment”. This
is because an interpretation is what makes a first-order formula true or false, in just the way
a truth assignment is what makes a propositional formula true or false.

It follows immediately from Definition 6.8 that a first-order formula is valid if and only if
its negation is unsatisfiable.

Example 6.4 Consider a first-order language L with unary predicate symbols A and B,
and a constant symbol c. The following formula is valid:

∀xA(x)→ A(c). (6.9)

To see why, let S be any structure for L, and σ be any valuation of S. Suppose that the
antecedent of (6.9), ∀xA(x), is true in interpretation (S, σ). This means that every element of
the domain of S belongs to AS (i.e., the relation to which S associates the predicate symbol A).
In particular, cS (i.e., the element of the domain to which S associates the constant symbol c)
belongs to AS . Thus, (S, σ) satisfies A(c), the consequent of (6.9). We proved that if (S, σ)
satisfies ∀xA(x) then it also satisfies A(c). This means that (S, σ) satisfies ∀xA(x) → A(c).
Since (S, σ) is an arbitrary interpretation, (6.9) is valid.

The following formula is satisfiable, but it is not valid.

∃xA(x) ∧ B(y) (6.10)

To see why it is satisfiable, suppose S is a structure of L that has domain N, associates the
predicate symbol A(x) with the predicate “x is an even number” and the predicate symbol
B(x) with the predicate “x is an odd number”. Let σ be a valuation of S such that σ(y) = 1.
Under (S, σ), (6.10) is interpreted as “there is an even number and 1 is odd”, which is certainly
true. Since there is an interpretation that satisfies it, the formula is satisfiable.

To see why (6.10) is not valid, suppose S is as above, and let σ′ be a valuation of S such
that σ′(y) = 4. Under (S, σ′) the formula is interpreted as “there is an even number and 4 is
odd”, which is false. Since there is an interpretation that falsifies it, the formula is not valid.

The formula
∀x

(
A(x)→ B(x)

)
∧ A(c) ∧ ¬B(c) (6.11)

is unsatisfiable. To see why, let S be any structure of L and σ be any valuation of S. For
interpretation (S, σ) to satisfy (6.11), it must satisfy each of its three conjuncts. If it satisfies
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the first conjunct, ∀x
(
A(x)→ B(x)

)
, we have that every element of the domain that belongs to

AS also belongs to BS . If, in addition, the interpretation satisfies the second conjunct, A(c), we
have that cS belongs to AS — and therefore it also belongs to BS . But this contradicts the third
conjunct, ¬B(c), which requires that cS not belong to BS . This means that no interpretation

can satisfy this formula, and therefore (6.11) is unsatisfiable. End of Example 6.4

6.5 Logical implication and logical equivalence

We can now define the concepts of logical implication and logical equivalence in the context
of first-order logic (see Definition 5.6). The definitions are identical to those for propositional
logic, except that we use “interpretation” in the place of “truth assignment”.

Definition 6.9 A formula F logically implies formula F ′ if and only if every interpretation
that satisfies F also satisfies F ′.

Example 6.5 We assume we are working in a first-order language L with unary predicate
symbols A and B, and constant symbol c. Following are two logical equivalences of formulas
in L.

(1) ∀x
(
A(x)→B(x)

)
logically implies ∃xA(x)→∃xB(x). To see why, let S be any structure

for L and assume that S satisfies the first formula, ∀x
(
A(x)→B(x)

)
.4 Thus, any element

of the domain that belongs to AS also belongs to BS . So, if some element of the domain
belongs to AS , then certainly some element (the same one, if no other!) belongs to BS .
In other words the second formula, ∃xA(x)→∃xB(x), is also satisfied by S. Since S is an
arbitrary structure for L, this means that the first formula logically implies the second.

(2) ∀x
(
A(x)→B(x)

)
∧ A(c) logically implies B(c). To see why, let S be any structure for

L and suppose that S satisfies the first formula, ∀x
(
A(x)→B(x)

)
∧ A(c). Then (i) each

element of the domain that belongs to AS also belongs to BS , and (ii) cS belongs to AS .
Since (i) is true for each element of the domain, it is true, in particular, for cS . That is, if
cS belongs to AS then cS also belongs to BS . By (b), cS does belong to AS . Therefore,
cS belongs to BS . This means that the second formula, B(c), is also satisfied by S. Since
S is an arbitrary structure for L, this means that the first formula logically implies the
second.

End of Example 6.5

Note that the two logical implications of the preceding example hold regardless of the
specific meaning of the predicate and constant symbols. In each case, the truth of the first
formula implies the truth of the second by virtue of the structure of the formulas and the

4Since both formulas are sentences, as we saw in Section 6.3.3, we needn’t worry about the valuations; the
truth value of the formulas depends only on the structure.
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meanings of the logical symbols — not because of any particular meaning attached to the
predicate and constant symbols. This is what the definition of logical implication requires: the
truth of one formula must imply the truth of the other in all interpretations — i.e., regardless
of the meaning assigned to the predicate and constant symbols.

We can also define logical equivalence between first-order formulas in a manner that is
analogous to the corresponding definition for propositional formulas (see Definition 5.8)

Definition 6.10 A formula F is logically equivalent to formula F ′ if and only if each
interpretation either satisfies both or falsifies both.

From this definition we get that F is logically equivalent to F ′ if and only if each of F ,
F ′ logically implies the other. Also it is straightforward to verify that the relation “is logi-
cally equivalent to” (which we abbreviate as leqv) is reflexive (F leqv F ), symmetric (if
F leqv F ′ then F ′ leqv F ), and transitive (if F leqv F ′ and F ′ leqv F ′′, then
F leqv F ′′).

To prove that F and F ′ are logically equivalent we must show that the two formulas have the
same truth value in every interpretation. To prove that F and F ′ are not logically equivalent,
it is enough to produce one interpretation that satisfies one and falsifies the other.

At this point it is important to recall the remark we made in Section 6.3.2 regarding the
interpretation of the equality predicate symbol: A structure may interpret predicate symbols
in any manner, with the exception of the symbol ≈ which must be interpreted as the equality
predicate. This constraint is relevant when we try to establish that a formula logically implies
(or is logically equivalent to) another. To do this we must show something about all possible
interpretations, subject to the requirement that ≈ has only one possible meaning.

A result analogous to Theorems 5.7 and 5.9 holds for first-order formulas.

Theorem 6.11 Let F and F ′ be formulas of a first-order language. Then,

(a) F logically implies F ′ if and only if F → F ′ is a valid formula.

(b) F is logically equivalent to F ′ if and only if F ↔ F ′ is a valid formula.

The proof is very similar to the proof of Theorem 5.7, and is left as an exercise.

6.6 Some important logical equivalences

In this section we list some important logical equivalences. These can be used and combined
to prove additional logical equivalences.

Duality of quantifiers

Ia. ¬∀xF leqv ∃x¬F , for any formula F and any variable x.

This simply states that “not every x has property F” amounts to the same thing as “there
is some x that does not have property F”. It is possible to verify this logical equivalence by
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resorting to Definition 6.6, but as you will discover when you do this, essentially it comes down
to recognising that the above two expressions mean exactly the same thing. Similarly,

Ib. ¬∃xF leqv ∀x¬F , for any formula F and any variable x.

This says that “no x has property F” amounts to the same things as “every x fails to have
property F”.

These two equivalences bear a resemblance to DeMorgan’s laws. They reveal a duality
between ∀ and ∃ that is analogous to the duality between ∧ and ∨. This is not terribly
surprising because a universal quantifier is a form of conjunction: it asserts that a certain fact
is true for this value of x and that value of x and that value of x — for each possible value
in the domain; while an existential quantifier is a form of disjunction: it asserts that a fact is
true for this value of x or that value of x or that value of x — again, for each possible value
in the domain.

From now on we will use the symbol Q to indicate a generic quantifier symbol that is either
∀ or ∃. We will also use Q to indicate the dual quantifier of Q; i.e., if Q is ∀ then Q is ∃, and
if Q is ∃ then Q is ∀. With this notation, the two logical equivalences (Ia) and (Ib) may be
written as

I. ¬QxF leqv Qx¬F , for any formula F and any variable x.

Factoring quantifiers

IIa. E ∧QxF leqv Qx (E ∧F ), for any formulas E, F and any variable x that is not free
in E.

The requirement that x is not free in E is very important. Without it this logical equivalence
would not hold. To see this note that, if x is free in E, then x is free in E ∧QxF while it is
not free in Qx(E ∧ F ). Since the two formulas do not even have the same free variables they
cannot, in general, be logically equivalent: they represent predicates of different things.

A similar logical equivalence holds for disjunctions of formulas:

IIb. E ∨QxF leqv Qx (E ∨F ), for any formulas E, F and any variable x that is not free
in E.

Renaming of quantified variables

As we discussed earlier, quantified variables are “dummy” variables. They are used to allow us
to name objects and assert that something holds for all such objects or at least one such object.
It is not important which particular name we use. In other words, if we rename a quantified
variable in a formula, then the resulting formula is logically equivalent to the original one.
Actually, there is a catch: the new name of the variable should not be a name that is already
used for some other purpose in the formula! This observation can be formalised as a logical
equivalence. First we need some notation: If F is a formula and x, y are variables, F x

y denotes
the formula obtained by replacing every free occurrence of x in F by y.

III. QxF leqv Qy F x
y , for any formula F and any variables x, y so that y does not occur

in F .
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As an example of this, we have:

∃x (P(u, v, w) ∧ S(x, w)→P(u, v, x)︸ ︷︷ ︸
F

) leqv ∃y (P(u, v, w) ∧ S(y, w)→P(u, v, y)︸ ︷︷ ︸
Fx
y

)

A slightly more complicated example is this:

∃x (P(u, v, w) ∧ S(x, w)→∃xP(u, v, x)︸ ︷︷ ︸
F

) leqv ∃y (P(u, v, w) ∧ S(y, w)→∃xP(u, v, x)︸ ︷︷ ︸
Fx
y

)

Notice that, in the second example, when we renamed x to y in F to obtain F x
y , we did

not rename the occurrence of x in the consequent of the implication (i.e., in the subformula
∃xP(u, v, x)); this is because that occurrence of x is not free.

Also notice the caveat that the new name must not occur anywhere in F . If it does, then
the resulting formula would not, in general, be logically equivalent to the original formula. For
instance, suppose F = P(u, v, w) ∧ S(x, w)→∃xP(u, v, x). If we rename every free occurrence
of x to u in this example we get the formula F x

u = P(u, v, w) ∧ S(u, w)→∃xP(u, v, x). Now,
however, the formulas

∃x (P(u, v, w) ∧ S(x, w)→∃xP(u, v, x)︸ ︷︷ ︸
F

) and ∃u (P(u, v, w) ∧ S(u, w)→∃xP(u, v, x)︸ ︷︷ ︸
Fx
u

)

are not logically equivalent: variable u is free in the former, while it is not in the latter. Since
the two formulas do not have the same free variables they are not “about” the same things
and thus they cannot be logically equivalent.

Finally, notice that this rule pertains specifically to renaming of quantified variables. In
general, if we rename a free variable of a formula, the resulting formula is not logically equiv-
alent to the original one. That is, in general, E is not logically equivalent to Ex

y , even if y
is a variable that does not occur in E. For example, take the formula E = M(x), so that
Ex

y = M(y). These two formulas are not logically equivalent. For instance, consider the
“standard” structure S of LF , where the domain is the set of all people and the predicate
symbol M stands for the predicate “is-male”. Let σ be a valuation so that σ(x) = Groucho
and σ(y) = Cleopatra. The interpretation (S, σ) satisfies E but falsifies Ex

y ; hence the two
formulas are not logically equivalent.

Substitution instances of propositional equivalences

IV. Let P and Q be propositional formulas with propositional variables x1, x2, . . . , xn such
that P leqv Q. Let F1, F2, . . . , Fn be arbitrary first-order formulas. Let P ′ and Q′ be the
(first-order) formulas obtained from P and Q, respectively, by substituting xi by Fi, for each
i, 1 ≤ i ≤ n. Then P ′ leqv Q′.

As an example of this, we have:

∀x S(x, y)︸ ︷︷ ︸
F1

→∃zM(z)︸ ︷︷ ︸
F2

leqv ¬∀x S(x, y)︸ ︷︷ ︸
F1

∨∃zM(z)︸ ︷︷ ︸
F2
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This follows from the propositional equivalence x1→x2 leqv ¬x1 ∨ x2, by substituting F1

and F2 for x1 and x2, respectively.

Subformula substitution

As in propositional logic, we can replace a piece of a formula by a logically equivalent expression
without affecting the meaning of the original formula. More precisely, the following rule holds:

V. Let F be any first-order formula, E be any subformula of F , E ′ be any formula that is
logically equivalent to E, and F ′ be the formula that results from F by replacing E with E ′.
Then F ′ is logically equivalent to F .

As an example of this, we have:

E︷ ︸︸ ︷
¬∀x S(x, y)→∃zM(z)︸ ︷︷ ︸

F

leqv

E′

︷ ︸︸ ︷
∃x¬S(x, y)→∃zM(z)︸ ︷︷ ︸

F ′

This is because, by (I), ¬∀x S(x, y) leqv ∃x¬S(x, y) and so we can substitute the former by
the latter in any formula, resulting in an equivalent formula.

Additional logical equivalences

By combining the five rules described so far in this section, we can derive additional logical
equivalences. In particular we can derive some “factoring” logical equivalences similar to rules
(IIa) and (IIb). These will be especially useful in the next section.

IIc. QxE ∧F leqv Qx (E ∧F ), for any formulas E, F and any variable x that is not free
in F .

IId. QxE ∨F leqv Qx (E ∨F ), for any formulas E, F and any variable x that is not free
in F .

Here is how we can derive the first of these:

QxE ∧ F
leqv F ∧QxE [by (IV) and commutativity of ∧]
leqv Qx (F ∧ E) [by (IIa)]
leqv Qx (E ∧ F ) [by (IV) and (V)]

There are also quantifier factoring rules involving implication:

IIe. QxE→F leqv Qx (E→F ), for any formulas E, F and any variable x that is not free
in F .

Notice that when a quantifier that appears on the left hand side of an implication is factored,
it is changed to its dual. The following derivation of this rule shows why:
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QxE→F
leqv ¬QxE ∨ F [by (IV) and the → law]
leqv Qx¬E ∨ F [by (I)]
leqv Qx (¬E ∨ F ) [by (IId)]
leqv Qx (E→F ) [by (IV) and (V)]

In a similar way, we can prove that

IIf. E→QxF leqv Qx (E→F ), for any formulas E, F and any variable x that is not free
in E.

Here notice that when a quantifier is factored from the right side of an implication, it is not
changed to its dual! By working out the derivation of this rule, you will see exactly why that
is so.

6.7 Predicate logic and relational databases

A database system is a software system that allows users to store and manipulate the infor-
mation that describes some enterprise in a convenient and flexible manner. Predicate logic
provides the mathematical basis and the conceptual framework for the most popular type of
database systems in use, known as relational database systems. In this section we explain the
basic ideas behind this important application of predicate logic to computer science.

It is perhaps easiest to explain the connection between relational databases and predicate
logic by examining a simple example. Suppose we want to create a database about a library.
In this database we need to record information about the books that the library owns, the
subscribers who have the right to borrow books from the library, and about which books have
been borrowed by subscribers. In relational databases, all information is stored as relations
or, equivalently, as predicates. (Recall, from Section 6.1.1, that we can view a relation as a
predicate and vice versa. Consequently, we will sometimes use these two terms interchangeably
even though, technically speaking, they refer to different kinds of mathematical objects: a
relation is a set of tuples while a predicate is a function from tuples to the set {true, false}.)

We can think of a book as an entity relating a book id (a string that uniquely identifies the
book), a title, an author’s name, and perhaps other pieces of information (publisher, date of
publication, and so on) that we will ignore in this example. In relational database terms, these
“pieces of information” are called the attributes of the relation that describes the books owned
by the library. Therefore, the set of books currently owned by the library can be described
mathematically as a relation

Book ⊆ B × T ×N

where B is the set of book ids, T is the set of titles and N is the set of author names.
Equivalently, this set of books can be described as a predicate

Book(b, t, n)
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where b is the argument that corresponds to the book’s unique id, t is the argument that
corresponds to the book’s title and n is the argument that corresponds to the name of the
book’s author. A triple (β, τ, ν) satisfies this predicate (is a member of the relation) if and
only if the library owns a book whose id is β, has title τ and is written by author ν.

Similarly, the library’s subscribers can be described as a relation with attributes SIN (the
subscriber’s Social Insurance Number which we assume uniquely identifies him or her), name
and address. In other words, the library’s set of subscribers will be viewed as a predicate

Subscriber(s, n, a)

where s is the argument that corresponds to a subscriber’s SIN, n is the argument that cor-
responds to his or her name and a is the argument that corresponds to his or her address. A
triple (σ, ν, α) satisfies this predicate if and only if a subscriber with SIN σ has name ν and
lives at address α.

Finally, the information about which books have been borrowed might be described as a
relation with attributes SIN, book id and due date. SIN refers to a subscriber, book id refers
to a book that this subscriber has borrowed and due date refers to the date by which the book
must be returned. In other words, the information about borrowed books will be described as
the predicate

Borrowed(s, b, d)

which is satisfied by a triple (σ, β, δ) if and only if the subscriber whose SIN is σ has borrowed
the book whose book id is β and the due date for the book’s return to the library is δ.

Each relation is stored in the database as a two-dimensional array. The columns of the array
correspond to the relation’s attributes and its rows contain the elements of the relation, which
are called tuples. For example, the Book relation might be the array shown in Figure 6.2. Note
that the library owns two copies of One hundred years of solitude by Gabriel Garcia Marquez;
each has its own distinct book id.

Book ID Title Author’s Name
POET017 Iliad Homer
MATH092 Metamathematics Kleene
CSCI001 The art of computer programming Knuth
FICT171 One hundred years of solitude Marquez
FICT576 One hundred years of solitude Marquez
FICT923 Love in the time of cholera Marquez

Figure 6.2: An example for Book relation

6.7.1 Queries

The main reason for creating a database is so that users can then query the database to retrieve
information they are interested in. The creator of the database usually does not know a priori
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what queries the users will want to pose. Thus, the database system must provide a language
that is precise so that it can be processed by a computer, as well as flexible and general so
that a user can formulate a wide range of queries. The genius of the relational database model
is that, because the information in the database is represented in the form of predicates, we
can use first-order formulas as our query language. A query, in the relational database model,
is simply a predicate that describes the information that the user wishes to retrieve. As we
saw in Section 6.1.2, given certain “base” predicates, we can use first-order formulas to express
other predicates. For example, in that section we saw how to combine the predicates “x is
male”, “x is y’s sibling” and “x and y are the parents of z” in order to express the predicate
“x is y’s uncle”.

Now the “base” predicates are the relations that make up the database — Book, Subscriber
and Borrowed, in our example. Suppose a user wants to find out the titles of all the books
written by Marquez that the library owns. This query can be expressed by the formula

∃bBook(b, t, “Marquez”) (6.12)

Notice that the information we want, namely titles of books, corresponds to a free variable
in the formula. The variable b is existentially quantified, and “Marquez” is a constant string.
The way to interpret the above predicate as a query is: Find the set of all values τ that can be
substituted for the free variable t, so that for some book id, say β, the triple (β, τ, “Marquez”) is
in the relation (satisfies the predicate) Book. If the Book relation is the one shown in Figure 6.2,
then this query would return two titles as its answer:

One hundred years of solitude
Love in the time of cholera

Note that the title “One hundred years of solitude” is returned only once, even though there
are two copies of this book. This is because the query returns the set of values for the free
variables that satisfy the predicate; since the result is a set, it cannot contain the same element
twice.

Let us contrast (6.12) with the query below:

Book(b, t, “Marquez”) (6.13)

Syntactically, the only difference is that in this query the existential quantifier of (6.12) was
eliminated. This predicate has two free variables, b and t. This predicate can be interpreted
as the following query: Find the set of all pairs of values β and τ that can be substituted
(simultaneously) for the free variables b and t respectively, so that the triple (β, τ, “Marquez”)
satisfies the predicate Book. If the state of the relation Book is as shown in Figure 6.2, Query
(6.13) returns as its answer the following three tuples:

FICT171 One hundred years of solitude
FICT576 One hundred years of solitude
FICT923 Love in the time of cholera
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Note that the first two tuples are different because they differ in the book id attribute.
Consider now a different query. Suppose a user is interested in retrieving the names and

addresses of all subscribers who have borrowed books that are due on January 1, 2000 —
perhaps to notify them that the library will be closed on that day due to the millennium
celebrations. This query can be expressed by the following first-order formula:

∃s
(
Subscriber(s, n, a) ∧ ∃bBorrowed(s, b, 2000/01/01)

)
(6.14)

The two attributes that we are interested in retrieving, the name and address of subscribers,
are the free variables of this formula, n and a respectively. The expression 2000/01/01 that
appears as the third argument of predicate Borrowed is a constant (representing a date in the
obvious way). This formula is interpreted as the following query: Find the set of all pairs of
values ν and α that can be simultaneously substituted for the variables n and a, respectively,
so that there is a subscriber with some SIN, say σ, name ν and address α (i.e., the triple
(σ, ν, α) satisfies the predicate Subscriber), who has borrowed a book with some id, say β, that
is due on January 1, 2000 (i.e., the triple (σ, β, 2000/01/01) satisfies the predicate Borrowed).

Note that both occurrences of variable s in (6.14), as an argument of Subscriber and of
Borrowed, are bound to the same quantifier, the leading ∃s. This is because we want both
of these variables to refer to the same individual: the subscriber whose name and address we
want to retrieve is the same as the subscriber who has borrowed a book that’s due on January
1, 2000. The query expressed by the formula below is quite different from that expressed by
(6.14):

∃s Subscriber(s, n, a) ∧ ∃s ∃bBorrowed(s, b, 2000/01/01)
Here the two occurrences of the variable s are bound to different quantifiers. Despite the
fact that the same symbol is used, the fact that the two occurrences are bound to different
quantifiers means that they can refer to different individuals. Some thought will show that
the above formula expresses the query which returns the set of names and addresses of all
subscribers if there is a subscriber who has borrowed a book that is due on January 1, 2000;
and returns nothing (the empty set) if no subscriber has borrowed a book that is due on that
date! The two formulas bear a superficial syntactic resemblance to each other but they mean
quite different things. In Section 6.11 we will discuss in greater detail the binding of variables
to quantifiers and how this affects the meaning of a formula.

The query expressed by (6.14) can also be expressed by other formulas. In fact, any
formula that is logically equivalent to (6.14) expresses the same query. For example, from the
equivalences of Section 6.6, it is easy to verify that the formula

∃s ∃b
(
Subscriber(s, n, a) ∧ Borrowed(s, b, 2000/01/01)

)

also expresses the same query. Another formula that expresses the same query is

¬∀s ∀b
(
Subscriber(s, n, a)→ ¬Borrowed(s, b, 2000/01/01)

)

If we try to grasp the meaning of this particular formula, it is perhaps not readily apparent
that it is just a different way of expressing the same query as the previous two formulas.
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Nevertheless, by applying the techniques of Section 6.6 we can check that the formula is
logically equivalent to the previous two and, as such, expresses exactly the same query.

Note that (6.14) involves two relations, Subscriber and Borrowed, while (6.12) and (6.13)
involve one relation, Book. Our next example involves all three relations of the database.
Suppose we wish to find the names of all subscribers who have borrowed a copy of Metamath-
ematics by Kleene, and the due date by which the borrowed copy is (or was) to be returned.
The following first-order formula expresses this query:

∃s
(
∃a Subscriber(s, n, a) ∧ ∃b

(
Book(b, “Metamathematics”, “Kleene”)∧
Borrowed(s, b, d)

))
(6.15)

This formula has two free variables, n and d. It can be interpreted as the following query: Find
all pairs of values ν and δ that can be substituted for the free variables n and d, respectively,
so that for some SIN, say σ, there is a subscriber with SIN σ whose name is ν (and who lives
at some address), and for some book id, say β, the book with id β is Metamathematics by
Kleene and subscriber σ has borrowed β and must return it by date δ.

Let us consider now another example query. Suppose we want to retrieve the names of all
subscribers who have borrowed all books written by Marquez that the library owns. First, we
note that this description of the query is actually ambiguous. It could mean that we want
to retrieve the names of all subscribers who have borrowed every single copy of every book
written by Marquez that the library owns. In this case, if the state of the relation Book is that
shown in Figure 6.2, a subscriber would have to have borrowed both copies of One hundred
years of solitude as well as the (single) copy of Love in the time of cholera to be included in
the answer. Alternatively (and perhaps more plausibly) we may want to retrieve the names of
all subscribers who have borrowed at least one copy of every book written by Marquez that
the library owns; in this case, a subscriber who has borrowed only one copy of One hundred
years of solitude and the (single) copy of Love in the time of cholera will be included in the
answer.5

The two different meanings of this query are captured by different (and, of course, nonequiv-
alent) first-order formulas. The first meaning can be expressed by

∃s∃a
(
Subscriber(s, n, a) ∧ ∀b

(
∃tBook(b, t, “Marquez”)→ ∃dBorrowed(s, b, d)

))
(6.16)

We can paraphrase this as: Find all the names ν that can be substituted for the variable
n so that there is a subscriber called ν who has some SIN σ (and lives at some address)
and, furthermore, for every book id β, if β is written by Marquez (and has some title), then
subscriber σ has borrowed β (for some return date).

5It is perhaps appropriate for me to confess that I was not conscious of the two possible meanings of this
query until I started thinking about how to express it as a first-order formula. A useful byproduct of the
process of expressing an informally specified query as a first-order formula is that, in doing so, one often
uncovers ambiguities that are not so easy to spot when the query is expressed in natural language.
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CREATE SCHEMA Library
CREATE TABLE Book
(

BookID character (7),
Title character varying (100),
AuthorName character varying (40)

)
CREATE TABLE Subscriber
(

SIN numeric (9),
Name character varying (40),
Address character varying (60)

)
CREATE TABLE Borrowed
(

SIN numeric (9),
BookID character (7),
ReturnDate date

)

Figure 6.3: The specification of the library database in SQL

The second meaning can be expressed by the following formula:

∃s ∃a
(
Subscriber(s, n, a) ∧ ∀t

(
∃bBook(b, t, “Marquez”)→

∃b′
(
Book(b′, t, “Marquez”) ∧ ∃dBorrowed(s, b′, d)

)))

We can paraphrase this as: Find all the names ν that can be substituted for the variable n
so that there is a subscriber called ν who has some SIN σ (and lives at some address) and,
furthermore, for every title τ , if there is a book (with some id) with title τ written by Marquez,
then there is a book also with title τ and written by Marquez but with a possibly different id
β′, which the subscriber σ has borrowed (and must return by some due date).

6.7.2 Data definition and data manipulation languages

A relational database system provides two languages to its users; a data definition language (or
DDL) and a data manipulation language (or DML). In this subsection we explain the purpose of
these languages, and we provide some examples. Our examples are written in SQL, the most
common language for relational databases which is supported by all the major commercial
database products. The goal of these examples is merely to give a taste of these languages,
not to provide anything approaching a thorough description.
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The DDL allows a user to specify the database schema: the names of the relations that will
exist in the database, the names of each relation’s attributes, and the data type from which
each attribute will derive its values. Figure 6.3 shows the definition of our example library
database in SQL. In SQL the term “table” is synonymous to what we have been calling a
relation or a predicate. For each relation, the definition contains a comma-separated list of
attribute names (e.g., BookID, Title and AuthorName for the relation Book) and the data type
from which each attribute derives its values. The parenthesised number refers to the length of
a character string, or the maximum number of digits in numeric types. If the character string
has variable length (denoted by the keyword “varying”) the parenthesised number refers to
the maximum length of the string.

Database systems support the basic data types of programming languages such as inte-
gers, reals, strings and Booleans, and perhaps other specialised data types such as dates. For
each data type there is particular syntax for representing its elements. For instance, integers
might be represented in the usual decimal notation, strings might be represented as alphanu-
meric sequences delimited by quotation marks, and dates might be represented in the format
YYYY/MM/DD.

In terms of predicate logic, the representations of data types are constant symbols. Note
that the entire representation of an element of a data type is viewed as a single constant
symbol, even if it is written using several characters. For example, 1998/10/22 is a constant
symbol denoting the date October 22, 1998, and 17 is a constant symbol denoting the integer
seventeen. The symbol denoting the integer seventeen would be different if, for example, we
were representing integers in octal rather than decimal. Similarly, a different symbol would
denote the date October 22, 1998 if we were using a different format for dates.

The second language provided by the database system, the DML, allows users to query
and modify the database. For example, Figure 6.4 shows one way of expressing query (6.14)
in SQL. Roughly speaking this SQL query says: Retrieve the Name and Address attributes
from each tuple t of the Subscriber relation for which there exists some tuple in the Borrowed
relation whose SIN attribute matches that of t and whose ReturnDate attribute is January 1,
2000. The requirement that the tuples from Subscriber and Borrowed relations have the same
value in the SIN attribute reflects the fact that in (6.14) the two occurrences of variable s
(that corresponds to the SIN attribute) are bound to the same quantifier. Also note that the
attributes Name and Address that appear in the first SELECT command correspond to the
two free variables n and a of (6.14). This example should convince you that queries expressed
in “real-world” database query languages are very close in spirit (though not in syntax) to
first-order formulas.

6.7.3 Relational databases as structures of a first-order language

In this subsection we explain exactly what it means to say that a first-order formula “expresses”
a query. To do so we must first gain a more detailed understanding of the relationship between
relational databases and predicate logic. As we will see, by creating a relational database
we are effectively defining a first-order language L (Section 6.2.1) and a structure S for L
(Section 6.3.2).
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SELECT Name, Address
FROM Subscriber
WHERE EXISTS
(

SELECT ∗
FROM Borrowed
WHERE Subscriber.SIN = Borrowed.SIN AND Borrowed.ReturnDate = 2000/01/01

)

Figure 6.4: Query (6.14) expressed in SQL

In terms of predicate logic, a DDL specification of a database schema corresponds to choos-
ing a first-order language. Recall, from Section 6.2.1, that to choose a first-order language we
must fix (a) a set of predicate symbols and their associated arities, and (b) a set of constant
symbols.6

• The predicate symbols of the language are the relation names given in the DDL specifica-
tion. The arity of each predicate symbol is the number of attributes of the corresponding
relation name.
• The constant symbols of the language are the representations of the data types of the
relations’ attributes.

In our example, the first-order language defined by the DDL specification has three predicate
symbols: Book, Subscriber and Borrowed, each of arity 3. It has constant symbols consisting
of the representations of integers, strings, and dates.

As we mentioned in Section 6.7.2, the DML allows users to query and modify the database.
To modify the database, the DML provides commands to insert, delete and update tuples in
the relations. Using these commands, the users can keep the database current by reflecting
changes to the state of the enterprise that is modeled by the database. For example, when the
library acquires a new book a user should insert a tuple describing that book into the Book
relation; when a subscriber’s address changes, a user should modify the address attribute of
the tuple that corresponds to that subscriber. We refer to the particular relations that make
up the database at some point in time as the database state (at that time).

We now explain how a database state determines a structure for the first-order language
that was defined by the DDL specification of the database schema. Recall, from Section 6.3.2,
that a structure specifies three things: the domain of discourse, the relation with which each
predicate symbol is associated, and the element in the domain of discourse with which each
constant symbol is associated.

• The domain of discourse is already defined by database schema: it is the union of the data
types of the relations’ attributes.

6Technically, we also need to fix the set of variables. As we have been doing all along, we will use lower
case letters of the Latin alphabet, sometimes primed or subscripted, as variables. Thus, we will not bother to
explicitly identify the set of variables.
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• For each relation name R defined in the schema, the database state has an actual relation
(i.e., set of tuples) of the appropriate arity. This is the relation associated with the predicate
symbol that corresponds to R.
• The association of constant symbols to elements of the domain of discourse is the natural
one. Recall that each constant symbol is a representation of some element of a data type.
To each element x of a data type we associate the constant symbol that represents x. For
example, we associate the constant symbol 17 to the integer seventeen, and the constant
symbol 1998/10/22 to the date October 22, 1998.

We are now ready to address the main point of this subsection; namely, what exactly it
means for a first-order formula to “express” a query. First of all, what is a query? Intuitively,
a query describes what information to retrieve from the current database state. In a relational
database, the database state is a collection of relations (one for each relation name defined in
the schema), and the retrieved information is a relation. In mathematical terms, then, we can
think of a query as a function which maps any database state S to a relation. A first-order
formula is a representation of such a function. Here is how.

As we have seen, we can think of the database schema as a first-order language L and we
can think of the database state as a structure S of L. Let F be a first-order formula of L
and free(F ) be the set of free variables of F . If σ is a valuation of structure S, let σF denote
the function σ ↾ free(F ). (Recall that a valuation is a function mapping variable names to
elements of the domain of discourse; see Section 0.6 for the definition of the restriction of a
function.) Since free(F ) is a finite set of variables, say x1, x2, . . . , xk, we can view σF as the k-
tuple (σF (x1), σF (x2), . . . , σF (xk)).

7 Formula F represents the query which maps the database
state S to the relation consisting of the following set of tuples:

{σF : σ is a valuation such that (S, σ) satisfies F} (6.17)

In other words, the query expressed by F returns the valuations that satisfy F in the structure
defined by the database state, restricted to the free variables of F . Note that, by Theorem 6.7,
once a structure S is fixed, whether an interpretation (S, σ) satisfies F depends only on the
values that σ assigns to the free variables of F . Thus, in restricting the valuations only to
those variables in (6.17) we are not “hiding” any information that is relevant to whether the
formula F is satisfied.

Now that we have explained how a first-order formula expresses a query, it is instructive to
revisit a point that we made informally (and without justification) in the previous subsection.
Namely, that if a formula F expresses a query, then any formula that is logically equivalent
to F expresses the same query. To see why this is the case note that if F and F ′ are logically
equivalent then, by definition, for any structure S and any valuation σ, (S, σ) satisfies F if
and only if it satisfies F ′. This means that the two formulas F and F ′ return the same set of
tuples for any database state. In other words, F and F ′ express the same query.

7In order to view σF as a tuple, we must order the set of variables free(F ) in some fashion — because the
elements of a tuple have an order. This is not a problem because any such order of the elements of free(F )
will do.
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It is perhaps interesting to draw the reader’s attention to an analogy that exists between
propositional and first-order formulas as representations of functions. In Section 5.10 we saw
how propositional formulas can be viewed as representations of Boolean functions. This fact
has important practical implications for the design of digital hardware. In this section we saw
how first-order formulas can be viewed as representations of functions from database states to
relations. This fact has important practical implications for the design of database systems.

6.7.4 Integrity constraints

In addition to making possible the definition of the database schema, the DDL also allows a user
to specify integrity constraints. These are facts that must hold in every database state. The
reason for imposing such constraints is to prevent other users from applying to the database
updates that would result in a meaningless or illegal database state. Interestingly, first-order
formulas provide a convenient language for specifying such constraints.

For example, we mentioned that the attribute book id is supposed to be a unique identifier
for each copy of a book in the library. We can express this requirement by the following
formula:

∀b ∀t ∀n ∀b′ ∀t′ ∀n′ ((Book(b, t, n) ∧ Book(b′, t′, n′) ∧≈(b, b′))→ (≈(t, t′) ∧≈(n, n′))
)

Informally, this says that if two tuples of the Book relation agree on the book id attribute, then
they must also agree on the remaining attributes — i.e., they are the same tuple! In other
words, book id is a unique identifier for the Book relation. (In database terminology, such an
attribute is called a key of the relation.)

Here is another example of an integrity constraint. It is reasonable for the library to require
that only subscribers may borrow books. This requirement can be expressed by the following
formula:

∀s
(
∃b ∃dBorrowed(s, b, d)→ ∃n ∃a Subscriber(s, n, a)

)

That is, if a person with SIN s has borrowed a book then that person must be subscriber.

As can be seen from these examples, formulas that express integrity constraints are sen-
tences, i.e., formulas that do not have any free variables. In contrast, formulas that express
queries have free variables, namely the attributes of the tuples that we want to retrieve.

6.7.5 Limitations on the expressive power of predicate logic

We remarked earlier on the analogy between the use of propositional formulas as representa-
tions of Boolean functions, and the use of first-order formulas as representations of queries.
From Theorem 5.20 we know that we can represent every Boolean function by a propositional
formula. So, it is natural to ask whether we can represent every query — i.e., every function
from database states to relations — as a first-order formula. The answer, in this case, is neg-
ative: There are natural queries that one might want to pose which are not expressible by
first-order formulas.
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Such a query in our example database is

Find the subscribers who have borrowed a majority (i.e., more than half)
of the books owned by the library. (6.18)

It is interesting to note that for each positive integer k we can write a (different) first-order
formula that represents the query

Find the subscribers who have borrowed at least k books owned by the library.

(Hint: We can say this by saying that there are books b1, b2, . . . , bk, distinct from each other,
that the subscriber has borrowed.) Nevertheless, no formula can represent (6.18).

Another interesting and natural example of a query that cannot be expressed by a first-order
formula is the so-called transitive closure query. To explain this type of query, consider the
following example. Some software engineering tools use a database to store information about
the various components of a software package and about how these components are related. For
example, such a database might contain a relation Procedure that contains information about
the procedures of the software package. This relation might have attributes ProcedureName,
NoOfArguments and ProcedureAuthor, specifying, respectively, the name of the procedure, the
number of arguments the procedure has and the name of its author. In addition, we might
have a relation Calls with attributes Caller and Callee, each of which is a procedure name. A
tuple (p, q) is in this relation if and only if the procedure whose name is p calls the procedure
whose name is q. If, during the development of the software package, a change is made to
the code of some procedure p it may be necessary to update all other procedures that call p
directly or indirectly (i.e., via a chain of intermediate calls). Therefore, the user of the software
engineering database might wish to express the following query:

Find the names of all procedures that directly or indirectly call p. (6.19)

It turns out that this query cannot be expressed by a first-order formula. On the other hand,
it is not hard to see that for each integer k we can write a (different) first-order formula that
expresses the following query:

Find the names of all procedures that call p via a chain of at most k intermediate calls.

The fact that Queries (6.18) and (6.19) cannot be expressed by first-order formulas is an
interesting and nontrivial result in mathematical logic, with practical implications. Because of
it, the query languages of real database systems include some special facilities that enable users
to ask some of the queries that are not expressible by first-order formulas. The proof of this
result, however, is beyond the scope of our brief survey of the subject in these notes. In general,
the ability of a formal system (such as predicate logic) to represent various mathematical
objects (such as functions) is referred to as the expressive power of the system. The study of
the expressive power of different formal systems is an important subject in mathematical logic
and theoretical computer science.8

8Our investigation of the completeness and incompleteness of various sets of connectives, in Section 5.11, is
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6.8 Logical implication revisited

Definition 6.9 states what it means for a formula to be logically implied by another. It is
sometimes useful to speak of a formula being logically implied by a set of formulas. The
meaning of this is given by the following definition.

Definition 6.12 A set of formulas Φ logically implies a formula F if and only if every inter-
pretation that satisfies all formulas in Φ also satisfies F .

Example 6.6 Let L be a first-order language with one binary predicate symbol L, and
consider the following formulas of L:

F1 : ∀x¬L(x, x)
F2 : ∀x ∀y ∀z

(
L(x, y) ∧ L(y, z)→ L(x, z)

)

F3 : ∀x ∀y
(
L(x, y)→ ¬L(y, x)

)

F4 : ∀x ∀y
(
L(x, y) ∨ L(y, x)

)

Intuitively, F1 says that the binary relation represented by L is irreflexive, F2 says that the
relation is transitive, F3 says that the relation is antisymmetric, and F4 says that the relation
is a total order.

Let Φ = {F1, F2}. A structure that satisfies both formulas in Φ must therefore interpret
L as an irreflexive and transitive relation. There are many such relations: For example, it is
easy to verify that the < relation over the natural numbers has these properties, as does the
relation ≺ over N× N, defined as follows:

(a, b) ≺ (a′, b′) if and only if a < a′ and b < b′

For example, (2, 3) ≺ (3, 5) but (0, 3) 6≺ (1, 2) and (3, 2) 6≺ (1, 1).
We claim that Φ logically implies F3. Suppose, for contradiction, that it does not. This

means that there is a structure S that satisfies F1 and F2 but falsifies F3. Since F3 is false
in S, it means that there are elements a and b in the domain of S such that (a, b) ∈ LS and
(b, a) ∈ LS . But then, since S satisfies F2, it follows that (a, a) ∈ LS , which contradicts the
assumption that S satisfies F1. We have therefore shown that Φ logically implies F3. Intuitively
this means that every relation that is irreflexive and transitive is necessarily antisymmetric.
Hence, < and ≺ are both antisymmetric.

On the other hand, Φ does not logically imply F4. To see this, consider the structure
S that has domain N × N and interprets the predicate symbol L as the relation ≺. As we
mentioned before, this structure satisfies both formulas in Φ. Clearly, it does not satisfy F4

since (0, 3) 6≺ (1, 2) and (1, 2) 6≺ (0, 3) — i.e., there are elements of the domain neither of which

an elementary example of the study of the expressive power of formal systems. There, we saw that in some
cases — e.g., if we are allowed to use only ∧ and ∨ — by restricting the connectives that can be used we
reduce the expressive power of formulas; while, in other cases — e.g., if we are allowed to use only ¬ and ∨ —
restricting the connectives that can be used does not affect the expressive power of formulas.
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is related to the other by ≺. Since there exists a structure that satisfies all formulas in Φ and
falsifies F4, Φ does not logically imply F4.

It is also easy to check that Φ does not logically imply ¬F4. We leave the argument proving
this as an exercise. Intuitively, the fact that Φ does not logically imply either F4 or its negation
means that there are irreflexive partial orders that are not total orders as well as ones that
are. End of Example 6.6

The notion of a set of formulas logically implying another is important. Among other
things, we can use to describe formally how mathematics works. Each mathematical theory
(number theory, group theory, geometry, etc) starts with a set of axioms which can be expressed
as first-order sentences in some suitable language. Starting with these axioms, we can prove
the theorems of the mathematical theory, which can also be expressed as first-order sentences.
The set of sentences that represent the axioms of the theory logically imply each sentence that
represents a theorem of the theory.

It is very interesting to note that the process of proof can also be formalised in logic, as a
set of well-defined mechanical rules which allow us to combine sentences that represent axioms
and already proven theorems to yield sentences that represent new theorems. This important
branch of logic, called proof theory, has many important applications to computer science but
lies outside the scope of our brief survey of logic in these notes.

6.9 Prenex normal form

It is sometimes convenient to deal with formulas in which all the quantifiers appear at the
beginning. It turns out, that it is always possible to do this: any formula can be transformed
into a logically equivalent one in which all quantifiers appear in the front.

Definition 6.13 A first-order formula is in Prenex Normal Form (PNF) if and only if
it is of the form

Q1x1Q2x2 . . .Qkxk E

where k ≥ 0, each Qi is a quantifier (∀ or ∃) and E is a quantifier-free first-order formula.

For example, ∀y (S(x, y)→M(x)) and ∀x∃y (P(x, y, z) ∧ ¬M(x)→S(x, z)) are formulas in
PNF. On the other hand, ∀x∃y (P(x, y, z) ∧ ¬M(x)→∃z S(x, z)) and ∃y S(x, y)→F(x) are not
in PNF. The second of these may at first appear to be in PNF since it does consist of a
quantifier, ∃y, followed by a quantifier-free formula, S(x, y)→F(x). However, this formula is
really an abbreviation for (∃y S(x, y)→F(x)), with the outermost parentheses removed, and as
can be seen this formula in not in PNF. In contrast, the formula ∃y (S(x, y)→F(x)) is in PNF.
As we have discussed, however, this is different from (and, in fact, not even logically equivalent
to) ∃y S(x, y)→F(x).

Theorem 6.14 For any first-order formula F there is a PNF formula F̂ that is logically
equivalent to F .
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The basic idea is to transform F into F̂ by moving the quantifiers in F outwards one-
at-a-time, using the “factoring” rules (IIa)–(IIf), and the subformula substitution rule (V).
Sometimes we can’t directly apply the factoring rules because we need to factor a quantifier
Qx in a subformula such as E ∧ QxF , and x does occur free in E. In this (and similar)
cases, we first apply the renaming rule (III) and thereby eliminate this difficulty so that we
can then apply the relevant factoring rule. The formal proof of Theorem 6.14 is by structural
induction on F , and is left as an exercise. Instead we illustrate the process described above
by an example. In justifying each step we suppress any reference to rule (V) (subformula
substitution):

∀x
(
∀z

(
P(x, y, z) ∨ ∃u S(z, u)

)
→M(z)

)

leqv ∀x
(
∀v

(
P(x, y, v) ∨ ∃u S(v, u)

)
→M(z)

)
[by (III)]

leqv ∀x∃v
((

P(x, y, v) ∨ ∃u S(v, u)
)
→M(z)

)
[by (IIe)]

leqv ∀x∃v
(
∃u

(
P(x, y, v) ∨ S(v, u)

)
→M(z)

)
[by (IIb)]

leqv ∀x∃v∀u
((

P(x, y, v) ∨ S(v, u)
)
→M(z)

)
[by (IIe)]

The formula on the last line is in PNF and is logically equivalent to the formula we started
with.

As this examples shows, to put a formula in Prenex Normal Form, we sometimes need to
rename variables. This is one of the technical reasons for requiring the first-order language to
have an unlimited supply of variables, to which we alluded in Footnote 1.

6.10 Order of quantifiers

The order of quantifiers of the same type does not matter. In general, for any formula E,
QxQy E leqv QyQxE. On the other hand, however, the order of quantifiers of different
types can be very important for the meaning of the formula. As an example, suppose the
domain is the set of people, and L(x, y) stands for the predicate “x loves y”. Compare the
meanings of the formulas

∀x∃y L(x, y) and ∃y∀xL(x, y)

The formula on the left states that everybody loves someone; while the one on the right states
that someone is loved by everyone! Similarly, if the domain is the set of natural numbers, and
L(x, y) stands for the predicate x < y, the formula on the left states that for each number
there is a larger one (which is true), while the one on the right states that there is a number
that is larger than all numbers (which is false).

Let us look more closely into the difference between the formulas ∀x∃y E and ∃y∀xE. The
first formula, ∀x∃y E is true (in some interpretation) if, for every element x of the domain, we
can find some element y so that E holds. Note that the y we choose may depend on the x;
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in particular, for different x’s we can choose different y’s. In contrast, the formula ∃y∀xE is
true if there exists an element of the domain so that for every element of the domain E holds.
Now we must choose a single y that “works” for all possible values of x; we don’t get to choose
different y’s for different x’s!

In general, ∃y∀xE logically implies ∀x∃y E for any formula E. The converse is not neces-
sarily true. In some special cases ∃y∀xE and ∀x∃y E can be equivalent. As an exercise show
that ∀x∃y (M(x) ∧ F(y)) is logically equivalent to ∃y∀x (M(x) ∧ F(y)) (hint: transform one to
the other using the rules of Section 6.6).

6.11 Reference and its effect on meaning

In this section we explore, in greater detail, the subject of Section 6.2.3 — namely, free and
nonfree occurrences of variables — and we discuss the effect of variable names on the meaning
of a formula. All the examples in this section involve formulas in the language of familial
relationships LF (see page 146) and can be interpreted by thinking of predicate symbols P, S,
M and F as expressing the predicates parents-of, sibling-of, is-male and is-female, respectively.

6.11.1 Scope of quantifiers, and binding of variables

Consider a first-order formula E that contains a subformula of the form QxE ′. We refer to
the subformula E ′ as the scope of the quantifier Qx in E. Informally, the scope of a quantifier
in E is the subformula of E to which the quantifier “applies”. In the example below we use
braces to show the scope of the various quantifiers that appear in a formula:

∃x (∀y
scope of ∀y︷ ︸︸ ︷

(S(x, y)→F(y))∧∃u
scope of ∃u︷ ︸︸ ︷
S(u, x))︸ ︷︷ ︸

scope of ∃x

(This formula says that there is someone all of whose siblings are female and who has a sibling.)
In terms of the tree representation of formulas, the scope of a quantifier is the subtree whose
root is the node that contains that quantifier.

Using this idea of the scope of a quantifier, we can rephrase Definition 6.2 as follows: An
occurrence of variable x is free in a formula if it does not occur within the scope of a Qx
quantifier. Now consider an occurrence of x that is not free, i.e., that occurs within the scope
of a Qx quantifier. We want to determine the particular quantifier to which that occurrence
of x refers — or, to use different terminology, the quantifier to which the occurrence of x is
bound. As we will see, this is critical for understanding the meaning of a formula.

We can’t simply say that an occurrence of x is bound to the Qx quantifier within whose
scope it appears, because there may be several such quantifiers. For instance, consider the
formula

∀x∀y
N

(F(y) ∧ ∀y
�

(S(x, y)→M(y))︸ ︷︷ ︸
E

→¬S(y, x))

(This formula says that every female person is not the sibling of anyone all of whose siblings
are male.) The two occurrences of y in the subformula E are in the scope of two ∀y quantifiers,
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marked with N and �. So, the question is: are the two occurrences of y in E bound to the N or
to the � quantifier in the above formula?

Some thought will convince you that the truth value of formulas (see Definition 6.6 in
Section 6.3.3) is defined in such a manner that an occurrence of a variable x that is within the
scope of multiple x-quantifiers (as is the case for y in our previous example) is bound to the
closest such quantifier. Thus, in our example, the two occurrences of y in E are bound to the
∀y quantifier marked with �.

Notice that, by the definition of first-order formulas, if an occurrence of a variable appears
within two subformulas, say E1 and E2, then one of E1, E2 must be a subformula of the other.
(This is because formulas are built up in a tree-like fashion from smaller ones.) As a result,
when an occurrence of x is within the scope of multiple x-quantifiers, there is a unique such
quantifier that is “closest” to the occurrence of x. In terms of the tree representation of
formulas, an occurrence of a variable x is bound to the first quantifier in the path from the
node that contains the occurrence to the root of the tree. So, our rule about which quantifier
an occurrence of x is bound to is well-defined.

To summarise, each occurrence of a variable x in a formula is either free or bound; in the
latter case, it is bound to a particular Qx quantifier: the closest one within whose scope the
occurrence of x lies. Note that, within a single formula, different occurrences of the same
variable may be free or bound; and that different nonfree occurrences of a variable may be
bound to the same or to different quantifiers. In the example below we have used asterisks
to mark the free occurrences of variables, and arrows to indicate the quantifier to which each
nonfree occurrence of a variable is bound.

∀x (S(x←−−−, y∗
)→∃
←−−−−−−−−−−−−−−−−−−←−−−−−−−
u (∃vP(v←−−, u, y∗

) ∧ ∃v P(v←−−−, u, x←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
)))

(This formula says that every sibling of y has at least one parent in common with y.)

6.11.2 Binding of variables and meaning

The binding of variables to quantifiers crucially affects a formula’s meaning. For example,
compare the following two formulas:

∀x
(
M(x) ∨ F(x)

)
and ∀xM(x) ∨ ∀xF(x)

The first formula asserts that each person is either male or female (which is at least plausible),
while the second formula asserts that either each person is male or each person is female
(which is surely false). Note the difference in the binding of variables to quantifiers in these
two formulas: in the first, the two occurrences of x are bound to the same universal quantifier;
in the second, each occurrence of x is bound to a different universal quantifier. It is precisely
this difference that results in the two different meanings.

The binding of variables to quantifiers in first-order formulas plays a role analogous to
that often played by pronouns (and related constructs) in English. For instance one (slightly
awkward) way of expressing the formula ∀x (M(x) ∨ F(x)) is to say: For each person, either it
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is male or it is female — where the pronoun “it” refers (twice) to “the person in question”. In
this case the binding is relatively simple because we have two references to the same person,
so we can use the pronoun “it” without creating any ambiguity as to which person it refers.

In contrast, consider the formula ∀x∃y S(x, y) (everybody has a sibling). If we tried to
express this using pronouns to bind the persons involved to the quantifiers to which they refer
we would get:

For each person there is a person so that it is its sibling

which is hopelessly ambiguous. One way to make clear, in English, which of the two instances
of “it” refers to which of the two persons in question is by using the words “former” and
“latter”. So, we might express this statement as:

For each person there is a person so that the latter is a sibling of the former .

Things get much more complicated if there are more quantifiers involved. These examples
should make clear the great advantage of first-order logic over natural languages in expressing
complex statements in a relatively succinct and completely unambiguous manner. The mecha-
nism by which variables are bound to quantifiers is key in securing these beneficial properties
of first-order logic as a formal notation.

The idea that the complex predicates that arise in mathematical statements can be con-
veniently and precisely expressed using a fairly simple vocabulary, involving quantifiers, was
fruitfully pursued by the great German logician and philosopher Gottlob Frege towards the
end of the 19th century. He devised a precise notation for expressing predicates in this man-
ner which included, crucially, a mechanism for binding variables to quantifiers. Although his
notation was much more complicated and awkward compared to that we use in logic today, he
is widely considered as the founder of modern logic.

6.11.3 Variables in formulas and variables in programs

The rule for binding occurrences of variables to quantifiers is very similar to the scoping rules
of most programming languages. Consider, for instance, the following C program:

main()

{
int x; x=1; printf("%d",x);

if (1) {int x; x=2; printf("%d",x);}
if (1) {printf("%d",x); x=3;}
if (1) {int x; x=4; printf("%d",x);}
printf("%d",x);

}

The sequence of values printed by this program is: 1, 2, 1, 4, 3. To see this you should match (or
bind) each occurrence of variable x to the declaration (i.e., the statement int x) to which it
refers; occurrences bound to the same declaration refer to the same object x, while occurrences
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bound to different declarations refer to different objects named x. The scoping rules used to
determine which variable occurrence binds to which declaration in a program are the same as
those used to determine which (nonfree) occurrence of a variable binds to which quantifier in
a first-order formula.

There is another interesting analogy between variables in a formula and variables in a
program: A free variable in a formula is similar to a global variable in a program; in contrast,
a bound variable in a formula is similar to a local variable in a program. If we take two
procedures P1 and P2 that use x as a global variable, and put them together in the context
of a larger program P , the references to x in P1 and P2 are references to the same object x.
Similarly, if we take two formulas E1 and E2 that use x as a free variable (e.g., E1 might be
M(x) and E2 might be F(x)) and we put them together to form a larger formula (e.g., the
formula M(x) ∨ F(x)), the occurrences of x in this larger formula refer to the same object x.

In contrast, if we take two procedures P1 and P2 each of which use x as a local variable,
and put them together in the context of a larger program P , the references to x in P1 and P2

refer to different objects named x. Similarly, if we take two formulas E1 and E2 in which x is
not free (e.g., E1 might be ∀xM(x) and E2 might be ∀xF(x)) and we put them together to
form a larger formula (e.g., the formula ∀xM(x)∨∀xF(x)), the occurrences of x in this larger
formula refer to different objects x.

As we remarked in our discussion of the Renaming rule in Section 6.6, renaming free
variables does not preserve logical equivalence while renaming bound variables does. This
makes perfect sense in terms of our analogy between variables in formulas and variables in
programs. If we change the name of a free variable we change the meaning of a formula — just
as if we change the name of a global variable used in a program P we change what the program
does: Another program that uses P may no longer work correctly because it expects a value in
one global variable and P (after the renaming) puts that value in another. In contrast, if we
change the name of a bound variable in a formula we don’t change the meaning of the formula
— just as if we change the name of a local variable used in a program P we don’t change what
the program does: Any other program that uses P will work just as well after the renaming
as it did before.

6.11.4 Renaming revisited

Recall the renaming logical equivalence, i.e., rule (III) in Section 6.6. This rule says that if we
take a formula QxE and we rename the quantified variable, x, and all the occurrences of x
that are bound to the leading quantifier, Qx, by a new variable, y, that does not occur in E,
then the resulting formula, Qy Ex

y , is logically equivalent to the original one, QxE.
The essence of this rule is that the renaming must occur in such a manner as to preserve the

binding of variables to quantifiers. Although the particular names of the quantified variables
are not important to a formula’s meaning, the pattern of variable-to-quantifier binding is
critical. Change this binding and, in general, you change the meaning of the formula.

The requirement that the new name y that we use to replace x should not occur in E is
stronger than necessary. In some cases, we can preserve the variable-to-quantifier bindings
while using a variable name that does occur in E. A more general (but more complex) rule
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for when x can be renamed y in QxE, while preserving the variable-to-quantifier binding, is
the following: (a) there is no free occurrence of y in E, and (b) there is no free occurrence of
x in E that is within the scope of a y-quantifier. We now discuss the necessity of (a) and (b),
starting with the former.

If y is a free variable in E, then QxE and Qy Ex
y have different sets of free variables: y is

free in the former, but not in the latter. Thus, the two formulas are, in general, not logically
equivalent.

Regarding (b), if x occurs free within the scope of a y-quantifier in E, then any such
occurrence is bound to a different quantifier in QxE than in Qy Ex

y : In the former it is bound
to the leading Qx quantifier (since it is free in E), while in the latter it is bound to some y
quantifier within Ex

y , and not to the leading Qy quantifier. Since the renaming of x to y in
this case changes the binding of variables to quantifiers, the meaning of the resulting formula,
in general, is different and the two formulas are not logically equivalent.

For a concrete example, consider the formula

∃x
(
M(x) ∧ ∀y

(
S(x, y)→F(y)

))

︸ ︷︷ ︸
E

(This says that there is someone who is male and all of whose siblings are female.) Variable x
occurs free within the scope of a ∀y quantifier in E. If we rename each free occurrence of x to
y in E we get

∃y
(
M(y) ∧ ∀y

(
S(y, y)→F(y)

))

︸ ︷︷ ︸
Ex

y

(This says that there is someone who is male and everyone who is oneself’s sibling is female —
quite different from what ∃xE says!) In contrast, if we rename each free occurrence of x to z
in E we get

∃z
(
M(z) ∧ ∀y

(
S(z, y)→F(y)

))

︸ ︷︷ ︸
Ex

z

(This, just like ∃xE, says that there is someone who is male and all of whose siblings are
female.)

In summary, the revised and more general renaming rule is:

III′. QxE leqv Qy Ex
y , for any formula E and any variables x, y such that y does not

occur free in E and x does not occur free within the scope of a y-quantifier in E.
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Exercises

1. Consider the first-order language of arithmetic described on page 146 of the notes. Let N
and Z be structures for this language, with domains N and Z, respectively, and the standard
meaning for the predicate symbols. More formally:

SN = {(a, b, c) ∈ N
3 : a+ b = c} SZ = {(a, b, c) ∈ Z

3 : a+ b = c}
PN = {(a, b, c) ∈ N

3 : a · b = c} PZ = {(a, b, c) ∈ Z
3 : a · b = c}

LN = {(a, b) ∈ N
2 : a < b} LZ = {(a, b) ∈ Z

2 : a < b}
≈

N = {(a, b) ∈ N
2 : a = b} ≈

Z = {(a, b) ∈ Z
2 : a = b}

0N = 0 0Z = 0

1N = 1 1Z = 1

For each of the sentences below, state whether it is true or false in each of N and Z. Justify
your answer by translating the formula into a statement (in precise English) about numbers,
and then explain why that statement is true or false for natural numbers and for integers.

(a) ∃x ∀y
(
L(x, y) ∨≈(x, y)

)

(b) ∃x ∀y
(
L(y, x) ∨≈(x, y)

)

(c) ∀x ∃y L(x, y)
(d) ∀x ∃y L(y, x)
(e) ∀x ∃y S(x, y,0)
(f) ∃x ∀y S(x, y,0)
(g) ∃x ∀y S(x, y, y)
(h) ∀x ∀y

(
L(x, y)→∀u∀v

(
P(x, x, u) ∧ P(y, y, v)→L(u, v)

))

2. Consider the same first-order language of arithmetic as in the previous exercise, enriched
with a new constant symbol 2 which is intended to represent the integer 2. In this question
we will be working with this language in the structure N also defined in the previous exercise.
The following formula Prime(x) expresses the predicate “x is prime” in N :

Prime(x) : L(1, x) ∧ ∀y ∀z
(
P(y, z, x)→

(
≈(y,1) ∨≈(z,1)

))

(a) Goldbach’s conjecture asserts that every even integer greater than 2 can be expressed
as the sum of two prime numbers. Nobody knows whether this is true or false. Write
a formula to express Goldbach’s conjecture. In your answer you may use the predicate
Prime(x) for which a formula was given above.

(b) Twin primes are prime numbers that are two apart; e.g., 3 and 5 are twin primes,
as are 17 and 19. The twin-prime conjecture asserts that there are infinitely many
twin primes. Nobody knows whether this is true or false. Write a formula to express the
twin-prime conjecture. (Hint: You can say that there are infinitely many numbers with
property P by saying that for each number there is a larger number with property P .)
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3. In the previous exercise we asserted that the formula Prime(x) expresses the predicate “x
is prime” in N : More precisely, this means that an interpretation (N , σ) satisfies Prime(x) if
any only if σ(x) is a prime number.

(a) Explain why the formula Prime(x) given in the previous exercise does not express “x is
prime” in Z (where the domain is all integers, including negative ones).

(b) Give a formula that expresses “x is prime” in Z.

4. Write a formula to express Proposition 1.7 (page 27) in the notes.

5. Professors John Friedlander of the University of Toronto and Henryk Iwaniec of Rutgers
University recently proved that there are infinitely many primes of the form y2 + z4, where y
and z are integers. Write a first-order formula in the language of arithmetic that expresses this
fact. Your formula may contain the predicate Prime(x), as a shorthand for the formula given
in Exercise 2.

6. For each of the following assertions, state whether it is true or false, and justify your
answer. In (a)–(d) A and B are unary predicates in the first-order language.

(a) ∀x
(
A(x)→B(x)

)
logically implies ∃x

(
A(x) ∧ B(x)

)
.

(b) ∃x
(
A(x)→¬B(x)

)
is logically equivalent to ¬∀x

(
A(x) ∧B(x)

)
.

(c) ∃xA(x) ∧ ∃x¬A(x) is logically equivalent to ∃x
(
A(x) ∧ ¬A(x)

)
.

(d) ∃xA(x) ∨ ∃x¬A(x) is logically equivalent to ∃x
(
A(x) ∨ ¬A(x)

)
.

(e) For any first-order formulas E and F such that x does not appear free in F , ∀xE↔F is
logically equivalent to ∀x (E↔F ).

7. Consider a relational database that describes an aspect of the activities in a university.
Specifically, the database schema consists of the following relations:

• Student(s, n, a) — a tuple (s, n, a) belongs to this relation if the student whose SIN is
s has name n and address a. We assume that the SIN uniquely identifies a student;
however, there could be different students with the same name (or address).

• Course(c, n) — a tuple (c, n) belongs to this relation if there is a course whose code is c
(e.g., CSCB38) and whose name is n (e.g., Discrete Mathematics).

• Takes(s, c, y,m) — a tuple (s, c, y,m) belongs to this relation if the student whose SIN is
s took (or is now taking) course c in year y and received a mark of m. We assume that
if a student is presently taking the course but has not completed it yet, the mark m has
value I (for “incomplete”).

• Teaches(n, c, y) — a tuple (n, c, y) belongs to this relation if the professor whose name is n
taught (or is now teaching) course c in year y. We assume that each professor is uniquely
identified by her/his name, and that each course is offered only once in each year.

Write formulas to express the following queries:
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(a) Find the name and address of every student who took (or is taking) CSCB38 in 1999.

(b) Find the names of all courses ever taught by MacLean.

(c) Find the names of all students who received an A in CSCB70 when Panario taught the
course.

(d) Find the names of all courses that were taught only by Rackoff.

(e) Find the names of all courses taught in 1999 by any professor who has never failed a
student in any course that she/he ever taught. (A student fails a course, if her/his mark
is F.)

(f) Find the name of every student who has received an A in every course that she/he has
completed (i.e., every course that the student has taken except those that she/he is
presently taking).

(g) Find the name of every course that has not been taken by any student who has taken (or
is presently taking) CSCB38.

8. Let F and F ′ be first-order formulas that express queries Q and Q′, respectively, and
suppose that F logically implies F ′. Which of the following is true?

(a) Query Q always returns at least as many tuples as query Q′ does, regardless of the
database state.

(b) Query Q always returns no more tuples than query Q′ does, regardless of the database
state.

(c) Query Q may return more, fewer, or equally many tuples as query Q′ does, depending on
the database state.

9. Suppose we wish to retrieve the titles of the books that have been borrowed by all sub-
scribers. Note that this description is ambiguous because it is not clear whether we mean
to retrieve the books every copy of which was borrowed by all subscribers, or the books at
least one copy of which was borrowed by all subscribers. Give two first-order formulas, each
expressing one of the two meanings of this query.

10. Consider the query expressed by Formula (6.16). If we ask this query in a database
state in which the library owns no book by Marquez (i.e., there is no tuple of the form
(∗, ∗, “Marquez”) in relation Book), what set of tuples will be returned?

11. For each of the statements below state whether it is true or false and justify your answer.
For any formula F and any set of formulas Φ:

(a) If Φ logically implies F then Φ does not logically imply ¬F .

(b) If Φ does not logically imply F then Φ logically implies ¬F .



Chapter 7

FINITE STATE AUTOMATA AND
REGULAR EXPRESSIONS

7.1 Introduction

In this chapter we look at a small part of a great mathematical theory, known as the theory
of formal languages and automata, which was largely motivated by applications in computer
science. We will give some sense of the wide applicability of this theory in Section 7.1.3, but
first we need to establish some basic definitions.

7.1.1 Strings and languages

Definition 7.1 An alphabet is a set Σ whose elements are called symbols. A string (over
a specified alphabet Σ) is a finite sequence of symbols from Σ. The empty sequence is a string
and is denoted ǫ. The set of all strings over alphabet Σ is denoted Σ∗.

When discussing strings there are some notational conventions to which we will adhere.
When we write out a string as a sequence we generally do not separate its elements by commas
and we do not enclose the entire sequence within angled brackets 〈. . .〉. Thus, if the alphabet is
{0, 1}, we write 0100 instead of 〈0, 1, 0, 0〉; if the alphabet is {a, b, . . . z}, we write turn instead
of 〈t, u, r, n〉.1 We use lower-case letters near the beginning of the (English) alphabet, such as
a, b, c, to denote generic symbols in Σ. We use lower-case letters near the end of the (English)
alphabet, such as x, y, z, to denote generic strings in Σ∗.

Strings, being (finite) sequences, inherit definitions, operations and relationships that apply
to sequences in general (see Chapter 0, page 11). We repeat some of these here. The length

1This means that the symbols of the alphabet must be regarded as “atomic” — i.e., not decomposable into
smaller units. For example, we can’t have symbols a and aa in the alphabet because then our convention of
leaving out the commas would make the string aaa ambiguous: is it the sequence whose first element is a and
whose second element is aa (i.e., 〈a, aa〉), the sequence whose first element is aa and whose second element is a
(i.e., 〈aa, a〉), or the sequence that has three elements, all of them a (i.e., 〈a, a, a〉)? The assumption of symbol
“atomicity” can be made with no loss of generality, since we can think of the k elements of alphabet Σ as the
atomic symbols a1, a2, . . . , ak.

183
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of a string x, denoted |x|, is the number of elements in the sequence x; e.g., |mississippi| = 11;
|ǫ| = 0. The concatenation of strings x and y, denoted x ◦ y or xy, is the sequence obtained
by juxtaposing y after x; e.g., abaa ◦ babb is the string abaababb. The reversal of string x,
denoted (x)R is the string obtained by listing the elements of x in reverse order; e.g. (abab)R

is the string baba. For any k ∈ N, we define the k-th power of a string x, denoted xk by
induction on k:

xk =

{
ǫ, if k = 0

xk−1 ◦ x, if k > 0
(7.1)

Thus, exponentiation of strings is repeated concatenation.
Two strings x, y are equal, denoted x = y, if |x| = |y| and the ith symbol of x is the same

as the ith symbol of y, for every i such that 1 ≤ i ≤ |x|. A string x is a substring of string
y if there are strings x′, x′′ (either or both of which may be ǫ) such that x′xx′′ = y; if x′ 6= ǫ
or x′′ 6= ǫ then x is a proper substring of y.2 A string x is a prefix of string y if there is a
string x′ (possibly x′ = ǫ) s.t. xx′ = y; if x′ 6= ǫ then x is a proper prefix of y. We say that
x is a suffix of y if there is an x′ (possibly x′ = ǫ) s.t. x′x = y; if x′ 6= ǫ then x is a proper
suffix of y. Thus, turn is a (proper) substring of nocturnal, a (proper) prefix of turnip, and a
(proper) suffix of saturn.

We have defined the set of strings over Σ as the set of all finite sequences whose elements
belong to Σ. We can also define the same set recursively.

Definition 7.2 Let SΣ be the smallest set such that:

Basis: ǫ ∈ SΣ.
Induction Step: If x ∈ SΣ and a ∈ Σ then xa ∈ SΣ.
Using induction it is easy to prove that the set defined above is the set of all strings over Σ.
That is,

Theorem 7.3 The set SΣ defined in Definition 7.2 is equal to Σ∗.

In other words, this theorem assures us that the set we defined recursively is truly the set of
strings over Σ.

This alternative definition of the set of strings over Σ is quite useful because it allows us to
define various operations on strings and to prove various properties of strings, using structural
induction. We illustrate this with some examples.

Example 7.1 The reversal of a string x, (x)R, can be defined recursively, by structural
induction on x.

Basis: x = ǫ. In this case, (x)R = ǫ.

Induction Step: x = ya, for some y ∈ Σ∗ and a ∈ Σ, where we assume, inductively, that
(y)R has been defined. In this case, (x)R = a(y)R.

2Note that the notion of substring corresponds to the notion of contiguous subsequence, rather than to the
notion of subsequence.
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We can now use structural induction to prove an interesting property of the reversal oper-
ation.

Theorem 7.4 For all strings x and y, (xy)R = (y)R(x)R.

Proof. Let P (y) be the predicate on strings

P (y) : for any string x, (xy)R = (y)R(x)R

Using structural induction we will prove that P (y) holds for all y.

Basis: y = ǫ. Then by the basis of the recursive definition of reversal, y = (y)R = ǫ. Thus,

(xy)R = (xǫ)R [since y = ǫ, in this case]

= (x)R [since wǫ = w, for any string w]

= ǫ(x)R [since ǫw = w, for any string w]

= (y)R(x)R [since (y)R = ǫ, in this case]

so P (y) holds.

Induction Step: Let y′ be an arbitrary string such that P (y′) holds, i.e., for any x, (xy′)R =
(y′)R(x)R. We must prove that P (y) also holds for any string y that can be constructed from
y′ by the inductive step of the recursive definition of strings. That is, we must prove that, for
any a ∈ Σ, if y = y′a then P (y) holds. We have,

(xy)R = (xy′a)R [since y = y′a, in this case]

= a(xy′)R [by the recursive definition of reversal]

= a((y′)R(x)R) [by the induction hypothesis]

= (a(y′)R)(x)R [by associativity of string concatenation]

= (y′a)R(x)R [by the recursive definition of reversal]

= (y)R(x)R [since y = y′a, in this case]

so P (y) holds.

We will be using proofs by structural induction on strings extensively in this chapter.
End of Example 7.1

Definition 7.5 A language (over alphabet Σ) is a subset of Σ∗.

Note that a language may be an infinite set; each string in the language, however, is finite.
Also note that ∅ and {ǫ} are different languages. When we use the word “language” in the
sense of Definition 7.5, we sometimes qualify it with the adjective “formal” to distinguish it
from other uses of that word.
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7.1.2 Operations on languages

Let L,L′ be languages over Σ. It is natural to combine these in order to obtain new languages,
using various set-theoretic or string-oriented operations.

Complementation: L = Σ∗ − L.

Union: L ∪ L′ = {x : x ∈ L or x ∈ L′}.

Intersection: L ∩ L′ = {x : x ∈ L and x ∈ L′}.

Concatenation: L ◦ L′. This is the language consisting of concatenations of strings from L
and L′. That is, L ◦ L′ = {xy : x ∈ L and y ∈ L′}. Note that, by the definition of
concatenation, it follows that ∅ ◦ L = L ◦ ∅ = ∅, for every language L.

Kleene star: L⊛. Informally, the Kleene star (or Kleene closure) of language L, denoted L⊛,
is the set of all possible concatenations of 0 or more strings in L.3 Formally, L⊛ is defined
(by induction) as the smallest language such that:

Basis: ǫ ∈ L⊛.

Induction Step: If x ∈ L⊛ and y ∈ L then xy ∈ L⊛.

It is easy to see that for any language L, a string x belongs to L⊛ if and only if either x = ǫ
or there exists some integer k ≥ 1 and strings x1, . . . , xk ∈ L such that x = x1x2 . . . xk.
This alternative characterisation of the Kleene star operation is sometimes useful.

Language exponentiation: Informally, for any k ∈ N, Lk is the set of strings obtained by
concatenating k strings of L. More precisely, the definition is by induction on k. For any
k ∈ N,

Lk =

{
{ǫ}, if k = 0

Lk−1 ◦ L, if k > 0

Note that, by this definition, L1 = L. See Exercise 2 for an interesting connection
between language exponentiation and the Kleene star operation.

Reversal: The reversal of L, Rev(L) is the set of reversals of the strings in L. That is,

Rev(L) = {(x)R : x ∈ L}
3This operation is named after Stephen Kleene, a mathematician who made many important contributions

to areas of logic that are closely related to computer science. It is traditional to use L∗ (rather than L⊛) to
denote the Kleene star of language L. However, it is also traditional to use the same symbol, ‘∗’, as the regular
expression operator that corresponds to this operation. Regular expressions, which will be introduced in the
next section, are formal expressions that denote languages. At this point, it is important to keep firmly in
mind the distinction between the operation itself and the formal symbol used in regular expressions to denote
it. To emphasise this distinction we use the symbol ⊛ for the former and ∗ for the latter. This is very similar
to the reason why in Chapter 6 we use different symbols for the predicate symbol denoting equality, ≈, and
the actual predicate of equality, = (see Footnote 2 on page 146).
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7.1.3 Examples

The definition of formal language given earlier is certainly related to real languages. For
example, if the alphabet consists of the letters of the Latin alphabet (in lower and upper case),
certain well-defined punctuation marks (like period, comma, semicolon, etc), and certain other
well-defined special symbols such as “blank”, then indeed some strings over this alphabet
belong to the English language and others do not. For instance, the string

This is a legitimate string of the English language.

belongs to this language, while the string

hlgkqk jlkjhllla kjafdgoeirtmbd

does not. Therefore, we can think of the English language as a set of strings.4 Formal languages
can be used to model and fruitfully study a wide variety of phenomena and artifacts. We now
present some examples to illustrate this fact.

Example 7.2 Propositional logic and first-order logic formulas. The set of propo-

sitional formulas defined in Chapter 5 (see Definition 5.1, page 112) is a language over the
alphabet PV ∪ {(, ),¬,∧,∨,→,↔}, where PV is the set of propositional variables. Indeed,
some strings over this alphabet, like

((x ∧ ¬y)→z)

belong to this language and others, like

(x¬y) ∧ ∨z(

do not. Definition 5.1 determines precisely which strings belong to that language. Actu-
ally, strictly speaking, what we defined is not a single language but rather an entire class of
languages — one for each choice of the set of propositional variables. If the set of proposi-
tional variables is infinite (as is sometimes desirable) this example illustrates the possibility of
languages over infinite alphabets.

Similar comments apply regarding the language of first-order formulas defined in Chapter 6
(see, in particular, Sections 6.2.1 and 6.2.2). End of Example 7.2

Example 7.3 Formal languages and compilation. Many aspects of programming
languages can be conveniently described as languages in the sense of the mathematical defini-
tion given above. Consider, for example, an assignment statement, available in all procedural
programming languages, that might have the form

variable-name := numeral
4Of course, the view of natural language as merely a set of strings is a very narrow one. There are aspects

of natural language (such as syntax and even semantics) for which this point of view can be, to some extent,
useful — and many other aspects (such as literature and poetry) for which this view is totally useless.
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where variable-name is an identifier such as x or temp; and numeral is a numeric constant,
such as 17 or −2.17.

The set of identifiers can be viewed as the language Lid consisting of all nonempty al-
phanumeric strings whose first symbol is alphabetic. Similarly, we can view numerals (in
decimal notation) as the language Lnum consisting of all nonempty strings over the alphabet
{0, 1, 2, . . . , 9}. If we want to allow the representation of negative numbers and of fractional
numbers, we can define a more complicated language of numerals Lnum which includes strings
such as −17, +3.17 and −.17. This is the language over the alphabet

{0, 1, 2, . . . , 9} ∪ {+,−, .}

that consists of all nonempty strings that are the concatenation of four strings x1, x2, x3 and
x4, where
• x1 is the empty string, or the string consisting of just the symbol +, or the string consisting
of just the symbol −;
• x2 is a string over the alphabet {0, 1, 2, . . . , 9};
• x3 is the empty string, or the string consisting of just the symbol .; and
• x4 is a string over the alphabet {0, 1, 2, . . . , 9}.
Not only various pieces of a programming language (like the set of identifiers, or numerals),

but the entire programming language itself can be viewed as a formal language in the sense
of Definition 7.5. The symbols of the alphabet of this language are so-called lexical tokens.
These are things like identifiers (elements of a language such as Lid defined above), numeric
constants (elements of a language such as Lnum defined above), reserved keywords of the
language (strings such as if, then, else, for, while, etc), certain symbols (such as semicolon,
parentheses etc), and so on. Then the programming language consists of the set of strings
over the alphabet of lexical tokens that conform to certain syntactic rules whose precise nature
depends on the particular programming language at hand.

The process of compiling a program in a given programming language consists of three
phases. The first task, called lexical analysis, is to break up the program into its lexical
tokens. The second task, called parsing, is to determine whether the given program is syntac-
tically correct — i.e., whether the lexical tokens have been strung together in accordance with
the rules of the programming language. If the program is found to be syntactically correct, the
compiler proceeds to the third phase, called code generation. In this phase the given pro-
gram is translated into an “equivalent” program in a different language that can be executed
— typically, the machine language of the processor on which the program will be run.

Each of the three phases of compilation is a computational task involving formal languages.
Lexical analysis and parsing require algorithms for language recognition. This is the task
of determining whether a given string belongs to some specified language. Code generation
requires algorithms for language translation. This is the task of mapping strings from a
given “source language” (e.g., the language of C programs) into “equivalent” strings in another
“target language” (e.g., the language of programs consisting of Intel Pentium instructions).

The details of the various facets of compilation are fascinating and the subject of separate
courses. The point we wish to make here is that the abstract mathematical theory of formal
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languages (glimpses of which we will get in this chapter) has important practical applications.
It is fair to say that, without advances in this theory, we would not have high-level programming
languages. End of Example 7.3

Example 7.4 Describing the behaviour of systems. Our final example illustrates
the use of languages to formally model the desired behaviour of a simple distributed system.
Suppose we have a small network with two workstations belonging to two users sharing a
common printer. A user who wishes to print a document does so by invoking the “print”
command on his/her workstation. Of course, the printer should not be printing documents of
both users at the same time — otherwise, the pages of the two users’ documents will come
out all mixed together. For this reason, the two users must coordinate their access to the
printer to ensure the property of mutual exclusion: only one user’s job can be printing at
any one time. Each user can issue a request to use the printer, the printer can grant access to
a requesting user, and a user who has been granted access can release the printer.

We want to give a formal description of the correct behaviour of such a system. There are
at least two reasons for doing so:

Specification: The designer of the system must specify the desired behaviour of the system,
so that the implementor knows what kind of system to build.

Documentation: The implementor of the system must document the behaviour of the system
he/she built, so that future implementors can modify the system.

When we say that we want to describe the “correct behaviour of the system” we mean, for
example, that we must preclude a behaviour in which a user relinquishes the printer without
having been previously granted access to it, or that the printer grants access to a user who
has not previously requested it. We also want to preclude other undesirable behaviours, such
as the printer granting access to both users at the same time.

We can use formal languages to provide a precise description of the correct behaviour of
such a system, as we now proceed to show. There are three kinds of events of interest in this
system: The “request” event, indicating that a user requests access to the printer; the “grant”
event, indicating that the printer has granted a user’s request; and the “done” event, indicating
that a user relinquishes its access. Since there are two users, we will need to distinguish between
events of the two users. Thus we use the symbols R, G and D, respectively, to denote the request,
grant and done events for the first user; similarly, r, g and d denote these three events for the
second user.

We can now view a behaviour of the system (not necessarily a correct one), as a string
over the alphabet consisting of these six events: Σ = {R, G, D, r, g, d}. The relative position of
two events in the string indicates their temporal ordering: if the symbol corresponding to an
event e precedes (in the string) the symbol corresponding to event e′, then the string models
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a behaviour of the system in which e occurred before e′. Here are some example strings in Σ∗:

x = RrgdGrDRGDRGDgd

y = RGrDdGD

z = rgRGDd

Let us trace the first string in detail to understand what system behaviour it models: The first
event that occurs in this behaviour is that the first user requests access to the printer (the
initial R symbol). Next, the second user requests access to the printer, the request is granted,
and the user then releases the printer (this corresponds to the substring rgd). Then the first
user’s pending request is granted, the second user requests access to the printer again, and the
first user (who presently has access to the printer) relinquishes the printer (this corresponds
to the substring GrD). At this point there is one pending request by the second user. Before
this request is honoured, however, the first user requests, is granted and relinquishes access to
the printer twice (this corresponds to the substring RGDRGD). After that, the pending request
of the second user is granted and, finally, the printer is released (this corresponds to the final
substring gd).

The second string, y, corresponds to an incorrect behaviour of the system: the second user
relinquishes the printer without having previously gained access to it (there is a d symbol but
no preceding g symbol). The third string, z, corresponds to an incorrect behaviour in which
the mutual exclusion property is violated: after the prefix rgRG both users have access to the
printer at the same time.

We can describe the correct behaviour of the system, as a language Lsys over the alphabet
Σ consisting of those strings in which the sequence of events does not violate the desired
behaviour. Specifically, a string x in Σ∗ belongs to Lsys if and only if all of the following hold.

(a) if x contains a symbol in {R, G, D} (respectively, {r, g, d}), then the first such symbol is R
(respectively, r);

(b) for any y ∈ Σ∗, if Ry (respectively, ry) is a suffix of x, then y contains some symbol in
{R, G, D} (respectively, {r, g, d}) and the first such symbol is G (respectively, g);

(c) for any y ∈ Σ∗, if Gy (respectively, gy) is a suffix of x, then y contains some symbol in
{R, G, D} (respectively, {r, g, d}) and the first such symbol is D (respectively, d);

(d) for any y ∈ Σ∗, if Dy (respectively, dy) is a suffix of x, and y contains a symbol in {R, G, D}
(respectively, {r, g, d}), then the first such symbol is R (respectively, r);

(e) for any y ∈ Σ∗, if Gyg (respectively, gyG) is a substring of x, then y must contain D

(respectively d).

The first four properties ensure that each user goes through (zero or more) cycles of re-
questing the printer, being granted access to it, and then relinquishing it. In particular, a user
can’t just get to use the printer and then relinquish it without being granted access first; and
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the printer can’t grant access to a user who has not requested it. Furthermore, if a user does
request access, then the system is obligated to eventually grant it; and if a user is granted
access, he/she is obligated to relinquish it. The last property ensures mutual exclusive access
to the printer: If at some point access to the printer is granted to one user, access to the printer
cannot be subsequently granted to the other user until the first user is done.

Note that the above description of the system behaviour permits a situation where a user
requests access to the printer, but the other user requests, is granted access and relinquishes
the printer a thousand times before the first user’s original request is honoured. If such
“unfair” behaviour is undesirable, we may wish to rule out such strings from our language,
by imposing additional restrictions on the acceptable strings. For example, we might require
that, in addition to properties (a)–(e), a string x must satisfy the following property in order
to be in the language of acceptable behaviours:

(f) For any y1, y2 ∈ Σ∗, if Ry1ry2 (respectively, ry1Ry2) is a substring of x, then the first
occurrence of G (respectively, g) precedes the first occurrence of g (respectively, G) in y1y2.

This property states that access to the printer is on a first-come-first-served basis: A user
who requests access to the printer before the other will be granted access first. Less stringent
fairness requirements (for example, a user’s request may be overtaken by the other at most
twice) can be specified as well.

This example describes a somewhat simplistic system, but it illustrates important ideas.
Formal language theory and its tools are used extensively in practice to describe the legal
behaviour of systems, both for specification and for documentation purposes.

End of Example 7.4

7.1.4 Overview

The mathematical theory of formal languages is a mature field of computer science with im-
portant and diverse applications that include programming languages, artificial intelligence
(especially natural language processing), specifications of hardware and software, and even
bioinformatics (an emerging field at the intersection of computer science and biology). In this
course we will look at some interesting and important aspects of this theory, but in truth we
will just barely scratch the surface.

We will start our exploration with regular expressions — a simple but useful notation for
describing a certain class of languages. Among other applications, this notation forms the
basis of the search capabilities of powerful editors such as emacs and vi, of pattern-matching
utilities such as grep and awk, and of scripting languages such as perl. We then investigate a
mathematical model of an abstract machine, called finite state automaton. Such an automaton
takes a string as input; after processing it symbol-by-symbol, the automaton either accepts or
rejects the string. We can regard such a machine as a description of a language — namely,
the language consisting of the set of the strings that it accepts. We will prove that finite state
automata and regular expressions are, in a precise sense, equivalent formalisms: they both
describe exactly the same set of languages. Each of these two equivalent methods of describing
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languages has its own advantages, and so both are important to know. We also discuss the
limitations of these two methods of describing languages: Despite their wide applicability, it
turns out that there are important classes of languages that cannot be expressed using these
formalisms. There are other, more powerful, mathematical formalisms with which to express
such languages; we will see one such formalism in Chapter 8.

7.2 Regular expressions

7.2.1 Definitions

Regular expressions are a precise and succinct notation for describing languages. An example
of a regular expression is

(0 + 1)((01)∗0)

This expression describes the set of strings that:

• start with 0 or 1 (indicated by the subexpression (0 + 1));
• are then followed by zero or more repetitions of 01 (indicated by the subexpression (01)∗);
and
• end with 0 (indicated by the final subexpression 0).

For example, 001010 and 10 are strings in the language described by this regular expression,
while 0110 is not.

Regular expressions contain three operators: alternation +, informally meaning “or”; con-
catenation, informally meaning “followed by”; and repetition ∗, informally meaning “zero or
more repetitions of”. As usual, parentheses are used to indicate the order in which the opera-
tors are applied. The precise definition of regular expressions is given below by induction.

Definition 7.6 Let Σ be a finite alphabet. The set of regular expressions RE (over Σ) is
the smallest set such that:

Basis: ∅, ǫ, and a (for each a ∈ Σ) belong to RE .
Induction Step: If R and S belong to RE , then (R + S), (RS) and R∗ also belong to RE .

Following are some examples of regular expressions (over the alphabet {0, 1}):

0 (01) (0 + 1) ((01) + (10)) (11)∗ (((01) + (10))(11)∗)∗

Each regular expression denotes a language (over Σ). In the examples above, the first regu-
lar expression denotes the language {0}; the second example denotes {01}; the third example
denotes {0, 1}; the fourth example denotes {01, 10}; the fifth example denotes the language con-
sisting of strings that are zero or more repetitions of the string 11— i.e. {ǫ, 11, 1111, 111111, . . .};
the last example denotes the language consisting of strings that are the concatenation of zero
or more strings, each of which starts with either 01 or 10, and is followed by zero or more
repetitions of the string 11.

In general, the language denoted by a regular expression is defined inductively, as follows:
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Definition 7.7 L(R), the language denoted by a regular expression R, is defined by
structural induction on R:

Basis: If R is a regular expression by the basis of Definition 7.6, then either R = ∅, or R = ǫ,
or R = a, for some a ∈ Σ. For each of these cases we define L(R):

• L(∅) = ∅ (the empty language, consisting of no strings);

• L(ǫ) = {ǫ} (the language consisting of just the empty string); and

• for any a ∈ Σ, L(a) = {a} (the language consisting of just the one-symbol string a).

Induction Step: If R is a regular expression by the induction step of Definition 7.6, then
either R = (S + T ), or R = (ST ) or R = S∗, for some regular expressions S and (for the first
two cases) T , where we can assume that L(S) and L(T ) have been defined, inductively. For
each of the three cases we define L(R):

• L
(
(S + T )

)
= L(S) ∪ L(T );

• L
(
(ST )

)
= L(S) ◦ L(T ); and

• L(S∗) =
(
L(S)

)⊛
.

The table below gives some additional examples of regular expressions (over Σ = {0, 1}),
along with the language that each denotes:

Expression Language
(0 + 1)∗ all strings of 0s and 1s (i.e., Σ∗)
(0(0 + 1)∗) all nonempty strings of 0s and 1s that begin with 0
((0 + 1)(0 + 1)∗) all nonempty strings of 0s and 1s
(0(0 + 1))∗ all strings of 0s and 1s that can be broken into ≥ 0 two-symbol blocks

where the first symbol of each block is 0

7.2.2 Precedence rules

As is usually the case with formal expressions, if we insist in writing out all the parentheses
required by the formal definition, we get formidable-looking expressions even for simple things.
We can simplify the notation considerably, without introducing ambiguities, by agreeing on
certain conventions that reduce the number of parentheses used. We will use the following
conventions:

(a) We leave out the outermost pair of parentheses. Thus, (0 + 1)(11)∗ is an abbreviation of
((0 + 1)(11)∗).

(b) The precedence order of the binary operators is: concatenation before union. For example,
RS∗ + T is an abbreviation of ((RS∗) + T ); in general, this does not denote the same
language as (R(S∗ + T )).
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(c) When the same binary operator is applied several times in a row, we can leave out the
parentheses and assume that grouping is to the right. Thus, 1011 is an abbreviation of
(1(0(11))), and 11 + 01 + 10 + 11 is an abbreviation of (11 + (01 + (10 + 11))).

7.2.3 Examples of regular expressions

We will now consider some examples where we are given a description of a language and we
are asked to design a regular expression that denotes it. In all our examples we will assume
that the alphabet is Σ = {0, 1}.

Example 7.5 Let L1 be the set of strings in Σ∗ that contain at most two 0s. A regular
expression for L1 is

R1 = 1∗ + 1∗01∗ + 1∗01∗01∗

Informally, our regular expression is correct (that is, it denotes L1), because the first term, 1∗,
denotes the set of strings that contain no 0s at all; the second term, 1∗01∗, denotes the set
of strings that contain exactly one 0; and the third term, 1∗01∗01∗, denotes the set of strings
that contain exactly two 0s. This example is so simple that a more detailed proof is not really
needed; this informal explanation is convincing enough to most people. If challenged, however,
we must be able to produce a rigorous proof — as we will illustrate in subsequent, less obvious,
examples.

Another regular expression that denotes the same set is

R′
1 = 1∗(0 + ǫ)1∗(0 + ǫ)1∗

Informally explain why. End of Example 7.5

Example 7.6 Let L2 be the set of strings that contain an even number of 0s. A regular
expression for L2 is

R2 = 1∗(01∗01∗)∗

Perhaps now it is not quite so obvious that this regular expression is, in fact, correct. How
can we convince ourselves that it is? We need to prove that:

for every string x, x ∈ L2 if and only if x ∈ L(R2) (7.2)

(Note carefully that proving just the “if” direction or just the “only if” direction in (7.2), does
not prove the correctness of R2!)

[if] Let x be an arbitrary string in L(1∗(01∗01∗)∗). Thus, there is some k ∈ N, and y0, y1, . . . , yk ∈
Σ∗ such that

y0 ∈ L(1∗) and yi ∈ L(01∗01∗), for all i such that 1 ≤ i ≤ k

Therefore, there are ℓ0, ℓ1, . . . , ℓk ∈ N and m1,m2, . . . ,mk ∈ N such that

y0 = 1ℓ0 and yi = 01ℓi01mi , for all i such that 1 ≤ i ≤ k
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So, x has exactly 2k 0s (none in y0 and two in each yi, 1 ≤ i ≤ k). Since 2k is even, x ∈ L2,
as wanted.

[only if] Let x be an arbitrary string in L2. Thus, x contains an even number of 0s, say
2k for some k ∈ N. Now we define k + 1 consecutive substrings of x, y0, y1, . . . , yk, delimited
by the 0s as suggested below (where each boxed substring consists entirely of 1s, but may be
empty):

x = 1 · · · 1︸ ︷︷ ︸
y0

0 1 · · · 1 0 1 · · · 1︸ ︷︷ ︸
y1

0 1 · · · 1 0 1 · · · 1︸ ︷︷ ︸
y2

. . . . . . . . . 0 1 · · · 1 0 1 · · · 1︸ ︷︷ ︸
yk

More precisely, if k = 0 (i.e., if x contains no 0s) then let y0 = x. Otherwise, let y0, y1, . . . , yk
be defined as follows:

• y0 is the prefix of x up to (but not including) the first 0; thus y0 = 1ℓ0 , for some ℓ0 ∈ N,
and so y0 ∈ L(1∗).

• For each i such that 1 ≤ i < k, yi is the substring of x from (and including) the (2i−1)-st
0 up to (but excluding) the (2i+ 1)-st 0; thus yi = 01ℓi01mi , for some ℓi,mi ∈ N, and so
yi ∈ L(01∗01∗).

• yk is the suffix of x from (and including) the (2k−1)-st 0 to the end; thus yk = 01ℓk01mk ,
for some ℓk,mk ∈ N, and so yk ∈ L(01∗01∗).

Since x = y0y1 . . . yk, for some k ∈ N, where y0 ∈ L(1∗) and yi ∈ L(01∗01∗) for all i, 1 ≤ i ≤ k,
it follows that x ∈ L(1∗(01∗01∗)∗), as wanted.
Since every string in L(R2) is in L2 (“if” part) and, conversely every string in L2 is in
L(R2) (“only if” part), R2 denotes L2. (See Exercise 5 in connection with this example.)

End of Example 7.6

Example 7.7 Let L3 be the set of strings that contain the substring 01 exactly once. A
regular expression that denotes L3 is R3 = 1∗0∗011∗0∗.

The key observation needed to prove that R3 is correct is the following claim:

for any string x, 01 is not a substring of x if and only if x ∈ L(1∗0∗) (7.3)

We now prove this claim.

[if] If x ∈ L(1∗0∗) then x = 1ℓ0m, for some ℓ,m ∈ N. Since in this string there is no 1 following
a 0 (regardless of what ℓ and m are) 01 is not a substring of x.

[only if] Suppose x does not have 01 as a substring. This means that every 0 in x (if one
exists) must be preceded by every 1 in x (if one exists). In other words, x must be of the form
1ℓ0m, for some ℓ,m ∈ N. Hence, x ∈ L(1∗0∗).

Using (7.3) it is now easy to show that R3 denotes L3. We leave the detailed argument as

an exercise. End of Example 7.7
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These examples illustrate several points. First, there is no “cookbook” approach to de-
signing regular expressions that denotes a specified language.5 In each case, we have to think
(sometimes hard) for a way of expressing what the given language says using the limited “vo-
cabulary” of regular expressions. Experience, acquired by working out many examples, helps
one get better at this. In many ways, this is a task much like programming. In fact, some kinds
of programming (e.g., with the popular scripting language perl, or with the pattern-matching
language awk) require a great deal of just this activity: designing regular expressions that
match various patterns.

When in doubt about the correctness of a regular expression (and sometimes even when
not in doubt!) it is useful to prove that the regular expression “works”. To do this we have to
show that (a) every string in the language of interest is denoted by the regular expression, and
(b) every string denoted by the regular expression is in the language of interest. In carrying out
such proofs, we sometimes catch errors in the regular expression; indeed, sometimes a glitch
in the proof suggests how to fix the problem. The amount of detail with which we may feel
compelled to prove (a) and (b) may vary depending on the complexity of the regular expression
(and the language) that we are dealing with.

7.2.4 Equivalence of regular expressions

Two regular expressions R and S are equivalent, written R ≡ S, if they denote the same
same language — i.e., if L(R) = L(S). For example, (0∗1∗)∗ ≡ (0 + 1)∗; both expressions
denote the set of all strings (over {0, 1}). For all regular expressions R, S and T , the following
equivalences hold:

• Commutativity of union: (R + S) ≡ (S +R).

• Associativity of union: ((R + S) + T ) ≡ (R + (S + T )).

• Associativity of concatenation: ((RS)T ) ≡ (R(ST )).

• Left distributivity: (R(S + T )) ≡ ((RS) + (RT )).

• Right distributivity: ((S + T )R) ≡ ((SR) + (TR)).

• Identity for union: (R + ∅) ≡ R.

• Identity for concatenation: (Rǫ) ≡ R and (ǫR) ≡ R

• Annihilator for concatenation: (∅R) ≡ ∅ and (R∅) ≡ ∅.

• Idempotence of Kleene star: R ∗ ∗ ≡ R ∗.

5Except, perhaps, if the language itself is described using some other formalism, such as finite state automata.
See Section 7.6 for more on this.
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Most of these rules follow directly from corresponding properties of set-theoretic operators
(e.g., the commutativity and associativity of union) or of sequence-theoretic operators (e.g.,
the associativity of concatenation). In Section 7.2.5 we will present the proof of the (left)
distributivity rule in some detail.

7.2.5 Proving the equivalence of regular expressions

We now present some examples of equivalence proofs for regular expressions. We begin with a
proof of the (left) distributivity law.

Theorem 7.8 For all regular expressions R, S and T , R(S + T ) ≡ RS +RT .

Proof. We must prove that L(R(S + T )) = L(RS + RT ). To do so it is enough to prove
that the left-hand-side is a subset of the right-hand-side, and vice-versa. Let Σ be the alphabet
over which the regular expressions are defined.

(1) L(R(S + T )) ⊆ L(RS +RT ). Let x be an arbitrary string in L(R(S + T )); we must prove
that x ∈ L(RS + RT ). Since x ∈ L(R(S + T )), there are y, z ∈ Σ∗ such that x = yz,
y ∈ L(R) and z ∈ L(S + T ). Since z ∈ L(S + T ), by definition of L, either z ∈ L(S) or
z ∈ L(T ). We consider each case:

Case 1. z ∈ L(S). Then x = yz, where y ∈ L(R) and z ∈ L(S). By definition of L,
x ∈ L(RS); therefore surely x ∈ L(RS) ∪ L(RT ) = L(RS +RT ).

Case 2. z ∈ L(T ). Similarly, in this case we can prove that x ∈ L(RS +RT ).

So, in either case x ∈ L(RS +RT ), as wanted.

(2) L(RS+RT ) ⊆ L(R(S+T )). Let x be an arbitrary string in L
(
RS+RT ); we must prove

that x ∈ L(R(S + T )). Since x ∈ L(RS + RT ), by definition of L, either x ∈ L(RS) or
x ∈ L(RT ). We consider each case:

Case 1. x ∈ L(RS). Thus, there are y, z ∈ Σ∗ so that x = yz, y ∈ L(R) and z ∈ L(S).
Since z ∈ L(S), surely z ∈ L(S) ∪ L(T ) = L(S + T ). Since y ∈ L(R) and z ∈ L(S + T ),
it follows that yz ∈ L(R(S + T )), and since x = yz, we have that x ∈ L(R(S + T )).

Case 2. x ∈ L(RT ). Similarly, in this case we can show that x ∈ L(R(S + T )).

So, in either case x ∈ L(R(S + T )), as wanted.

Note that to prove the equivalence of two regular expressions we must prove that every
string belonging to one also belongs to the other and vice-versa. Since regular expression equiv-
alence amounts to equality between two sets (the languages denoted by the two expressions)
we must effectively prove subset inclusion in both directions.

The following “substitution theorem” allows us to replace a subexpression of a regular
expression R by an equivalent one without affecting the language denoted.
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Theorem 7.9 Let R be a regular expression, S be a regular expression that is a subexpression
of R, S ′ be a regular expression that is equivalent to S, and R′ be the regular expression that
is obtained from R by substituting S ′ for S. Then R′ is equivalent to R.

You should compare this to Theorem 5.10 in Chapter 5 (cf. page 123), and to the subformula
substitution logical equivalence rule in Chapter 6 (cf. page 160). The equivalence below
illustrates its use.

(10 + 1001)︸ ︷︷ ︸
S

(01)∗

︸ ︷︷ ︸
R

≡ 10(ǫ+ 01)︸ ︷︷ ︸
S ′

(01)∗

︸ ︷︷ ︸
R′

The proof of Theorem 7.9 is left as an exercise; it can be shown by using structural induction
on R.

We can approach the task of proving that two regular expressions are equivalent from “first
principles”, as in the proof of Theorem 7.8, or by using previously established equivalences —
or by some combination of these.

Example 7.8 It can be shown (from first principles) that, for any regular expression R,

((ǫ+R)R∗) ≡ R∗ (7.4)

(Do it!) Now we can prove that (0110 + 01)(10)∗ ≡ 01(10)∗, as follows:

(0110 + 01)(10)∗ ≡ (01(10 + ǫ))(10)∗ [by distributivity, and Theorem 7.9]

≡ 01((10 + ǫ)(10)∗) [by associativity of concatenation]

≡ 01((ǫ+ 10)(10)∗) [by commutativity of union, and Theorem 7.9]

≡ 01(10)∗ [by equivalence (7.4), and Theorem 7.9]

as wanted. Theorem 7.9 is so natural that we will typically omit reference to it when we use
it. End of Example 7.8

To prove that two regular expressions are not equivalent, it is enough to exhibit a particular
string which belongs to the language denoted by one expression but not to the language denoted
by the other — and to prove that fact. For example, to prove that (01)∗(11 + 0) 6≡ 0(00)∗ it is
enough to point out that 11 ∈ L

(
(01)∗(11 + 0)

)
(because ǫ ∈ L

(
(01)∗

)
, 11 ∈ L(11 + 0), and

11 = ǫ ◦ 11), but 11 /∈ L
(
0(00)∗

)
(because no string in L

(
0(00)∗

)
contains any 1s).

7.2.6 How expressive are regular expressions?

Regular expressions contain operators that correspond directly to some operations on languages
(union, concatenation and Kleene star), but no operators that correspond to other operations
of interest (for example, intersection or complementation). This means that some languages
are fairly easy to describe using regular expressions, while for others it is not clear that we can
describe them at all using this particular notation.
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For example, as we have seen, the set of strings (over {0, 1}) that contain an even number
of 0s is denoted by 1∗(01∗01∗)∗. The set of strings that contain at least two 1s is denoted by
0∗10∗1(0+1)∗. Thus, the set of strings that contain either an even number of 0s or at least two
1s (i.e., the union of these two languages) is denoted 1∗(01∗01∗)∗ + 0∗10∗1(0 + 1)∗. But what
about the set of strings that contain both an even number of 0s and at least two 1s (i.e., the
intersection of these two languages)? There is no immediate way of combining the expressions
denoting each of the two languages to obtain an expression that denotes their intersection. It
is not even clear that there is a regular expression that denotes this set!

It turns out that there is. In fact, there is a general result stating that if each of two
languages is denoted by a regular expression, then so is their intersection — no matter what
these languages are. We do not yet have the tools with which to prove this, however. (See
Exercise 7 for an interesting analogous result concerning the operation of reversal, rather
than intersection.)

As another example, consider the language of legal behaviours of the simple distributed
system that we discussed in Example 7.4. Is there a regular expression that denotes this set?
At this point, it is not at all clear what the answer is. It turns out that the answer is affirmative.

Finally, consider the set of strings over {0, 1} that have an equal number of 0s and 1s.
This language certainly has a simple description in English. Is there a regular expression that
denotes it? The answer turns out to be no.6 Again, we don’t yet have the tools with which to
prove this fact.

In the remainder of this chapter we will study a quite different way of modeling languages.
Instead of seeking a precise and convenient notation for a language, we will be looking at a
mathematical “machine” or “automaton” whose job is to look at input strings and sort out
which strings belong to the language and which ones do not. Along with other benefits, this
alternative point of view on languages will provide us the necessary tools to answer the kinds
of questions posed above.

7.3 Deterministic finite state automata

7.3.1 Definitions

A deterministic finite state automaton (DFSA) is a mathematical model of a machine
which, given any input string x, accepts or rejects x. The automaton has a finite set of
states, including a designated initial state and a designated set of accepting states. The
automaton is started in its initial state and reads the input string one symbol at a time. Upon
reading a symbol, the automaton enters a new state (which depends on the present state of
the automaton and the symbol it read) and proceeds to the next symbol of the input string.
The automaton stops when it has processed the entire input string in this manner: if, when it
stops, it is in an accepting state, it “accepts” the input; otherwise, it “rejects” the input.

It is customary to represent automata as directed graphs, with nodes (circles) corresponding

6It is important to understand precisely in what sense this is so. The claim is not merely that we’ve been
insufficiently clever to think of a regular expression denoting this language. Rather, we can prove that nobody
will ever be able to think of such an expression because none exists!
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0

0

0

0

1 11 1

q0

q2 q3

q1

Figure 7.1: Diagrammatic representation of a DFSA

to states, and edges (arcs) labeled with the symbols of the alphabet, as shown in Figure 7.1.
An edge from state q to state q′, labeled with symbol a, indicates that if the current state is
q and the current input symbol is a, the automaton will move to state q′. The initial state of
the automaton is indicated by drawing an unlabeled edge into that state coming from no other
state. The accepting states are indicated by double circles.

Example 7.9 Let us consider the operation of the DFSA depicted in Figure 7.1, on some
sample input strings. Suppose the input string is x = 10010. The automaton is initially in
state q0. After reading the first symbol of x the automaton follows the transition indicated by
the arc that emanates from state q0 and is labeled with that symbol — in this case, 1. This
transition leads to state q2, so after reading the first symbol, the automaton is in state q2.
The automaton then reads the next symbol in the input string, namely 0. Since it is presently
in state q2, and the transition labeled with 0 leads to state q3, the automaton moves to that
state after reading the second symbol. The automaton then reads the next (third) symbol of
the input string, which is 0. The transition labeled 0 emanating from the present state, q3,
leads back to state q2, and that is the state to which the automaton moves after reading the
third symbol of the input string. The next symbol is 1, so the automaton now moves to state
q0 (since the transition labeled 1 from the current state, q2, leads to state q0). Finally, after
reading the last symbol, 0, the automaton moves to state q1. Since this is not an accepting
state, the automaton rejects the input string 10010. The sequence of states visited by the
DFSA and the transitions followed in processing the input string 10010 are shown below.

1 0 0 1 0
q2q0 q3 q2 q0 q1

Now, suppose the input string is y = 100101 = x1. After reading x, which comprises
the first 5 symbols of y, the automaton is in state q1 (as explained in detail in the previous
paragraph). After reading the last symbol of y, namely 1, the automaton moves to state q3,
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because the transition labeled 1 that emanates from q1 leads to q3. Since the automaton is in an
accepting state after reading all the symbols of y, it accepts 100101. End of Example 7.9

As the preceding example illustrates, the processing of a string by a DFSA corresponds in a
natural way to a path (starting in the initial state) in the graph that represents the DFSA. This
natural correspondence between strings and paths is the source of some important intuitions
for results we will encounter later (especially in Section 7.6.2), so it is important to keep it in
mind. We now present the formal definition of a DFSA, and of what it means for it to accept
or reject a string.

Definition 7.10 A DFSA M is a quintuple M = (Q,Σ, δ, s, F ), where

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q×Σ→ Q is the transition function. In terms of the diagrammatic representation
of the FSA, δ(q, a) = q′ means that there is an edge labeled a from state q to state q′.

• s ∈ Q is the start or initial state.

• F ⊆ Q is the set of accepting states.

Given a DFSA M as above, we can define the extended transition function
δ∗ : Q × Σ∗ → Q. Intuitively, if q ∈ Q and x ∈ Σ∗, δ∗(q, x) denotes the state in which
the automaton will move after it processes input x starting in state q. For instance, if δ
is the transition function of the DFSA shown in Figure 7.1, then δ∗(q0, 10010) = q1, and
δ∗(q0, 100101) = q3 (see Example 7.9). More precisely,

Definition 7.11 Let δ : Q × Σ → Q be the transition function of a DFSA. The extended
transition function of the DFSA is the function δ∗ : Q × Σ∗ → Q defined by structural
induction on x (recall the recursive definition of strings, Definition 7.2):

Basis: x = ǫ. In this case, δ∗(q, x) = q.

Induction Step: x = ya, for some y ∈ Σ∗ and a ∈ Σ, where we assume, by induction, that
δ∗(q, y) has been defined. In this case, δ∗(q, x) = δ(δ∗(q, y), a).

If δ∗(q, x) = q′ we say that x takes the automaton M from q to q′. Using the definition
of δ∗ we can now formally define what it means for a DFSA to accept (or reject) a string, and
a host of other important concepts.

Definition 7.12 A string x ∈ Σ∗ is accepted (or recognised) byM , if and only if δ∗(s, x) ∈ F
— i.e., if and only if x takes the automaton from the initial state to an accepting state. The
language accepted (or recognised) by a DFSA M , denoted L(M), is the set of all strings
accepted by M .
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7.3.2 Conventions for DFSA diagrams

The diagrammatic description of DFSA is extremely convenient and widely used. To make
this description even more helpful, we adopt some conventions that make the diagrams clearer
and easier to comprehend. We now describe and illustrate the main two conventions that we
will be using.

Combining transitions: Suppose that there are several symbols in the alphabet, say
a1, a2, . . . , ak (for some k ≥ 2), all of which cause a transition from a given state q to the
same state q′. In other words, we have that δ(q, ai) = q′ for all i such that 1 ≤ i ≤ k. Instead
of drawing k individual transitions from q to q′, each labeled with ai, for some i, we draw a
single transition from q to q′ and label it with “a1, a2, . . . , ak”.

Example 7.10 Suppose that we want to draw a diagram for a DFSA that accepts the

set of strings in {0, 1}∗ containing at least one symbol. The diagram shown in Figure 7.2(a)
accepts this language. In Figure 7.2(b) we show the same diagram “abbreviated” by using the

convention of combining common transitions. End of Example 7.10

0

1

0

1

(a) (b)

0, 1
0, 1

Figure 7.2: Diagram of a DFSA accepting (0 + 1)(0 + 1)∗.

Eliminating dead states: Given a DFSA, we say that a state q′ is reachable from state
q, if there is a path in the graph representation of the DFSA that starts at q and ends at q′. A
state q is dead if no accepting state is reachable from q. Suppose that, at some point during
the processing of a string x by the DFSA, we enter a dead state. This means that the path
corresponding to x (in the graph that represents the DFSA) goes through a dead state. By
definition, once we are in a dead state there is no hope of ever reaching an accepting state.
This means that x is already doomed; although we have not yet seen all its symbols, we have
seen enough of it to know that it will not be accepted by the DFSA. To make the graph easier
to read we usually leave out of the graph the nodes corresponding to the dead states of a
DFSA, as well as the edges corresponding to transitions into (or out of) such states.

Example 7.11 Suppose that we want to draw the diagram of a DFSA that accepts the
set of strings denoted by the regular expression 101∗0 — i.e., the strings that start with 10,
followed by zero or more 1s, and end with a 0. This language is accepted by the DFSA shown
in Figure 7.3(a).
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0, 1 0, 1 0, 1

0, 10 1

(a) (b)

1 0

1

0 1 0

1

0
q0 q1 q2 q3

d0 d1 d3

q0 q1 q2 q3

Figure 7.3: DFSA accepting 101∗0.

States d0, d1 and d3 are dead states: the only accepting state, q3, is not reachable from any of
them. Intuitively, d0 corresponds to the “bad” strings (i.e., strings not in the language) whose
first symbol is 0 instead of the required 1; d1 corresponds to the bad strings whose first symbol
is the required 1, but whose second symbol is 1 instead of the required 0, and d3 corresponds
to the bad strings that start with 10, continue on with zero or more 1s, followed by a 0, but
then have other symbols as well. Note that there are also bad strings which correspond to
paths in the graph that start at q0 and end in q2, which is a nonaccepting state, but it is not a
dead one. These are strings that are not in the language, but are prefixes of strings that are in
the language. In contrast, a string x that corresponds to a path ending in a dead state is not
only itself bad, but so are all strings of which it is a prefix. Put in a different way, x cannot
be completed to a string that is in the language.

In Figure 7.3(b) we show the same DFSA with all dead states (and associated transitions)
eliminated. This diagram is a lot clearer than the one in Figure 7.3(a), but it raises some
questions. Specifically, suppose we want to determine what this automaton does when the
input string is 001. We start at state q0. To determine the next state we must follow the
transition from q0 that is labeled 0; but there is no such transition in the diagram! The reason
is that this transition was removed from the diagram because it was leading to a dead state.
Since it was leading to a dead state, the prefix of the input seen so far is such that it can never
be completed to a string that belongs in the language accepted by the DFSA, so we may as
well reject the input right away!

This justifies the following rule regarding DFSA diagrams with missing transitions: Any
input string requiring a transition that is missing from the diagram is rejected.

End of Example 7.11

We say that a DFSA diagram is complete, if there is a transition on every symbol from
each state. For example, the diagram in Figure 7.3(a) is complete, while the diagram in
Figure 7.3(b) is not. Given the DFSA diagram that has resulted from a complete DFSA
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(a) (b)

1 0

1

0
q0 q1 q2 q3

0, 10 1

1 0

1

0
q0 q1 q2 q3

d0 d1 d3d1
0, 10

1

0
1

0 1 0, 1

0, 1

Figure 7.4: Two other DFSA accepting 101∗0.

diagram by eliminating dead states, it may be impossible to recover the original diagram. To
see why, notice that if we eliminate the dead states from any one of the DFSA diagrams shown
in Figures 7.3(a), 7.4(a) or 7.4(b), we get the DFSA diagram shown in Figure 7.3(b). This
“irreversibility” of the elimination of dead states should cause no alarm: all of these automata
accept the same language, namely 101∗0. It is, of course, possible to reconstruct some complete
DFSA diagram that accepts the same language, by adding a single dead state to which all the
missing transitions go — as in Figure 7.4(a).

7.3.3 Designing and proving the correctness of DFSA

There are two tasks commonly associated with DFSA: One is to design a DFSA that accepts
a particular language. The second task is to prove that a DFSA accepts a language. The two
tasks are obviously related: If we have designed a DFSA that we believe accepts a language,
we want to be able to show that it does. If our design is incorrect, we will likely catch the
mistake in trying to carry out the proof — because we will be unable to do so! A glitch in the
proof may also suggest ways of fixing the mistake in the design. In this subsection we illustrate
these two tasks by means of some examples.

Example 7.12 Consider the four-state DFSA shown in Figure 7.1. It turns out that this
DFSA accepts the language

L1 = {x ∈ {0, 1}∗ : x has an odd number of 0s and an odd number of 1s}

To prove this, it suffices to show that a string x takes the DFSA from q0 (the initial state) to
q3 (the unique accepting state) if and only if x has an odd number of 0s and an odd number of
1s. This statement exactly characterises the set of strings that take the DFSA from the initial
state to q3; we refer to such a statement as an invariant of the state q3: it describes what is
true about that state, just like a loop invariant describes what is true about that loop.
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It is natural to try proving this statement using induction (either structural induction on
x or simple induction on the length of x). If you try to do so, however, you will run into the
following difficulty: In the induction step of the proof, in order to infer the desired property
of strings that take the DFSA from the initial state to q3, it will be necessary to use state
invariants for q1 and q2 (the states from which q3 is reachable in one step). In turn, for this, we
will need invariants for the states from which q1 and q2 are reachable in one step — namely,
q0 and q3. This suggests that we must strengthen our goal: instead of proving the invariant
for just the accepting state, we need to prove invariants for all states.7 Some further thought
leads us to the following predicate P (x) that states invariants for the four states of the DFSA:

P (x) : δ∗(q0, x) =





q0, if x has an even # of 0s and an even # of 1s

q1, if x has an odd # of 0s and an even # of 1s

q2, if x has an even # of 0s and an odd # of 1s

q3, if x has an odd # of 0s and an odd # of 1s

(7.5)

A somewhat delicate point requires elaboration. A state invariant is an “if and only if”
statement: it provides both necessary and sufficient conditions for a string x to take the
automaton from the initial state to some particular state. The above predicate P (x), however,
appears to provide only sufficient conditions (it contains “if” statements, not “if and only if”
ones). The reason that this is not a problem is that if P (x) holds, then the converses of the
four conditional statements in (7.5) will also hold. Intuitively, the reason is that these four
cases actually cover all possibilities. Let’s consider one case in particular. Suppose that P (x)
holds; we want to show that δ∗(q0, x) = q0 only if x has an even number of 0s and an even
number of 1s. Suppose, for contradiction, that this is not the case. That is, δ∗(q0, x) = q0, yet
x does not have an even number of 0s or an even number of 1s. But then, one of the other three
cases would apply and, depending on which one of them does, P (x) would imply that δ∗(q0, x)
is equal to q1, q2 or q3 — in any case, not equal to q0 which contradicts our assumption. (You
will see this argument reflected in the proof of Theorem 7.14 below.) Therefore, the “only-
if” directions hold as well. We formulate the invariant predicate P (x) as “if” statements (as
opposed to “if and only if” statements) because this facilitates the proof of the following key
Lemma.

Lemma 7.13 The predicate P (x) defined in (7.5) is true for all strings x.

Proof. We use structural induction on x.

Basis: x = ǫ. In this case x has zero 0s and zero 1s. Since zero is an even number, and
δ∗(q0, ǫ) = q0 (by definition of δ∗ — see Definition 7.11), P (x) holds, in this case.

Induction Step: x = ya for some y ∈ Σ∗ and a ∈ Σ; we assume, by induction, that P (y)
holds. There are two cases.

7This is yet another example of a phenomenon we have encountered repeatedly: the need to strengthen the
statement we wish to prove by induction, in order to make the induction step go through.
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Case 1. a = 0. We have:

δ∗(q0, x) = δ∗(q0, y0) [since x = ya]

= δ(δ∗(q0, y), 0) [by definition of δ∗]

By the induction hypothesis:

=





δ(q0, 0), if y has an even number of 0s and an even number of 1s

δ(q1, 0), if y has an odd number of 0s and an even number of 1s

δ(q2, 0), if y has an even number of 0s and an odd number of 1s

δ(q3, 0), if y has an odd number of 0s and an odd number of 1s

Because x has one more 0 and the same number of 1s as y, we have:

=





δ(q0, 0), if x has an odd number of 0s and an even number of 1s

δ(q1, 0), if x has an even number of 0s and an even number of 1s

δ(q2, 0), if x has an odd number of 0s and an odd number of 1s

δ(q3, 0), if x has an even number of 0s and an odd number of 1s

By inspecting the transition function δ of M1,

=





q1, if x has an odd number of 0s and an even number of 1s

q0, if x has an even number of 0s and an even number of 1s

q3, if x has an odd number of 0s and an odd number of 1s

q2, if x has an even number of 0s and an odd number of 1s

as wanted.

Case 2. a = 1. Similar to Case 1.

Theorem 7.14 The DFSA M1 in Figure 7.1 accepts L1.

Proof. Let x be an arbitrary string in L1; i.e., a string with an odd number of 0s and an odd
number of 1s. By Lemma 7.13, δ∗(q0, x) = q3, and since q3 is an accepting state, x ∈ L(M1).
This proves that

L1 ⊆ L(M1) (7.6)

Conversely, let x be an arbitrary string in L(M1). Since q3 is the only accepting state of M1,
δ∗(q0, x) = q3. If x did not have an odd number of 0s and an odd number of 1s, by Lemma 7.13,
δ∗(q0, x) would be equal to q0 or q1 or q2 — in any event, not equal to q3 as we know is the
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case. Thus, x must have an odd number of 0s and an odd number of 1s, i.e., x ∈ L1. This
proves that

L(M1) ⊆ L1 (7.7)

(7.6) and (7.7) imply that L1 = L(M1), as wanted.

This proof is typical of rigorous arguments that show that a DFSA accepts a certain lan-
guage. The key idea is to find, for each state of the DFSA, an invariant that characterises the
strings that take the DFSA from the initial state to that state. We prove that each invariant
characterises the corresponding state by simultaneous induction (all invariants are proved at
once). Proving all invariants simultaneously is important, because the induction step in the
proof of one state’s invariant may well make use of the induction hypothesis concerning a
different state’s invariant. (For instance, in our example, the proof of the invariant of each
state makes use of the induction hypothesis for the invariants of the states from which it is
reachable in one step.) The induction itself can be formulated as a structural induction on the
definition of strings, or as a simple induction on the length of strings.

The practice of writing down (and carefully inspecting) state invariants for a DFSA is a
useful one, even if we have no intention of carrying out a thorough proof of its correctness. It
sometimes helps catch mistakes; it can also help simplify the designed DFSA, by combining
states that have similar state invariants.

You may be wondering how one comes up with state invariants. Being able to determine
the state invariants of a DFSA is tantamount to understanding what the automaton does. In
the process of trying to comprehend how the automaton works, we are able to formulate such
invariants. In practice, this process is often one of trial and error: as our understanding of the
automaton becomes more precise, so does our ability to formulate the state invariants. It is
actually possible to determine state invariants of a DFSA algorithmically. As we will see in
Section 7.6.2, there is a particular computation which permits us to determine, for any state
q, a regular expression Rq denoting the set of strings that take the DFSA from the initial
state to q. This computation is rather laborious to carry out by hand, although quite easy
to do by computer. Also, the regular expressions it produces tend to be rather complicated.
In principle, these can be simplified — e.g., by using algebraic rules such as those we saw
in Section 7.2.4. Unfortunately, however, the task of simplifying regular expressions is, in a
precise sense, computationally infeasible. End of Example 7.12

Example 7.13 Let L2 be the language denoted by (0 + 1)∗011(0 + 1)∗. In other words,

L2 = {x ∈ {0, 1}∗ : x contains 011 as a substring}

Our task is to design a DFSA that accepts this language. The diagram of a DFSA M2 that
does so is shown in Figure 7.5. Note that if we ever enter state q3, we will never “escape”
from it since, no matter what symbol we read next, we will remain in that state. A state
with this property is called a trap state. In this case, the trap state q3 is an accepting state.
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It corresponds to the detection of substring 011. Once this substring is detected, the entire
input string must be accepted, no matter what follows that substring. The accepting trap
state captures precisely this fact.

q0

1

0 q1
1

0

0

q2
1

0, 1q3

Figure 7.5: A DFSA M2 that accepts (0 + 1)∗011(0 + 1)∗.

We can prove rigorously that this DFSA accepts the specified language, by using a similar
approach as in the previous example. With each state of the DFSA we associate an invariant
which characterises the strings that take the automaton from the initial state to that state.
Specifically, we can prove that x takes the automaton from the initial state to

• q0 if and only if x is of the form 1∗;

• q1 if and only if x does not contain 011 as a substring and ends in 0;

• q2 if and only if x does not contain 011 as a substring and ends in 01; and

• q3 if and only if x contains 011 as a substring.

These four facts can be proved simultaneously by induction on the length of x. (We leave this
as an exercise.) The correctness of our automaton follows immediately from the last fact, since
q3 is its only accepting state.

We also present an alternative, and perhaps simpler, proof that this DFSA is correct. This
alternative proof does not require explicit state invariants. By inspection of the diagram of M2

it is easy to show the following three facts:

(a) For every state q of the DFSA, 011 takes M2 from q to q3. (More formally, δ∗(q, 011) = q3.)

(b) For any string x, the shortest prefix x′ of x that takes M2 from the initial state to q3 (if such
a prefix exists), ends in 011. (More formally, if x′ is a prefix of x such that δ∗(q0, x′) = q3
and for every proper prefix x′′ of x′, δ∗(q0, x′′) 6= q3, then there is some string y such that
x′ = y011.)

(c) Every string z takes M2 from q3 to q3. (More formally, δ∗(q3, z) = q3, for any z.)

Using these easy-to-verify observations we can now prove that L2 = L(M2).
First, we prove that L2 ⊆ L(M2). Let x be an arbitrary string in L2. Thus, x contains 011

as a substring; i.e., there are strings y, z such that x = y011z. By (a), δ∗(δ∗(q0, y), 011) = q3.
Thus, δ∗(q0, y011) = q3. (Here we have used the following fact: for any state q and any strings
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u, v, δ∗(q, uv) = δ∗(δ∗(q, u), v); this follows immediately from the definition of δ∗.) By (c),
δ∗(q0, y011z) = q3, i.e., δ

∗(q0, x) = q3. Since q3 is an accepting state, x ∈ L(M2), as wanted.
Next, we prove that L(M2) ⊆ L2. Let x be an arbitrary string in L(M2). Since q3 is

the only accepting state of M2, δ
∗(q0, x) = q3. Let x′ be the shortest prefix of x such that

δ∗(q0, x′) = q3. By (b), there is some string y such that x′ = y011. Since x′ is a prefix of x,
there is some string z such that x = x′z. Therefore, x = y011z; this implies that 011 is a
substring of x, i.e., x ∈ L2, as wanted. End of Example 7.13

Example 7.14 In this example, we want to design a DFSA that recognises the following
language:

L3 = {x ∈ {0, 1}∗ : x contains neither 00 nor 11 as a substring}
The diagram of such a DFSA M3 is shown in Figure 7.6. Note that this is not a complete
DFSA; we have eliminated dead states according to the convention discussed earlier. Thus,
although all the states shown in the diagram are accepting states, this DFSA does not accept
all strings; there is an implicit dead state (a nonaccepting trap state) to which all missing
transitions are supposed to lead.

0 1

〈01〉

〈10〉

〈ǫ〉

0

1

Figure 7.6: A DFSA M3 for the set of strings that do not contain 00 or 11 as a substring

The states of this DFSA are named with strings (which we have surrounded with angled
brackets to help remind us that they refer to states): 〈ǫ〉, 〈01〉 and 〈10〉. These names reflect the
intuition behind these states: the initial state, 〈ǫ〉 is reachable only by the empty string; 〈01〉 is
reachable only by strings that do not contain the “forbidden patterns” (00 and 11) and in which
the last two symbols are 01 (or the string has only one symbol, 1); the state 〈10〉 has a similar
interpretation. The idea is that the automaton “remembers” the last two symbols it has seen,
so that its state depends on what those two symbols were. If it should ever come to find that
the last two symbols seen are the same (i.e., 00 or 11), then the automaton enters a dead state
and rejects the input. With these remarks in mind, you should be able to figure out the state
invariants for the DFSA M3, allowing you to prove its correctness. End of Example 7.14

Example 7.15 Our last example is a DFSA that accepts the language that describes the
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correct behaviour of a simple distributed system, discussed in Example 7.4. Such an automaton
is shown in Figure 7.7.

Wi

Bi

Iw

Ib

WbBw

D

G

r G

r

R

d

r R

d
g

R

D

g

Ii

Ww

Figure 7.7: A DFSA for the simple distributed system of Example 7.4.

To understand how this works, imagine the two users of the distributed system. Each of
them is in one of three states, as regards the use of the printer:

• idle: not interested in using the printer;

• waiting: having requested, but not yet been granted, access to the printer; and

• busy: having been granted access to the printer.

We use I, W and B to denote the idle, waiting and busy states of the first user; and similarly,
i, w and b to denote these three states of the second user. Each state of the DFSA corresponds
to some combination of states for the two users. For example, Ii indicates that both users are
idle; Bw indicates that the first user is busy, while the second user is waiting. The mutual
exclusion requirement forbids the state where both users are busy, so the state Bb does not
appear in the diagram. Note that we have been using the term “state” to refer to two related,
but distinct, things. There is the state of a user (which may be I, W or B, for the first user,
and i, w and b, for the second user), and there is the state of the entire system (which may be
one of the legal combinations of states of the two users). We use the terms “user state” and
“system state” to distinguish between these. The states of the DFSA shown above are system
states.

Each transition corresponds to the occurrence of one event, i.e., one of R, G, D (the events of
the first user) or r, g, d (the events of the second user). An event that occurs at a user causes
that user’s state to change. For example, the occurrence of event R (a request by the first user)
causes a change from user state I to user state W . The effect of the transition that corresponds
to the occurrence of an event by one of the two users is to transform the system state so as to
reflect the change in user state. For example, since an R event transforms the state of the first
user from I to W , we have the following transitions labeled R between system states: from
Ii to Wi, from Iw to Ww, and from Ib to Wb. Similar remarks apply to the other events.
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With this explanation in mind, you should be able to see (and prove!) that the DFSA shown

in Figure 7.7 accepts the language described in Example 7.4. End of Example 7.15

7.4 Nondeterministic finite state automata

7.4.1 Motivation and definitions

In a DFSA, a given state and current input symbol uniquely determine the next state of the
automaton. It is for this reason that such automata are called deterministic. There is a
variant of finite state automata, called nondeterministic finite state automata, abbreviated
NFSA, where this is not the case: From a given state, when the automaton reads an input
symbol a, there may be several states to which it may go next. Furthermore, the automaton
may “spontaneously” move from one state to another without reading any input symbol; such
state transitions are called ǫ-transitions. The choice of next state, and the possibility of a
“spontaneous” state transition is not unrestricted, however: only some choices and some ǫ-
transitions are possible.

Whenever there are multiple transitions that a NFSA can follow from its present state upon
reading an input symbol (including, possibly, ǫ-transitions), the next state that the automaton
occupies is not uniquely determined: there may be several states to which the automaton could
move. From each of these states, the NFSA may have several choices for the next transition
— and so on, at each step along the way. Thus, the computation of a NFSA on input x
corresponds not to a single path in the state diagram, as in the case of DFSA, but to a set
of paths. This means that after processing input x, the NFSA could be in any one of several
states. The question now is: when should we say that the automaton accepts x?

If all the states in which the NFSA could be after processing x are accepting, it is certainly
natural to say that the NFSA accepts x; and if none of them is accepting, it is natural to say
that the NFSA rejects x. But what if some of these states are accepting and some are not? It
turns out that a natural and useful convention is to consider the NFSA as accepting the string
in this case. In other words, the NFSA accepts x if there is (at least) one computation path
that it could follow (starting from the initial state) on input x that ends in an accepting state.
A string is rejected only if every computation path the NFSA could have followed (starting
from the initial state) ends in a nonaccepting state.

We will illustrate these somewhat informal ideas with two examples of NFSA. We will
then give the formal definition of NFSA and of what it means for it to accept a string. We
represent NFSA as graphs, similar to those of DFSA. In NFSA diagrams we may have multiple
edges from a state q to states q1, q2, . . . , qk with the same label a. This indicates that if the
automaton is in state q and the next symbol it reads from the input is a, it may move to any
one of the states q1, q2, . . . , qk, but to no other state. We may also have one or more transitions
from state q to states q′1, q

′
2, . . . , q

′
ℓ labeled with the empty string, ǫ. This indicates that if the

automaton is in state q it may spontaneously, without reading any input symbol, move to any
one of the states q′1, q

′
2, . . . , q

′
ℓ, but to no other state (other than itself, of course). We do not

explicitly draw ǫ-transitions from a state to itself. We use the same conventions as in DFSA
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diagrams regarding missing transitions: these are assumed to lead to an implicit (not drawn)
dead state.

Example 7.16 Consider the NFSA shown in Figure 7.8.

0, 1

1
q0 q1

Figure 7.8: A NFSA that accepts (0 + 1)∗1.

This automaton is nondeterministic because there are two transitions labeled 1 from state q0:
one leading back to q0 and the other leading to the accepting state q1.

Let us consider the operation of this automaton on input string x = 011. The automaton
starts in state q0 and reads the first input symbol, 0. There is only one transition labeled 0 out
of q0, leading back to q0; thus, the automaton enters (actually, remains in) state q0. The next
symbol of the input string is 1. There are two transitions labeled 1 out of state q0, so now we
have a choice. The automaton might remain in state q0 or it might enter state q1. Suppose
that the automaton chooses to remain in state q0. The next symbol of the input is 1, so again
the automaton has a choice: it can remain in q0 or go to state q1. In this case, suppose that
the automaton makes the latter choice. Since this is the last symbol of the input string, and
the automaton is in an accepting state, the string 011 is accepted by the automaton.

Now let’s back up one step and suppose that, when reading the third (and last) symbol the
automaton had chosen to remain in state q0 instead of choosing to move to state q1. In that
case, the automaton would be in a nonaccepting state at the end of processing 011. This does
not mean that 011 is rejected, because (as shown in the previous paragraph) there is another
choice that the automaton could have made, that would have caused it to be in an accepting
state at the end of processing 011.

Let us also back up two steps and consider what would have happened if the automaton
had chosen to move to state q1 after reading the second symbol in 011. (Recall that, before
reading that symbol, the automaton was in state q0.) Then the automaton would read the
third (and last) symbol of the string, 1, while in state q1. There is no transition labeled 1 from
that state, so according to our convention this particular sequence of choices leads to a dead
(and therefore nonaccepting) state. Again, however, since another sequence of choices leads to
an accepting state, the string 011 is accepted by this NFSA.

This discussion illustrates concretely an important point we made earlier: the processing
of an input string by a NFSA does not necessarily result in a unique computation. It results
in a set of possible computations, each corresponding to a particular sequence of choices made
by the automaton in processing the input. In our example, there are three such computations,
shown in Figure 7.9 in terms of the corresponding paths through the diagram. Note that the
third path (i.e., computation) ends in a state labeled “dead” which is not explicitly drawn in
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the diagram, in accordance with our convention of eliminating states from which no accepting
state is reachable. Since there is one path (computation) of 011 that ends in an accepting
state, the NFSA accepts this string.

0 1 1
q0 q0 q0 q1

0 1 1
q0 q0 q0 q0

0 1 1
q0 q0 q1 dead

Figure 7.9: The three computations of the NFSA of Figure 7.8 on input 011.

Now consider what the automaton does on input string 010. It starts in state q0 and remains
in it after reading the first symbol, 0. After reading the second symbol 1, the automaton may
remain in state q0 or move to state q1. After reading the third symbol, q0 the automaton
remains in state q0 (if it had chosen to remain in state q0 after reading the second symbol),
or it enters a dead state (if it had chosen to move to state q1 after reading the second symbol
— note that there is no transition labeled 0 from state q1). The two computations of the
NFSA on input 010 are shown in Figure 7.10. Since all possible paths (computations) that
the automaton could follow on input 010 end in nonaccepting states, the NFSA rejects this
input.

0 1
q0 q0 q0 q0

0 1
q0 q0 q1 dead

0 0

Figure 7.10: The two computations of the NFSA of Figure 7.8 on input 010.

We claim that the NFSA shown in Figure 7.8 accepts the set of strings in {0, 1}∗ that end
with 1 — i.e., the strings denoted by the regular expression (0 + 1)∗1. It is obvious that any
string that is accepted by the DFSA ends in 1. This is because there is only one accepting
state, q1, and any path from the initial state to q1 must end by traversing the edge from q0 to
q1 that is labeled 1. This means that every string accepted by this NFSA ends in 1.

Conversely, if a string ends in 1, we claim that it is accepted by this NFSA. To establish
this claim we must show that after processing a string that ends in 1, the NFSA could be in the
accepting state q1. We use the following rule for deciding which of the two transitions labeled
1 to take, when we are in state q0 and we read symbol 1 in the input: If the symbol 1 being
read is the last one in the string, then take the transition to q1; otherwise, take the transition
leading back to q0. It is obvious that if we process any string that ends in 1 by following this
rule, the NFSA will be in state q1 after it has processed the entire input string. This means
that any string that ends in 1 is indeed accepted by the NFSA.

It is possible to construct a DFSA that accepts the same language. As we will see later
(see Section 7.4.2), this is no accident: any language that is accepted by a NFSA, can also be

accepted by a DFSA. End of Example 7.16
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Example 7.17 Consider the NFSA shown in Figure 7.11(a). This automaton is nondeter-
ministic because it contains an ǫ-transition.

q0 q1 q2 p1 p2 p3p0

0

0

0
11

1

0, ǫ

0

Figure 7.11: A NFSA and a DFSA that accept (010 + 01)∗.

Consider now what this automaton does on input 01. It starts in state q0; upon reading the
first symbol, 0, it must move to state q1 (since there is only one transition labeled 0 from q0,
and it leads to state q1). After reading the second (and last) symbol, 1, the automaton must
move to state q2. This is not an accepting state. Does the automaton then reject 01? No!
There is actually another computation, one in which after reading the input 01 and reaching
state q2, as explained above, the automaton moves spontaneously, without reading any input
symbol, to state q0, which is an accepting state. This is possible because the NFSA has an
ǫ-transition from q2 to q0. Figure 7.12 below shows the two possible paths (computations) of
the NFSA on input 01. Since one of them ends in an accepting state, the NFSA accepts this
string.

0
q0 q1 q2

0 1
q0 q1 q2

ǫ
q0

1

Figure 7.12: The two computations of the NFSA of Figure 7.11(a) on input 01.

Figure 7.13 below shows the two possible paths (computations) of the NFSA on input 0100.
Since both of them end in nonaccepting states, the NFSA rejects this string.

0
q0 q2

1 ǫ
q0

0
dead

00
q0 q2 q0

01 0
q1 q1 q1 q1

Figure 7.13: The two computations of the NFSA of Figure 7.11(a) on input 0100.

We claim that the NFSA shown in Figure 7.11(a) accepts the set of strings denoted by
(010+01)∗. First, we show that the language accepted by the NFSA is a subset of L((010+01)∗).
Let x be any string accepted by this automaton; an accepting computation of this automaton



7.4. NONDETERMINISTIC FINITE STATE AUTOMATA 215

corresponds to a path that starts and ends in q0, since this is the only accepting state. Such

a path must be a repetition (zero or more times) of the cycle q0
0−→ q1

1−→ q2
0,ǫ−→ q0, and

therefore the string x must be a repetition of either 010 or 01ǫ = 01 (the sequence of labels
along the edges of the loop). Thus, x is in L((010 + 01)∗), as wanted.

Conversely, we show that L((010+01)∗) is a subset of the language accepted by the NFSA.
Let x be an arbitrary string in L((010 + 01)∗). Thus, x is a concatenation of some number of
strings, each of which is either 010 or 01. Notice that 010 and 01 can take the NFSA from q0
to q0 via the cycles q0

0−→ q1
1−→ q2

0−→ q0 and q0
0−→ q1

1−→ q2
ǫ−→ q0, respectively. Thus,

any concatenation of such strings can take the NFSA from q0 to q0. Since q0 is an accepting
state, x is accepted by the NFSA, as wanted.

A deterministic FSA that accepts the same language (i.e., the strings denoted by
(010 + 01)∗) is shown in Figure 7.11(b). In fact, it is possible to show that this DFSA has
the smallest number of states amongst all DFSA that accept this language. The NFSA in
Figure 7.11(a) has one state less than the smallest DFSA that accepts the same language.
One state more or less is not such a big deal but, in general, there are languages that can
be accepted by NFSA that are much smaller than the smallest DFSA for the same language
(see Exercise 12). In our simple example, more important that the savings in the number
of states is the gain in conceptual simplicity of the automaton. Most people would find it
much easier to see (and prove) that the NFSA in Figure 7.11(a) accepts the language denoted
by (010 + 01)∗, than to see (and prove) that the DFSA in Figure 7.11(b) accepts that lan-

guage. End of Example 7.17

Now that we have developed some intuition about what NFSA look like and how they work,
we are ready to give the mathematical definition.

Definition 7.15 A nondeterministic finite state automaton (NFSA) is a quintuple
M = (Q,Σ, δ, s, F ), where

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q× (Σ ∪ {ǫ})→ P(Q) is the transition function.

• s ∈ Q is the start or initial state.

• F ⊆ Q is the set of accepting states.

The only element of this definition that requires some clarification is the transition function
δ. Intuitively, if the automaton is presently in state q then it may, without reading any input
symbol, change its state to any one of the states in δ(q, ǫ) (but to no other state). Furthermore,
if the automaton is presently in state q and the present input symbol is a then it may change
its state to any one of the states in δ(q, a) (but to no other state).
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Figure 7.14: Illustrating the E notation

Given a NFSA M , we can define the extended transition function δ∗ : Q×Σ∗ → P(Q).
Intuitively, if x ∈ Σ∗ and q ∈ Q, δ∗(q, x) denotes the set of states in which the automaton
could be if it starts in state q and processes all the symbols of string x. To define this, we first
need the following notation: For any state q, E(q) denotes the set of states that are reachable
from q by following (any number of) ǫ-transitions. Here, “any number” includes zero, so that
for any state q, q ∈ E(q).

Example 7.18 Consider the NFSA in Figure 7.14. For this automaton, we have

E(a) = {a, b, c, d, f, g}
E(b) = {b}
E(c) = {c, d, f, g}
E(d) = {d, f, g}
E(e) = {e}
E(f) = {f}
E(g) = {g}

End of Example 7.18

Definition 7.16 Let δ : Q × Σ ∪ {ǫ} → P(Q) be the transition function of a NFSA. The
extended transition function of the NFSA is the function δ∗ : Q×Σ∗ → P(Q) defined by
structural induction on x:

Basis: x = ǫ. In this case, δ∗(q, x) = E(q).
Induction Step: x = ya, for some y ∈ Σ∗ and a ∈ Σ; we assume, by induction, that δ∗(q, y)
has been defined. In this case,

δ∗(q, x) =
⋃

q′∈δ∗(q,y)

( ⋃

q′′∈δ(q′,a)
E(q′′)

)
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The induction step of this definition is formidable-looking, but it is possible to grasp it by
analysing it piece-by-piece. Here is what it says, intuitively: To find the set of states in which
the NFSA, started in state q, could be after reading input x = ya, we proceed as follows:

• First, we get to each state q′ that can be reached by the NFSA, started in state q, after
reading the prefix y of the input up to (but not including) the last symbol. The set of
such states is δ∗(q, y), which we inductively assume is known.

• Next, we get to each state q′′ that can be reached from q′ by reading the last symbol, a,
of the input. The set of such states is δ(q′, a).

• Finally, we get to each state that can be reached from q′′ by following any number of
ǫ-transitions. The set of such states is E(q′′).

Definition 7.17 A NFSA M = (Q,Σ, δ, s, F ) accepts (or recognises) a string x ∈ Σ∗ if and
only if δ∗(s, x)∩F 6= ∅. (In other words, M accepts x if and only if at least one of the possible
states in which the automaton could be after processing input x is an accepting state.) The
language accepted by M , L(M), is the set of strings accepted by M .

Recall that δ(q, a) can be any subset of Q, including the empty set. This possibility, along
with the definition of δ∗, raises the possibility that for some string x ∈ Σ∗, δ∗(s, x) = ∅. If this
is the case then surely δ∗(s, x) ∩ F = ∅ and, by the above definition, M does not accept x.

7.4.2 Equivalence of DFSA and NFSA

It is clear from the definition that a DFSA is a special case of a NFSA, where we restrict
the transition function in certain ways. Specifically, for each state q we disallow ǫ-transitions
except back to q, and we require that for any a ∈ Σ, |δ(q, a)| = 1. Thus, nondeterministic FSA
are at least as powerful as deterministic ones.

We have seen that the use of nondeterminism allows us to reduce the complexity of the
automaton (in some quantifiable measure, such as the number of states). But does nonde-
terminism increase the expressive power of finite state automata? More precisely, is there
a language that is accepted by a NFSA, but which is not accepted by any DFSA? We will
prove that the answer to this question is negative: Both kinds of finite state automata accept
precisely the same class of languages. This means that when we deal with finite state au-
tomata, we may assume the extra freedom of nondeterminism or require the greater discipline
of determinism, as fits our purposes.

Given a NFSA M = (Q,Σ, δ, s, F ) we show how to construct a DFSA M̂ = (Q̂,Σ, δ̂, ŝ, F̂ )
that accepts the same language as M . This construction is called the subset construction,
because each state of M̂ is a set of states of M . Intuitively, input x takes M̂ from its initial
state ŝ to state q̂ if and only if q̂ is the set of all states to which x could take M from its own
initial state s (see Lemma 7.18, below). Formally, the components of M̂ are defined as follows:

• Q̂ = P(Q).
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• ŝ = E(s) (i.e., the set of all states reachable from the initial state of the given NFSA via
ǫ-transitions only).

• F̂ = {q̂ ∈ Q̂ : q̂ ∩ F 6= ∅} (i.e., all states that contain an accepting state of the given
NFSA).

• For any q̂ ∈ Q̂, and a ∈ Σ, δ̂(q̂, a) =
⋃

q′∈q̂

(⋃
q′′∈δ(q′,a) E(q′′)

)
.

Here is an intuitive explanation of the transition function of M̂ . To determine δ̂(q̂, a), the

unique state that M̂ must enter when it is in state q̂ and reads input symbol a, we proceed as
follows:

• For each of the states of M that make up q̂, say q′, we determine (using M ’s nondeter-
ministic transition function) the set of states to which M can move when it is in state q′

and it reads input symbol a. The set of such states is δ(q′, a).

• For each of the states reached in the previous step, say q′′, we determine (again, using
M ’s transition function) the states that can be reached from q′′ by following any number
of ǫ-transitions. The set of such states is E(q′′).

The set of states of M reachable by means of this two-step process is the desired state of M̂ ,
δ̂(q̂, a).

Note that the FSA M̂ defined by the subset construction is deterministic: From each of its
states (a subset of M ’s states), a given input symbol can cause it to move to exactly one of its
states.

Example 7.19 In Figure 7.15 we give an example of the subset construction. The given
NFSA is shown at the top of the figure. It has five states: a, b, c, d and e. The initial state is
a, and the only accepting state is d. The resulting DFSA is shown at the bottom of the figure.
It has 32 states — one for each subset of {a, b, c, d, e}. To simplify the figure, each subset is
indicated by listing its elements. For example, we write cde, instead of {c, d, e}. There are
many transitions that are not shown in the figure, but these concern only states that are not
reachable from the initial state of the DFSA.

The transitions shown were determined by using the rule specified in the subset construction
for deriving δ̂ from δ. Let us examine a few such transitions. We start from the initial state of
the DFSA which, by the construction, is {a} (written simply as a). Let us determine the state
of the DFSA to which we go from {a}, when the input symbol in 0. We look at the NFSA,
and notice that the states to which we can go from a on 0 are b and c. Thus, the state of the
DFSA to which we can go from {a} on 0 is the state {b, c}. Let us also determine the state
of the DFSA to which we go from {a} when the input symbol is 1. We consult at the NFSA
and notice that the only transition from a labeled 1 is to state d. However, from d there is an
ǫ-transition to e. Thus, in the NFSA, if we are in state a and the input symbol is 1, the next
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A nondeterministic FSA

applied to the NFSA above

0
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The deterministic FSA resulting from the subset construction

Figure 7.15: The subset construction
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states to which we can go are d and e. Accordingly, in the DFSA, from {a} we go to state
{d, e}, when the input symbol is 1.

Now let’s consider the transitions from state {b, c}. This state intuitively corresponds to
being either in state b or in state c in the NFSA. Consider first the transitions on input 0.
If we are in state b of the NFSA, then on input 0 we cannot go anywhere: this is a missing
transition in the diagram, so formally we go to a dead state, not explicitly shown. From state
c in the NFSA, on input 0 we can go either to c or to e. Thus, from state {b, c} of the DFSA,
on input 0 we go to state {c, e}. By a similar reasoning, we can determine that the transition
from state {b, c} in the DFSA on input 1 goes to state {c, d, e}.

Let us also consider the transition from state {c, e} on input 1. From state c in the NFSA,
on input 1 we cannot go anywhere; from state e, on input 1 we can only go to c. Thus, from
state {c, e} in the DFSA, on input 1 we go to state {c}.

Continuing in this way, we can determine the state transitions of the DFSA for all states
that are reachable from the initial state. We can also determine the state transitions from
states that are not reachable from the initial state, but these are useless so we don’t bother.
You should check the rest of the transitions, to make sure that you understand the subset
construction. End of Example 7.19

The key to proving that the constructed DFSA M̂ accepts the same language as the given
NFSA M is:

Lemma 7.18 Let M = (Q,Σ, δ, s, F ) be a NFSA, and M̂ = (Q̂,Σ, δ̂, ŝ, F̂ ) be the DFSA

obtained by applying the subset construction to M . For every x ∈ Σ∗, δ∗(s, x) = δ̂∗(ŝ, x).

Proof. Let P (x) be the following predicate on strings:

P (x) : δ∗(s, x) = δ̂∗(ŝ, x)

We use structural induction to prove that P (x) holds, for all strings x.

Basis: x = ǫ. By the definition of extended transition function for nondeterministic FSA,
we have δ∗(s, x) = E(s). By the definition of extended transition function for deterministic

FSA and the definition of ŝ in the subset construction, we have δ̂∗(ŝ, x) = ŝ = E(s). Thus,

δ∗(s, x) = δ̂∗(ŝ, x).

Induction Step: x = ya, for some y ∈ Σ∗ and a ∈ Σ; we assume, by induction, that P (y)

holds, i.e., that δ∗(s, y) = δ̂∗(ŝ, y). We have

δ∗(s, x) = δ∗(s, ya) [by definition of x]

=
⋃

q′∈δ∗(s,y)

( ⋃

q′′∈δ(q′,a)
E(q′′)

)
[by definition of extended transition function

for nondeterministic FSA; cf. Definition 7.16]

=
⋃

q′∈δ̂∗(ŝ,y)

( ⋃

q′′∈δ(q′,a)
E(q′′)

)
[by the induction hypothesis]
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= δ̂(δ̂∗(ŝ, y), a) [by definition of δ̂ in subset construction]

= δ̂∗(ŝ, ya) [by definition of extended transition function

for deterministic FSA; cf. Definition 7.11]

= δ̂∗(ŝ, x) [since x = ya, in this case]

as wanted.

From this Lemma we immediately get:

Theorem 7.19 Let M be a NFSA and M̂ be the DFSA obtained by applying the subset
construction to M . Then, L(M) = L(M̂).

Proof. For any string x ∈ Σ∗, we have:

x ∈ L(M)⇔ δ∗(s, x) ∩ F 6= ∅ [by definition of acceptance by nondeterministic FSA;

cf. Definition 7.17]

⇔ δ̂∗(ŝ, x) ∩ F 6= ∅ [by Lemma 7.18]

⇔ δ̂∗(ŝ, x) ∈ F̂ [by definition of F̂ in subset construction]

⇔ x ∈ L(M̂) [by definition of acceptance by deterministic FSA;

cf. Definition 7.12]

Thus, L(M) = L(M̂), as wanted.

Corollary 7.20 The class of languages accepted by NFSA is the same as the class of languages
accepted by DFSA.

We will use the term “finite state automaton” (abbreviated FSA), without specifying
whether it is deterministic or not, if this is not germane to the point being made. In par-
ticular, if all we care about is whether a language can be accepted by a finite state automaton,
Theorem 7.19 and Corollary 7.19 assure us that we can assume that the automaton is de-
terministic or nondeterministic — whichever is more convenient. We will make use of this
flexibility subsequently. Of course, if we are interested in other aspects of the automaton than
just the language it accepts (e.g. the number of states it has), it can be quite relevant to know
whether an automaton must be deterministic or not.

The subset construction results in an exponential blow-up of the number of states: If the
given NFSA has n states, the resulting DFSA has 2n states. The question therefore arises:
Is such a huge increase in the number of states necessary? Could we have a more efficient
construction, which would result in smaller DFSA? The answer turns out to be negative. The
reason is that there exist languages which are accepted by “small” NFSA but are accepted
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only by “large” DFSA. Specifically, for each n ∈ N, there is a language that is accepted by a
NFSA with n + 1 states, but is not accepted by any DFSA with fewer than 2n states. That
is, the exponential explosion in the number of states inherent in the subset construction is, in
general, necessary (at least within a factor of 2). This means that, in general, NFSA are much
more efficient representations of languages than DFSA. This issue is explored in Exercise 12.

7.5 Closure properties of FSA-accepted languages

There are many natural operations by which we can combine languages to obtain other lan-
guages. It turns out that many of these operations, when applied to languages that are accepted
by FSA result in a language that is also accepted by some FSA. If an operation has this prop-
erty, we say that the class of languages accepted by FSA is closed under this operation. In this
section we establish some closure properties of this type. Both the results themselves, and the
techniques by which they can be proved, are quite important.

Theorem 7.21 The class of languages that are accepted by FSA is closed under complemen-
tation, union, intersection, concatenation and the Kleene star operation. In other words, if L
and L′ are languages that are accepted by FSA, then so are all of the following: L, L ∪ L′,
L ∩ L′, L ◦ L′ and L⊛.

Proof. Let M = (Q,Σ, δ, s, F ) and M ′ = (Q′,Σ, δ′, s′, F ′) be FSA that accept L and L′,
respectively; i.e., L(M) = L and L(M ′) = L′. For each of the above five operations, we
will show how to construct finite state automata that accept the language defined by that
operation. For most operations, we will describe the construction graphically, by showing how
the given automata M and M ′ (which are depicted Figure 7.16) can be modified to construct
the new automaton that accepts the desired language.

M M ′

s′s

Figure 7.16: FSA M and M ′, accepting languages L and L′.

Complementation: By Theorem 7.19, we may assume, without loss of generality, that M
is deterministic. Consider the FSA M = (Q,Σ, δ, s, Q − F ). Intuitively, in M we keep the
same set of states and transition function as in M , but we make every accepting state of M
nonaccepting, and we make every nonaccepting state ofM accepting. We claim thatM accepts
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L. Here is why. Let x be an arbitrary string in Σ∗.

x ∈ L(M)⇔ δ∗(s, x) ∈ Q− F [by definition of acceptance by DFSA; cf. Definition 7.12]

⇔ δ∗(s, x) /∈ F [by definition of M ]

⇔ x /∈ L(M) [by definition of acceptance by DFSA; cf. Definition 7.12]

Thus L(M) = L(M) = L, as wanted. (The assumption that M is deterministic is important
in this case. If you are not sure why, you should carefully review the definition of acceptance
for both deterministic and nondeterministic automata.)

Union: The NFSA M∪ shown diagrammatically in Figure 7.17 accepts L ∪ L′. The states of
M∪ are the states of M and M ′, and a new state denoted s∪, which is the initial state of M∪.
Its transition function is as depicted in Figure 7.17.

new init

Accepting states of M∪: F ∪ F ′

s∪

state

M

M ′

ǫ

ǫ

s

s′

Figure 7.17: FSA M∪ that accepts L ∪ L′.

To prove that M∪ accepts L∪L′ we must show that, for any string x, x is accepted by M∪
if and only if x ∈ L ∪ L′.

[if] Let x be an arbitrary string in L ∪ L′. Then either x ∈ L or x ∈ L′. Without loss
of generality, assume that x ∈ L (the case x ∈ L′ is handled similarly). Then one possible
computation of M∪ on input x is to first take the ǫ-transition from s∪ (the initial state of M∪)
to s (the initial state of M), and then process the symbols of x as M would. Since x ∈ L, it
is possible that M can be in one of its accepting states after processing x; by following the
same sequence of moves after the initial ǫ-transition, M∪ can also be in the same state after
processing x. Since every accepting state of M is also an accepting state of M∪, this is an
accepting computation for x in M∪, so M∪ accepts x, as wanted.

[only if] Let x be an arbitrary string accepted by M∪. Consider any accepting computation
of M∪ on x. The first move of such a computation is an ǫ-transition from s∪ to s or s′.

Case 1. The first move of the accepting computation of M∪ on input x was an ǫ-transition
from s∪ to s. The remaining moves of the computation must be legal moves of M , starting in
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state s and ending in an accepting state of M . (This is because, by the construction of M∪,
once M∪ enters a state of M it can only follow transitions of that automaton, and the only
accepting states of M∪ that are also states of M , are the accepting states of M .) Thus, the
accepting computation of M∪ on x is also an accepting computation of M on input x. Hence,
x ∈ L(M), i.e., x ∈ L.

Case 2. The first move of the accepting computation of M∪ on input x was an ǫ-transition
from s∪ to s′. An argument similar to that in the previous case shows that, in this case, x ∈ L′.

Since either x ∈ L or x ∈ L′, we have that x ∈ L ∪ L′, as wanted.

The construction of M∪, shown diagrammatically in Figure 7.17, can also be described for-
mally as follows. Assume, without loss of generality, that M and M ′ are nondeterministic. Let
s∪ be a new state, i.e., a state that does not belong to Q or Q′. Then M∪ = (Q∪,Σ, δ∪, s∪, F∪),
where Q∪ = Q ∪Q′ ∪ {s∪}, F∪ = F ∪ F ′, and for any q ∈ Q∪ and a ∈ Σ ∪ {ǫ},

δ∪(q, a) =





δ(q, a), if q ∈ Q

δ′(q, a), if q ∈ Q′

{s∪, s, s′}, if q = s∪ and a = ǫ

Intersection: Since L ∩ L′ = L ∪ L′, the result follows from the previous two. Alternatively,
we can give an explicit construction for an FSA M∩ = (Q∩,Σ, δ∩, s∩, F∩) that accepts L ∩ L′.

• Q∩ = Q×Q′

• s∩ = (s, s′)

• F∩ = F × F ′

• δ∩
(
(q, q′), a

)
=

(
δ(q, a), δ′(q′, a)

)

This is known as the Cartesian product construction. Intuitively, the machine M∩ runs
both automata M1 and M2 concurrently. It starts both automata in their respective initial
states. Upon reading an input symbol it makes a move on each of M and M ′. It accepts if
and only if, at the end, both automata are in an accepting state. We leave as an exercise the
proof that the automaton resulting from this construction accepts L ∩ L′ (see Exercise 8).

Concatenation: The NFSA M◦ shown diagrammatically in Figure 7.18 accepts L ◦ L′. We
leave as an exercise the proof that this construction is correct (i.e., that M◦ accepts L ◦ L′)
and a mathematical (as opposed to graphical) description of M◦.

Kleene star: The NFSA M⊛ shown diagrammatically in Figure 7.19 accepts L⊛. Again, we
leave as an exercise the proof of correctness and a mathematical (as opposed to graphical)
description of M⊛.

Notice how, in the preceding proof, we have taken advantage of nondeterminism, and
specifically of the use of ǫ-transitions, in the constructions of M∪, M◦ and M⊛. We have also
taken advantage of determinism in the construction of M .
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ǫ

M ′M

initial state of M◦: s

ǫ

ǫ
s s′

accepting states of M◦: F ′

Figure 7.18: FSA M◦ that accepts L ◦ L′.

M

ǫ

new initial and

ǫ

s

final state ǫ
ǫ

Figure 7.19: FSA M⊛ that accepts L⊛.

Many other closure properties of FSA-accepted languages can be proved. In some cases we
can easily prove such properties by applying previously established closure properties.

Example 7.20 For any languages L,L′ over alphabet Σ, define the operation ⋓ as follows:

L ⋓ L′ = {x ∈ Σ∗ : x ∈ L ∩ L′ or x /∈ L ∪ L′}

That is, L⋓L′ is the set of strings that are in both languages or in neither language. From its
definition, it is immediate that L ⋓ L′ = (L ∩ L′) ∪ (L ∪ L′). In view of this, and the fact that
the class of FSA-accepted languages is closed under union, intersection and complementation,
it follows that this class is also closed under the operation ⋓. In other words, if there are FSA
that accept L and L′, then there is a FSA that accepts L ⋓ L′. End of Example 7.20

7.6 Equivalence of regular expressions and FSA

We now prove that regular expressions and FSA are equivalent in their power to describe
languages. That is, any language denoted by a regular expression is accepted by some FSA
(this shows that FSA are at least as powerful as regular expressions); and, conversely, any
language accepted by a FSA can be denoted by a regular expression (this shows that regular
expressions are at least as powerful as FSA).



226 CHAPTER 7. FINITE STATE AUTOMATA AND REGULAR EXPRESSIONS

This is a result that is both important in practice, and mathematically interesting. We
will note the practical relevance of this result as we go along. Its mathematical interest arises
from the fact that it establishes the equivalence of two very different, though natural, ways to
describe languages. This increases our confidence that the underlying concept is important. If
many different roads lead to Rome, we gather that Rome is an important city!

7.6.1 From regular expressions to FSA

We first prove that given a regular expression R, we can construct a FSA M that accepts
precisely the language denoted by R. The basic idea is to recursively construct FSA that
accept the languages denoted by the subexpressions of R, and combine these automata (much
in the way we saw in the proof of closure properties in the previous section) to accept the
language denoted by the entire expression R. Naturally, then, the proof is by structural
induction on the construction of R.

Theorem 7.22 For every regular expression R there is a FSA M such that L(M) = L(R).

Proof. By structural induction on the definition of R.

Basis: Figure 7.20 shows FSA that accept the languages denoted by the expressions in the
basis of the definition of regular expressions: ∅, ǫ, and a for each a ∈ Σ.

L(M) = ∅ L(M) = {ǫ}

a

L(M) = {a}

Figure 7.20: FSA for the regular expressions ∅, ǫ and a ∈ Σ.

Induction Step: Suppose R = (S + S ′), where S and S ′ are regular expressions. By the
induction hypothesis, we assume that there are FSA that accept L(S) and L(S ′). By Theo-
rem 7.21, the class of languages accepted by FSA is closed under union. Thus, L(S) ∪ L(S ′),
which is L(R), is also accepted by some FSA. In fact, the proof of Theorem 7.21 and, in
particular, Figure 7.17 shows how to construct such a FSA.

The two remaining cases, R = (SS ′) and R = S∗, are shown in the same way since, by
Theorem 7.21, the class of languages accepted by FSA is also closed under concatenation and
Kleene star.

Example 7.21 In Figure 7.21 we show how to construct a FSA that accepts the language

denoted by (0 + 1)(11)∗. We show the construction step-by-step, bottom-up: We start with
FSA that accept the simplest subexpressions of (0 + 1)(11)∗ (as in the basis of the proof of
Theorem 7.22). We then show how to combine these to obtain FSA that accept larger and
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larger subexpressions (as in the induction step of the proof of Theorem 7.22), until we have
constructed a FSA that accepts the entire expression. Note that the induction step of the proof
of Theorem 7.22 uses the constructions for union, concatenation and the Kleene star shown in
the proof of Theorem 7.21. End of Example 7.21

The construction of the FSA from the regular expression illustrated in the previous example
is completely algorithmic. It decomposes the regular expression, recursively constructing FSA
for the larger subexpressions out of the FSA it previously constructed for the simpler subex-
pressions. Of course, the final (or intermediate) FSA produced can be simplified by eliminating
obviously unnecessary ǫ-transitions. A somewhat simplified FSA that accepts (0 + 1)(11)∗ is
shown at the bottom of Figure 7.21.

This construction is used by pattern-matching utilities such as the Unix program grep, as
we explain below. Roughly speaking, the user of grep specifies two parameters: a regular
expression and a file. The job of grep is to print each line of the file that contains (as a
substring) any string denoted by the regular expression. For instance, the Unix command

grep ’g[ae]m.*t’ /usr/dict/words

results in the following output

amalgamate

bergamot

gambit

gamut

geminate

gemstone

largemouth

ligament

The first argument of this command, ’g[ae]m.*t’, is a regular expression written in the
syntax required by grep. The second argument is a file name. The regular expression has the
following meaning (ignoring the surrounding quotation marks, which are needed for reasons
we will not explain here): The notation [ae] stands for “either a or e” (i.e., (a + e), in our
notation). The dot (.) is shorthand for “any character whatsoever”. The star (∗) has the
normal meaning: any number of repetitions. Thus, this regular expression denotes the set
of strings that start with g, followed by either a or e, followed by m, followed by anything
than ends in t. In standard Unix systems, the file /usr/dict/words contains a list of English
words. Therefore this command says: find all the English words (in the Unix dictionary) that
contain, as a substring, the pattern described above. The answer is the list shown above. (This
particular use of grep is handy when playing hangman or doing crossword puzzles!)

The grep utility makes use of the construction implicit in the proof of Theorem 7.22 and
illustrated in Example 7.21. Suppose ′E′ is the regular expression specified by the user in the
command line. grep first modifies this to ′. ∗ E .∗′. This denotes the set of strings that contain
a string in E as a substring. It then transforms this regular expression to a NFSA as explained
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FSA to accept 0

FSA to accept 1

FSA to accept 11

ǫ

FSA to accept (11)∗

FSA to accept 0 + 1

ǫ
ǫ

FSA to accept (0 + 1)(11)∗

ǫ

Simplified FSA to accept (0 + 1)(11)∗

0

1

0

1

ǫ

ǫ

ǫ 11

ǫ 1 ǫ 1

ǫ

1

0

ǫ 1 ǫ 1

ǫ ǫ

1

1ǫ1

0

Figure 7.21: Constructing a FSA that accepts (0 + 1)(11)∗.
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above. For each line x of the specified file, grep “runs” the constructed NFSA using x as input;
if the NFSA accepts x, grep prints x, otherwise it does not.8

7.6.2 From FSA to regular expressions

Next we will prove that for any FSA M we can construct a regular expression that denotes
precisely the language accepted by M . This construction is much less obvious than the reverse
direction that we saw in the previous section. Unlike regular expressions, finite state automata
do not have a recursive definition: We do not define each FSA in terms of “smaller” FSA. As
a result there is no obvious peg on which to hang an inductive argument. The proof is, as
we will see, an inductive one, but it takes considerable ingenuity to see how to frame it. This
theorem is due to Stephen Kleene, who proved it in 1956.

Theorem 7.23 For every FSA M there is a regular expression R such that L(R) = L(M).

Proof. Let M = (Q,Σ, δ, s, F ). Without loss of generality assume that M is deterministic,
and that the set of states is Q = {1, 2, . . . , n}, for some n ∈ N. That is, the states are numbered
from 1 to n.

Let x ∈ Σ∗ and i ∈ Q. Suppose we start M in state i and run it with string x as input,
As we have seen, the computation of M on input x corresponds to a path in the transition
diagram of the FSA. The labels on this path are the symbols of x. For each i, j ∈ Q (not
necessarily distinct), and each k such that 0 ≤ k ≤ n, we will now define a set of strings,
denoted Lk

ij . Intuitively, this is the set of strings that take M from state i to state j through a
computation path in which all intermediate states (i.e., all states on the path except the first
and last) are no greater than k. More precisely, x ∈ Lk

ij if and only if for some ℓ ≥ 0, there
is a sequence of (not necessarily distinct) symbols in Σ, a1, a2, . . . , aℓ, and a sequence of (not
necessarily distinct) states s0, s1, . . . , sℓ, so that:

• x = a1a2 · · · aℓ (x is the concatenation of the sequence of symbols).

• s0 = i and sℓ = j (the sequence of states starts in i and ends in j).

• For each m such that 0 < m < ℓ, sm ≤ k (every state in the sequence, except the first
and last, is at most k).

• For each m such that 1 ≤ m ≤ ℓ, sm = δ(sm−1, am) (every state in the sequence,
except the first, is reached from the previous one by a transition of M upon seeing the
corresponding symbol).

We claim that

For all k, 0 ≤ k ≤ n, for all i, j ∈ Q, there is a regular expression Rk
ij

that denotes the set Lk
ij (7.8)

8grep has many other useful features. For instance, we can find all lines that contain strings denoted by the
regular expression as a prefix or suffix (instead of containing the expression as a substring). It also contains a
number of handy abbreviations for regular expressions. For full details you should consult the Unix manual.
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Let us, for the moment, assume that we have proved (7.8). We can complete the proof of
the theorem as follows: Let s be the initial state, and f1, f2, . . . , ft be the accepting states of
M , for some t ∈ N. The language accepted by M is the set of all strings that can take M from
the initial state to any accepting state. That is,

L(M) =

{
∅, if t = 0

Ln
sf1
∪ · · · ∪ Ln

sft
, if t ≥ 1

Accordingly, the regular expression

R =

{
∅, if t = 0

Rn
sf1

+ · · ·+Rn
sft
, if t ≥ 1

denotes L(M), where Rn
sf1

, . . . , Rn
sft

are regular expressions which, by (7.8), denote the lan-
guages Ln

sf1
, . . . , Ln

sft
, respectively.

We now return to the proof of (7.8). For any i, j ∈ Q,

L0
ij =

{
{a ∈ Σ : δ(i, a) = j}, if i 6= j

{ǫ} ∪ {a ∈ Σ : δ(i, a) = j}, if i = j
(7.9)

Lk+1
ij = Lk

ij ∪ (Lk
i,k+1 ◦ (Lk

k+1,k+1)
⊛ ◦ Lk

k+1,j) for 0 ≤ k < n (7.10)

Let us now explain why these equations hold. By definition, L0
ij is the set of strings x

that take M from i to j without going through any intermediate states. Therefore, Equation
(7.9) states the following: The only strings that take M from state i to state j 6= i without
going through any intermediate states are strings consisting of a single symbol, say a, such
that δ(i, a) = j. Similarly, the only strings that take M from state i to state i without going
through any intermediate states are the empty string and strings consisting of a single symbol,
say a, such that δ(i, a) = i.

Equation (7.10) states the following: A string x that takes M from i to j without going
through a state higher than k + 1, either

(a) takes M from i to j without even going through a state higher than k (in which case x is
in Lk

ij), or

(b) it consists of a prefix that takes M from i to k + 1 without going through a state higher
than k (this prefix is in Lk

i,k+1), followed by zero or more substrings each of which takes
M from k + 1 back to k + 1 without going through a state higher than k (this substring
is in (Lk

k+1,k+1)
⊛), finally followed by a suffix that takes M from k + 1 to j without going

through a state higher than k (this suffix is in Lk
k+1,j).

Given this characterisation of Lk
ij for each k such that 0 ≤ k ≤ n, we can now prove (7.8)

by induction on k. More precisely, let P (k) be the predicate:

P (k) : For all i, j ∈ Q, there is a regular expression Rk
ij that denotes L

k
ij
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We will use induction to prove that P (k) holds for every integer k such that 0 ≤ k ≤ n.

Basis: k = 0. By (7.9), L0
ij is a finite subset of Σ ∪ {ǫ}. In other words, one of the following

two cases holds: (a) L0
ij = ∅, or (b) for some t ≥ 1, L0

ij = {a1, . . . , at}, where am ∈ Σ ∪ {ǫ},
for each m such that 1 ≤ m ≤ t. Accordingly, the regular expression ∅ or a1 + · · ·+ at denotes
L0
ij. Therefore, P (0) holds letting R0

ij be ∅ or a1 + · · · + at, depending on which of the two
cases applies.

Induction Step: Let m be an arbitrary integer such that 0 ≤ m < n, and suppose that
P (m) holds; i.e., for all i, j ∈ Q, there is a regular expression Rm

ij that denotes Lm
ij . We must

prove that P (m+1) holds as well. Let i, j be arbitrary states in Q. We must prove that there
is a regular expression Rm+1

ij that denotes Lm+1
ij .

Since 0 ≤ m < n, we have by (7.10):

Lm+1
ij = Lm

ij ∪ (Lm
i,m+1 ◦ (Lm

m+1,m+1)
⊛ ◦ Lm

m+1,j) (7.11)

Furthermore, by the induction hypothesis, there are regular expressions Rm
ij , R

m
i,m+1, R

m
m+1,m+1

and Rm
m+1,j that denote, respectively, the sets Lm

ij , L
m
i,m+1, L

m
m+1,m+1 and Lm

m+1,j. Then, by

(7.11), the regular expression Rm
ij + Rm

i,m+1(R
m
m+1,m+1)

∗Rm
m+1,j denotes L

m+1
ij . Thus, P (m + 1)

holds, as wanted.

This completes the proof of (7.8), and thereby of the theorem.

Example 7.22 Consider the 3-state DFSA shown in Figure 7.22. We will determine a
regular expression that denotes the language accepted by that automaton, by following the
inductive computation described in the preceding proof.

0
1

1

0

1

01 2 3

Figure 7.22: A finite state automaton

The table below shows regular expressions Rk
ij for k ∈ {0, 1, 2} for this automaton. These

expressions were computed by using Equations (7.9)–(7.10) and applying some equivalence-
preserving simplifications.
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k = 0 k = 1 k = 2

Rk
11 ǫ+ 0 0∗ 0∗(ǫ+ 1(00∗1)∗00∗)

Rk
12 1 0∗1 0∗1(00∗1)∗

Rk
13 ∅ ∅ 0∗1(00∗1)∗1

Rk
21 0 00∗ (00∗1)∗00∗

Rk
22 ǫ ǫ+ 00∗1 (00∗1)∗

Rk
23 1 1 (00∗1)∗1

Rk
31 1 10∗ 1(ǫ+ 0∗1(00∗1)∗0)0∗

Rk
32 ∅ 10∗1 10∗1(00∗1)∗

Rk
33 ǫ+ 0 ǫ+ 0 ǫ+ 0 + 10∗1(00∗1)∗1

The entries of this table were computed inductively, column-by-column. The entries of the
first column (labeled “k = 0”) are easily derived from the FSA, using Equation (7.9). Then we
calculated the entries of the second column (k = 1), using Equation (7.10) and the expressions
already derived in the first column. Similarly for the third column (k = 2).

With these expressions at hand, we can now derive a regular expression that denotes the
language accepted by the FSA. Since there is a unique accepting state, 3, and the start state
is 1, the language accepted by the FSA is L3

13. Using Equation (7.10) and the expressions in
the last column we obtain the following regular expression for the language accepted by the
FSA:

0∗1(00∗1)∗1 + 0∗1(00∗1)∗1(ǫ+ 0 + 10∗1(00∗1)∗1)∗(ǫ+ 0 + 10∗1(00∗1)∗1)

which can be simplified to:

0∗1(00∗1)∗1(0 + 10∗1(00∗1)∗1)∗

End of Example 7.22

The proof of Theorem 7.23 is constructive. It doesn’t merely prove the existence of a regu-
lar expression that denotes the language accepted by a FSA; it actually gives an algorithm to
determine this regular expression. The algorithm follows a particular method called dynamic
programming. Like divide-and-conquer, dynamic programming is a recursive problem-solving
technique that finds the solution to a “large” instance of a problem by first determining so-
lutions to “smaller” instances of the same problem, and then combining these to obtain the
solution to the “large” instance. Many important problems can be solved efficiently by algo-
rithms based on this method.

One of the many applications of the procedure described in the proof of Theorem 7.23 and
illustrated in the previous example is the automatic derivation of state invariants for FSA, to
which we alluded in Section 7.3.3 (cf. page 207). Recall that the invariant of a state q is a
description of the set of strings that take the automaton from the initial state to q — that is,
the set Ln

sq, where s is the initial state and n is the number of states. The method described
above shows how to compute a regular expression that describes that set.
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7.6.3 Regular languages

Theorems 7.22 and 7.23, and Corollary 7.20 immediately imply:

Corollary 7.24 Let L be a language. The following three statements are equivalent:

(a) L is denoted by a regular expression.

(b) L is accepted by a deterministic FSA.

(c) L is accepted by a nondeterministic FSA.

Thus the same class of languages is described by any one of these three formalisms: regular
expressions, DFSA and NFSA. This class of languages is important enough to have a special
name!

Definition 7.25 A language is called regular if and only if it is denoted by some regular
expression; or, equivalently, if and only if it is accepted by a (deterministic or nondeterministic)
FSA.

Now we are in a position to answer some of the questions we had posed in Section 7.2.6.
Suppose we have two regular expressions R and R′. Is there a regular expression that denotes
L(R)∩L(R′)? The answer to this question was not clear before now: regular expressions do not
have an operator to directly represent intersection, nor is it obvious how to express intersection
in terms of the available operators. At this point however, we have enough technical machinery
to be able to answer this question. Yes, such a regular expression exists: The languages
denoted by regular expressions are (by definition) regular. Regular languages are closed under
intersection (by Corollary 7.24 and Theorem 7.21). Thus, L(R) ∩ L(R′) can be denoted by a
regular expression.

Actually, the results we have derived allow us to do more. Not only can we say that
a regular expression, R∩, that denotes L(R) ∩ L(R′) exists; we can actually algorithmically
construct such an expression, given R and R′. Here is how:

(1) From R and R′ we construct two FSA M and M ′ that accept L(R) and L(R′), respec-
tively. (The way to do this was described in the proof of Theorem 7.22 and illustrated in
Example 7.21.)

(2) From M and M ′ we construct a FSA M∩ that accepts the intersection of the languages
accepted by M and M ′, i.e., L(R)∩L(R′). (The way to do this was described in the proof
of Theorem 7.21.)

(3) From the FSA M∩ we can construct a regular expression R∩ that denotes the language
accepted by M∩, i.e., L(R) ∩ L(R′). (The way to do this was described in the proof of
Theorem 7.23 and illustrated in Example 7.22.)
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We can use similar techniques to answer other questions raised in Section 7.2.6. For ex-
ample, we can prove that, for any regular expression R, there is a regular expression R that
denotes the complement of the language denoted by R. In fact, we can show how to construct
R from R, algorithmically.

One question raised in Section 7.2.6 that we have not yet addressed, however, is proving
that there are certain languages that cannot be denoted by regular expressions. This question
is taken up next.

7.7 Proving nonregularity: the Pumping Lemma

Although regular languages arise naturally in many applications, it is also true that many
languages of interest are not regular: they are not denoted by any regular expression or,
equivalently, they are not accepted by any FSA. The fact that a FSA has only a fixed number
of states means that it can only “remember” a bounded amount of things. Thus, if we have a
language such that there is no a priori bound on the amount of information that the automaton
needs to remember to decide whether a string is in the language or not, then such a language
is not regular.

An example of a language that has this property is {x ∈ {0, 1}∗ : x has as many 0s as 1s}.
It appears that an automaton that accepts this language must “remember” the difference in
the number of 0s and 1s it has seen so far. Since there are infinitely many differences of 0s and
1s that strings can have, it would appear that we need an automaton with an infinite number
of states to accept this language.

Another example of a language with a similar property is {0n1n : n ≥ 0}. In this case, it
appears that the automaton would have to remember how many 0s it has seen when it gets
to the boundary between 0s and 1s, so as to make sure that the string has the same number
of 1s. Since there is no bound on the number of 0s in the strings that are in the language, it
would again appear that we need an infinite state automaton to accept this language.

In fact, these arguments can be made precise, and rigorous proofs can be given that the
two languages mentioned above are not regular. There is a particularly useful tool for proving
that languages are not regular, called the “Pumping Lemma”. Intuitively, it states that any
sufficiently long string of a regular language L has a nonempty substring which can be repeated
(“pumped”) an arbitrary number of times, with the resulting string still being in L.

Recall that if x is a string and k ≥ 0 an integer, xk is the string obtained by repeating x,
k times. (See Equation (7.1) on page 184 for the formal, inductive, definition.)

Theorem 7.26 (Pumping Lemma) Let L ⊆ Σ∗ be a regular language. Then there is some
n ∈ N (that depends on L) so that every x ∈ L that has length n or more satisfies the following
property:

There are u, v, w ∈ Σ∗ such that x = uvw, v 6= ǫ, |uv| ≤ n, and uvkw ∈ L, for all k ∈ N

Proof. Let M = (Q,Σ, δ, s, F ) be a FSA that accepts L. Without loss of generality we
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assume that M is deterministic. Let n be the number of states of this automaton.9 Consider
any string x ∈ L such that |x| = ℓ ≥ n. Let x = a1a2 . . . aℓ, where am ∈ Σ for all m such that
1 ≤ m ≤ ℓ. Figure 7.23 shows the sequence of states q0, q1, . . . , qℓ through which M goes as it
reads each symbol at of the input string x, starting in the initial state q0 = s.

same state

. . . . . . . . .qj+1qjqi+1qiq1q0 qℓ

a1 a2 ai ai+1 aj aj+1 aℓ

wvu

Figure 7.23: Illustration of Pumping Lemma

This sequence of states is formally defined by induction:

qm =

{
s, if m = 0

δ(qm−1, am), if 0 < m ≤ ℓ

Consider the prefix q0, q1, . . . , qn of this sequence. This sequence has n+1 states; since M has
only n distinct states, some state is repeated (at least) twice in q0, q1, . . . , qn. That is, qi = qj
for some i, j such that 0 ≤ i < j ≤ n. Let u = a1 . . . ai (u = ǫ, if i = 0), v = ai+1 . . . aj, and
w = aj+1 . . . aℓ (w = ǫ, if j = ℓ). By definition, x = uvw. Furthermore, v 6= ǫ, since i < j; and
|uv| ≤ n, since j ≤ n. It remains to prove that uvkw ∈ L, for all k ∈ N.

We have δ∗(qi, v) = qj = qi. That is, v takes M from state qi back to state qi. Hence,
any number of repetitions of v (including zero) will have the same effect. In other words,
δ∗(qi, vk) = qi = qj, for any k ∈ N. In addition, from the definition of u and w we have that
δ∗(q0, u) = qi, and δ∗(qj, w) = qℓ. Hence, δ∗(q0, uvkw) = qℓ, for all k ≥ 0. Since x ∈ L and
δ∗(q0, x) = qℓ, it follows that qℓ ∈ F . Therefore uvkw ∈ L, for all k ∈ N, as wanted.

Example 7.23 In this example we illustrate an application of the Pumping Lemma. Con-

sider the language L = {x ∈ {0, 1}∗ : x has as many 0s as 1s}. We want to show that L is not
regular. Assume, for contradiction, that L is regular. Let n ∈ N be the natural number which
the Pumping Lemma asserts that exists if L is regular.

Let x be any string in L that starts with n 0s. (For example, x = 0n1n is such a string,
among many others.) By the Pumping Lemma, there are strings u, v, w ∈ Σ∗ such that
x = uvw, v 6= ǫ and |uv| ≤ n, so that uvkw ∈ L, for all k ≥ 0. Since x begins with n 0s and
|uv| ≤ n, it follows that v = 0m, for some 1 ≤ m ≤ n (m 6= 0, since v 6= ǫ).

9Recall that, in the statement of the theorem, we say that n depends on L. This is clear now, since n is
defined as the number of states of some DFSA that accepts L.
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But if x has equally many 0s and 1s, then for all k 6= 1, uvkw has different number of
0s and 1s: fewer 0s than 1s if k = 0, and more 0s than 1s if k > 1. This means that
uvkw /∈ L for all k 6= 1, contrary to the Pumping Lemma. Therefore L cannot be regular.

End of Example 7.23
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Exercises

1. Give an example of a language L such that L⊛ = L. Can a language with this property
be finite? Justify your answer.

2. The exponentiation operation on languages is defined (inductively) as follows. For any
language L and k ∈ N,

Lk =

{
{ǫ}, if k = 0

Lk−1 ◦ L, if k > 0

(a) Prove that L⊛ = ∪k∈NLk. (This provides an alternative definition of the Kleene star
operation.)

(b) Prove that a language L 6= ∅ has the property that L⊛ = L if and only if L = L ◦ L.

3. State whether the string 010 belongs to the language denoted by each of the following
regular expressions. Briefly justify your answer.

(a) (ǫ+ 1)0∗1∗0

(b) 0(11)∗0

(c) (ǫ+ 0)(1∗1∗)∗(0 + 1)

(d) (0 + 1)(0 + 1)∗

(e) (0 + 1)(0∗ + 1∗)

4. Let R, S and T be arbitrary regular expressions. For each of the following assertions, state
whether it is true or false, and justify your answer.

(a) If RS ≡ SR then R ≡ S.

(b) If RS ≡ RT and R 6≡ ∅ then S ≡ T .

(c) (RS +R)∗R ≡ R(SR +R)∗.

5. Consider the language L2 (over {0, 1}) consisting of the strings that have an even number of
0s. Does the regular expression 1∗((01∗0)1∗)∗ denote this set? How about each of the following
expressions: (1 + (01∗0))∗, (1∗(01∗0))∗, and (1∗(01∗0)∗)∗? In each case carefully justify your
answer.

6. A regular expression is called ∅-free if it does not contain the regular expression ∅ as a
subexpression. More precisely, the set of ∅-free regular expressions is defined inductively just
as the set of regular expressions (see Definition 7.6, page 192 in the notes) except that in the
basis of the definition we omit the expression ∅. Prove that any regular expression is equivalent
either to an ∅-free regular expression, or to the regular expression ∅.
(Hint: Use structural induction on regular expressions.)
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7. Prove that for any regular expression S, there is a regular expression Ŝ such that L(Ŝ) =
Rev(L(S)). In other words, if a language can be denoted by a regular expression, then so can
its reversal. (You should prove this in two ways: One that does not involve FSA, and one that
does.)

8. Prove that the FSA M∩ obtained via the Cartesian product construction from FSA M1

and M2 (see page 224) accepts the intersection of the languages accepted by M1 and M2.
Does this construction work regardless of whether M1 and M2 are deterministic or non-

deterministic? If M1 and M2 are deterministic, is M∩ necessarily deterministic? Justify your
answers.

9. Prove that for every language L, if L is accepted by a NFSA then it is accepted by a
NFSA that has exactly one accepting state. Does the same result hold for deterministic FSA?
Justify your answer.

10. Consider the following languages over alphabet Σ = {0, 1}:
{x ∈ {0, 1}∗ : x 6= ǫ and the first and last symbols of x are different}
{0n1m : n,m ≥ 0 and n+m is odd}
{x ∈ {0, 1}∗ : every 0 in x is immediately preceded and followed by 1}

For each of these languages, construct a DFSA that accepts it, and a regular expression that
denotes it. Prove that your automata and regular expressions are correct.

11. Let L be a language over Σ that is accepted by some FSA. Prove that each of the following
languages is also accepted by some FSA.

(a) The set of prefixes of L, Prefix(L) = {x ∈ Σ∗ : xy ∈ L, for some y ∈ Σ∗}.
(b) The set of suffixes of L, Suffix(L) = {x ∈ Σ∗ : yx ∈ L, for some y ∈ Σ∗}.
(c) The set of maximal strings of L, Max(L) = {x ∈ L : for any y ∈ Σ∗, if y 6= ǫ then xy /∈ L}.

12. Let L4 = {x ∈ {0, 1}∗ : x = y1z, for some y, z ∈ {0, 1}∗ s.t. |z| = 3}. That is, L4 consists
of all strings with at least 4 symbols, where the 4th symbol from the end is 1.

(a) Give a regular expression for L4.

(b) Give a nondeterministic FSA that accepts L4.

(c) Apply the subset construction on the NFSA from part (b) to get a deterministic FSA
that accepts L4.

(d) Prove that every deterministic FSA that accepts L4 must have at least 16 states.

(Hint: Prove that in any deterministic FSA that accepts L4, distinct input strings of
length 4 must lead (from the initial state) to distinct states.)

(e) Generalise from this example to show that, for every positive integer n, there is a language
Ln that is accepted by some NFSA with n + 1 states, but is not accepted by any DFSA
with fewer than 2n states.
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13. Consider the converses of the closure properties of regular languages discussed in Sec-
tion 7.5. Since the complement of a set’s complement is the set itself, it is clear that the
converse of the closure under complementation holds. In other words, if L is regular then so
is L. But how about the converse of the other closure properties?

(a) For every language L, is it the case that if L⊛ is regular then L is also regular? Justify
your answer.

(b) For every languages L and L′ is it the case that if L ∪ L′ is regular then L and L′ are
also regular? Justify your answer. If the answer is negative, is it the case that if L ∪ L′

is regular then at least one of L and L′ is regular?

(c) For every languages L and L′ is it the case that if L ◦ L′ is regular then L and L′ are
also regular? Justify your answer. If the answer is negative, is it the case that if L ◦L′ is
regular then at least one of L and L′ is regular?
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Chapter 8

CONTEXT-FREE GRAMMARS
AND PUSHDOWN AUTOMATA

8.1 Introduction

In this chapter we turn our attention to a class of languages, called context-free languages
(CFL for short). All modern programming languages belong to this class. (Note that program-
ming languages are not regular as they contain nonregular constructs, such as arbitrarily nested
but properly balanced parentheses.) Consequently, CFL are central in the design of program-
ming languages and compilers. Here we take a very brief glimpse of this important subject. We
will introduce two different characterisations of these languages. The first characterisation is
based on the formalism of context-free grammars, and the second characterisation is based
on push-down automata, an extension of finite-state automata. We will then prove that
these two characterisations are equivalent — i.e., they capture the same class of languages.

8.2 Context-free grammars

8.2.1 Informal description

As speakers of a “natural” language we act in two capacities:

• We recognise syntactically correct utterances. In this capacity we act analogously to
finite state automata, which “read” input strings and classify them as “good” or “bad”.

• We generate syntactically correct utterances. In this capacity we act analogously to
regular expressions, which can be viewed as rules for generating “good” strings.

For example, the regular expression 01(00+11)∗10 can be viewed as the rule to generate strings
that begin with 01, continue with the concatenation of any number of 00s or 11s, and end with
10.

There is a more general mechanism for describing how to generate strings using a formalism
known as a context-free grammar (CFG for short). Shown below is a CFG that generates the

241
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language denoted by the above regular expression.

S → BME

B → 01

E → 10

M → 00M

M → 11M

M → ǫ

The CFG is specified as a list of so-called productions. Each production is shown as a string
that contains the symbol “→”. To the left of “→” is a single symbol — S, B, M or E in our
case; these symbols are called variables. To the right of “→” is a string consisting of variables
and terminals, the symbols of the strings generated by the grammar — 0 and 1 in our case.
In our example, the right-hand side of the first production consists only of variables, that of
the second and third production consists only of terminals, and that of the fourth and fifth
production consists of both variables and terminals. The right-hand side of the last production
is the empty string. Finally, there is a special start variable, usually denoted by S.

The intuitive interpretation of the above grammar is as follows. The first production
says that any string in the language generated by the grammar consists of three parts: a
“beginning”, represented by the symbol B, a “middle”, represented by the symbol M , and
an “end”, represented by the symbol E. The second production says that the beginning of
the string is 01. The third production says that the end of the string is 10. The last three
productions say that the middle part of the string is one of three things: the string 00 followed
by anything that could also be in the middle part; the string 11 followed by anything that
could also be in the middle part; or the empty string.

This grammar generates strings according to the following process, called a derivation.

(a) We start by writing down the start symbol of the grammar, S.

(b) At each step of the derivation, we may replace any variable symbol of the string generated
so far by the right-hand side of any production that has that symbol on the left.

(c) The process ends when it is impossible to apply a step of the type described in (b).

If the string at the end of this process consists entirely of terminals, it is a string in the language
generated by the grammar.
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For example, below we show the derivation of the string 0100111110 from our grammar.

S ⇒ BME [use S → BME]

⇒ B00ME [use M → 00M ]

⇒ B0011ME [use M → 11M ]

⇒ B001111ME [use M → 11M ]

⇒ B001111E [use M → ǫ]

⇒ B00111110 [use E → 10]

⇒ 0100111110 [use B → 01]

The symbol ⇒ means that the string after the symbol can be derived from the string before
it by applying a single production of the grammar. The comments in square brackets indicate
the production used in each step.

8.2.2 Formal definitions

With the preceding example in mind we now formally define context-free grammars and deriva-
tions. A context-free grammar (or CFG, for short) is a tuple G = (V,Σ, P, S), where V is
a set of variables, Σ is a set of terminals, P is a set of productions, and S is a particular
element of V , called the start symbol. We require that the set of variables and set of termi-
nals be disjoint, i.e., V ∩Σ = ∅. Each production in P has the form A→ α, where A ∈ V and
α ∈ (V ∪ Σ)∗.

To formally define derivations in grammar G, we first define the relation ⇒G between
strings in (V ∪ Σ)∗: For any α, β ∈ (V ∪ Σ)∗, α ⇒G β if and only if α = α1Aα2, β = α1γα2,
and A → γ is a production in P , where α1, α2 ∈ (V ∪ Σ)∗. Intuitively, β is obtained from α
by a single application of the production rule A→ γ.

Let α, β ∈ (V ∪Σ)∗. A derivation of β from α in grammar G is a sequence α1, α2, . . . , αk

of strings in (V ∪Σ)∗, such that α1 = α, αk = β, and for each i such that 1 ≤ i < k, αi ⇒G αi+1.
The number of steps in this derivation is defined to be k − 1. If there is a derivation of β
from α, we write α⇒∗ β, read “α yields β”, When the grammar G is clear from the context,
we may drop the subscript from ⇒G and ⇒∗

G.
Given a CFG G = (V,Σ, P, S), we define the language generated by G, denoted L(G),

as the set of all strings of terminals that can be derived from the start symbol of G. That is,

L(G) = {x ∈ Σ∗ : S ⇒∗
G x}.

A language L is a context-free language (abbreviated CFL) if it is the language generated
by some context-free grammar.

8.2.3 Examples of CFG

We usually describe a CFG simply by listing its productions. Unless otherwise stated, the set
of variables V is assumed to be the set of symbols on the left-hand sides of productions; the
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set of terminals Σ is assumed to be the set of symbols that appear on the right-hand side of
some production but not on the left-hand side of any production; and the start symbol S is
assumed to be the left-hand side of the first production.

Example 8.1 Following is a CFG that generates the language {0n1n : n ∈ N}. Recall that
this language is not regular.

S → 0S1

S → ǫ

We leave a detailed proof that this grammar generates {0n1n : n ∈ N} as an exercise. We
note that such a proof must show that (a) for each n ∈ N, S ⇒∗ 0n1n; and, conversely, (b) for

each x ∈ {0, 1}∗, if S ⇒∗ x then x = 0n1n for some n ∈ N. End of Example 8.1

Example 8.2 Let Lb ⊆ {(, )}∗ be the set of balanced strings of parentheses. Formally, this

is defined as the set of strings of parentheses x so that (a) x has the same number of left and
right parentheses; and (b) for every prefix y of x, y has at least as many left parentheses as
right parentheses. (It is easy to show that this language is not regular.) Following is a CFG
that generates Lb.

S → SS

S → (S)

S → ǫ

We leave it as an exercise to prove that this grammar generates Lb. End of Example 8.2

Example 8.3 Let Le = {x ∈ {0, 1}∗ : x has the same number of 0s and 1s}. Following is a
CFG that generates this language

S → 0B A→ 0S B → 1S

S → 1A A→ 1AA B → 0BB

S → ǫ

Proving that this grammar generates Le is interesting and considerably more complex than
the proofs of correctness for the previous two examples, so we give the more delicate parts of
the proof in some detail. The intuition for this grammar is that strings in {0, 1}∗ derived from
S have the same number of 0s and 1s, those derived from A have one more 0 than 1, and those
derived from B have one more 1 than 0.
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The set of variables of this grammar is V = {S,A,B}, and the set of terminals is Σ = {0, 1}.
For any α ∈ (V ∪ Σ)∗, define

zero(α) = number of occurrences of A and 0 in α

one(α) = number of occurrences of B and 1 in α

Using simple induction on n it is easy to prove that for any α ∈ (V ∪ Σ)∗, if S ⇒∗ α is
an n-step derivation, then zero(α) = one(α). From this it follows that for all x ∈ {0, 1}∗, if
S ⇒∗ x then x has equally many 0s and 1s, i.e. x ∈ Le.

We must now prove the converse, i.e., that for all x ∈ {0, 1}∗, if x ∈ Le then S ⇒∗ x. To
do so we will need to prove something stronger. Consider the predicate

P (n) : if x ∈ {0, 1}∗ and |x| = n then

(a) if zero(x) = one(x) then S ⇒∗ x

(b) if zero(x) = one(x) + 1 then A⇒∗ x

(c) if zero(x) + 1 = one(x) then B ⇒∗ x

We use complete induction to prove that P (n) holds for every n ∈ N. (Note that part (a)
immediately implies that for all x ∈ {0, 1}∗, if x ∈ Le then S ⇒∗ x. Parts (b) and (c) are
needed for the induction.)

Let k be an arbitrary natural number. Assume that, for all j such that 0 ≤ j < k, P (j)
holds. We must prove that P (k) also holds.

Case 1. k = 0. Then x = ǫ. Part (a) is true because S ⇒∗ ǫ in one step using the production
S → ǫ. Parts (b) and (c) are trivially true because zero(ǫ) = one(ǫ) = 0. Thus P (0) is true.

Case 2. k > 0. Thus, x = 0y or x = 1y for some y ∈ {0, 1}∗ such that 0 ≤ |y| < k. There
are three cases to consider, depending on the difference between the number of 0s and 1s in x;
for each case we will consider two subcases, depending on whether x starts with 0 or 1.

(a) zero(x) = one(x). Assume that x starts with 0, i.e., x = 0y for some y ∈ {0, 1}∗. (The
subcase where x = 1y is similar.) Then zero(y) + 1 = one(y) and by the induction
hypothesis B ⇒∗ y. Thus, S ⇒ 0B ⇒∗ 0y = x, so S ⇒∗ x, as wanted.

(b) zero(x) = one(x) + 1. First consider the subcase in which x starts with 0, i.e., x = 0y
for some y ∈ {0, 1}∗. Then zero(y) = one(y) and by the induction hypothesis S ⇒∗ y.
Thus, A⇒ 0S ⇒∗ 0y = x, i.e., A⇒∗ x, as wanted.

Next consider the case in which x starts with 1, i.e., x = 1y for some y ∈ {0, 1}∗.
Then zero(y) = one(y) + 2. Thus, there are strings y1, y2 ∈ {0, 1}∗ so that y = y1y2,
zero(y1) = one(y1) + 1 and zero(y2) = one(y2) + 1. (To see this, consider every prefix
y′ of y, starting with y′ = ǫ, all the way until y′ = y. For each such prefix y′, consider the
difference zero(y′) − one(y′). Note that this can be negative. However, initially it is 0
and at the end it is 2. Thus, for some prefix y1 of y, zero(y1)−one(y1) = 1. Now let y2 be
the suffix of y after y1. Since zero(y)−one(y) = 2 and zero(y1)−one(y1) = 1, it follows
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that zero(y2)−one(y2) = 1. These are the strings y1 and y2 with the desired properties.)
By the induction hypothesis, A ⇒∗ y1 and A ⇒∗ y2. So, A ⇒ 1AA ⇒∗ 1y1y2 = 1y = x.
That is, A⇒∗ x, as wanted.

(c) zero(x) + 1 = one(x). This is similar to case (b).

End of Example 8.3

8.3 CFG are more powerful than regular expressions

As the examples in the previous section show, there are context-free grammars that generate
non-regular languages. It is not hard to prove that every regular language can be generated
by a CFG. Perhaps the simplest proof of this fact is to show that for any regular expression
R there is a CFG that generates the language denoted by R. The proof is by structural
induction on the regular expression: We show (a) how to generate the languages denoted by
the simplest regular expressions, and (b) how to generate the language denoted by a “complex”
regular expression R, given grammars that generate the regular expressions out of which R is
constructed. The details are given below.

Theorem 8.1 For every regular expression R there is a CFG G such that L(G) = L(R).

Proof. By structural induction on the definition of R.

Basis: The language denoted by the regular expression ∅ is generated by a CFG with no
productions. The language denoted by the regular expression ǫ is generated by the CFG with
the single production S → ǫ. The language denoted by the regular expression a, for any a ∈ Σ,
is generated by the CFG with the single production S → a.

Induction Step: Let R1 and R2 be regular expressions. Assume that there CFG G1 and G2

that generate L(R1) and L(R2) respectively. For every way of constructing a regular expression
R out of R1 (and possibly R2), we show a grammar G that generates the language denoted
by R. Without loss of generality, we can assume that the variables of G1 and G2 are disjoint
(we can always rename the variables of a grammar to ensure this). Let S1 and S2 be the start
variables of G1 and G2, and S be a new variable (i.e., not one of the variables of G1 and G2).
S will be the start symbol of the grammar that generates L(R).

There are three cases, depending on how R is constructed from its subexpressions.

Case 1. R = (R1 + R2). Let G be the grammar whose productions are the productions of
G1 and G2, and the following two additional productions: S → S1, S → S2. It is obvious that
L(G) = L(G1) ∪ L(G2), and so L(G) = L(R).

Case 2. R = (R1R2). Let G be the grammar whose productions are the productions of
G1 and G2, and the following additional production: S → S1S2. It is obvious that L(G) =
L(G1) ◦ L(G2), and so L(G) = L(R).
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Case 3. R = R∗
1. Let G be the grammar whose productions are the productions of G1, and

the following two additional productions: S → S1S, S → ǫ. It is obvious that L(G) = L(G1)
⊛,

and so L(G) = L(R).

An immediate consequence of this theorem and the fact that there are nonregular languages
that can be generated by CFG is the following:

Corollary 8.2 The class of context-free languages is a proper superset of the class of regular
languages.

8.4 Right-linear grammars and regular languages

In fact, there is a restricted kind of context-free grammars, called right-linear grammars, which
generate exactly the class of regular languages.

A CFG G = (V,Σ, P, S) is right-linear if every production in P is of the form A → ǫ or
A→ xB, where A,B ∈ V and x ∈ Σ∗. That is, the right-hand side of every production is either
the empty string, or a (possibly empty) string of terminals followed by a single variable. We
can further restrict the second type of productions by requiring that |x| ≤ 1 — i.e., the single
variable on the right-hand side is preceded by either the empty string or a single terminal.
Such grammars are called strict right-linear.

It is easy to see that strict right-linear grammars generate exactly the class of regular
languages. This is because strict right-linear grammars correspond in a natural way to FSA:
We can view the variables of the grammar as the states of the automaton, and a production
of the form A→ aB, where a ∈ Σ∪ {ǫ}, as the transition from state A to state B on input a.
The start state of the automaton is the start variable of the grammar, and its accepting states
are all the variables A for which the grammar has productions of the form A→ ǫ. Conversely,
we can view a DFSA as a strict right-linear grammar in a similar way. It is not hard to see
that an accepting computation of the FSA on input x corresponds to the derivation of x in
the grammar, and vice-versa. Thus, any regular language is generated by a strict right-linear
grammar; and, conversely, the language generated by any strict right-linear grammar is regular.

More formally, given a strict right-linear grammar G = (V,Σ, P, S), we construct the
following NFSA M = (Q,Σ, δ, s, F ):

• Q = V .

• For every A,B ∈ V and a ∈ Σ ∪ {ǫ}, δ(A, a) = {B : A→ aB is a production in P}.
• s = S.

• F = {A : A→ ǫ is a production in P}.
We can now prove that, for every x ∈ Σ∗, B ∈ δ∗(A, x) if and only if A⇒∗ x. The forward

direction can be shown by a simple induction on the length of the computation path that takes
M from A to B on input x, and the backward direction can be shown by simple induction on
the length of the derivation of x from A. (These proofs are left as exercises.) From this, it
follows immediately that:
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Theorem 8.3 The languages generated by strict right-linear grammars are regular.

Conversely, given a DFSA M = (Q,Σ, δ, s, F ) we define a strict right-linear grammar
G = (V,Σ, P, S) as follows:

• V = Q.

• P = {A→ aB : A,B ∈ V, a ∈ Σ and δ(A, a) = B} ∪ {A→ ǫ : A ∈ F},

• S = s.

Again, it is easy to prove (by induction as indicated above) that B = δ∗(A, x) if and only if
A⇒∗ x. From this it follows that:

Theorem 8.4 Every regular language can be generated by a strict right-linear grammar.

Theorems 8.3 and 8.4 imply

Corollary 8.5 The class of languages generated by strict right-linear languages is the class of
regular languages.

It is also easy to see that general right-linear grammars are equivalent in power to strict
right-linear ones. One direction of this equivalence is trivial (since a strict right-linear grammar
is a special case of right-linear grammar). For the other direction it suffices to show that for
every right-linear grammar there is a strict right-linear grammar that generates the same
language. This is done by replacing every production of a right-linear grammar that does not
conform to the requirements of strict right-linear grammars by a finite set of productions that
do, in a way that does not change the language generated by the grammar. Specifically, a
production of the form

A→ a1a2 . . . akB

where k ≥ 2 and ai ∈ Σ for each i, 1 ≤ i ≤ k, is replaced by

A→ a1B1

B1 → a2B2

...

Bk−2 → ak−1Bk−1

Bk−1 → akB

where B1, . . . , Bk−1 are new variables. Therefore, Corollary 8.5 can also be stated as:

Corollary 8.6 The class of languages generated by right-linear languages is the class of regular
languages.

This gives us yet another characterisation of regular languages: They are the languages de-
noted by regular expressions; or, equivalently, the languages accepted by (deterministic of
nondeterministic) FSA; or, equivalently, the languages generated by right-linear grammars.
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8.5 Pushdown automata

8.5.1 Motivation and informal overview

In Chapter 7 we saw two equivalent chararisations of regular languages: One, taking the point
of view of a language generator, defines as regular those languages that can be described by
regular expressions. The other, taking the point of view of a language acceptor, defines as
regular those languages that can be accepted by FSA.

In Section 8.2 we defined CFL, the class of languages that can be generated by CFG. The
question then arises whether there is a natural mathematical model of automata that accept
the class of context-free languages. The answer is affirmative, and the automata in question
are called pushdown automata, abbreviated PDA.

As we saw in our discussion of the pumping lemma for regular languages, the main limitation
of FSA arises from the fact that all the information a FSA can “remember” about its input
string must be encapsulated in its state. Since the FSA has finitely many states, it can only
“remember” a bounded amount of information about its input, no matter how long that input
is. One way to circumvent this limitation is to endow the automaton with auxiliary storage,
into which it can record some information about the input it reads. The automaton can analyse
the information it has recorded on the auxiliary storage to determine whether to accept or reject
the input. A PDA is a FSA augmented with such an auxiliary storage which, however, can be
accessed in a restricted fashion. Specifically, the auxiliary storage is a stack. The automaton
can only push a symbol on top of the stack, or it can pop (remove) the symbol presently at
the top of the stack. So, the automaton can remember an unbounded amount of information
about the input (since the size of the stack is unlimited), but it can access that information in
a restricted way.

On the basis of this informal (and still quite vague) description of a PDA, one can imagine
how such an automaton could recognise the nonregular language {0n1n : n ∈ N}: We start
reading the input, and as long as we read 0s we push onto the stack a corresponding number of
instances of some symbol, say X. Upon reading the first 1 in the input string the automaton
switches to popping Xs from the stack — one for every 1 encountered. If the stack is empty
when the entire input string has been read then the string was of the form 0n1n and it is
accepted; otherwise, it is not of that form and it is rejected.

8.5.2 Formal definitions

Formally, a pushdown automaton (PDA) is a tuple M = (Q,Σ,Γ, δ, q0, F ), where

• Q is the finite nonempty set of states;

• Σ is the finite set of input symbols;

• Γ is the finite set of stack symbols;

• q0 ∈ Q is the start state;

• F ⊆ Q is the set of accepting states; and
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• δ is the transition function, and is explained below.

The transition function’s signature is:

δ : Q× (Σ ∪ {ǫ})× (Γ ∪ {ǫ})→ P
(
Q× (Γ ∪ {ǫ})

)

In other words, δ maps a state, an input symbol (or the empty string), and a stack symbol
(or the empty string) to a set of pairs, each consisting of a state and a stack symbol (or
the empty string). The interpretation of the transition function is as follows: Suppose that
(q, Y ) ∈ δ(p, a,X). This means that when in state p, upon reading a from the input string, and
with X at the top of the stack, the automaton can enter state q, replacing X with Y . If a = ǫ
this transition takes place without the automaton actually reading anything from the input
string. There are four possibilities regarding the symbol X read and the symbol Y written at
the top of the stack:

• X = ǫ and Y ∈ Γ. In this type of transition, the automaton pushes Y onto the stack;

• X ∈ Γ and Y = ǫ. In this type of transition, the automaton pops X from the stack;

• X, Y ∈ Γ. In this type of transition, the automaton replaces X by Y at the top of the
stack.

• X = Y = ǫ. In this type of transition, the automaton does not consult the stack at all:
it moves from its present state to the next just on the basis of the input symbol a (or
spontaneously if a = ǫ).

We will now define computations of a PDA M . First we introduce the notion of configu-
ration of M , which is a complete description of the state of the computation of M at some
instant in time. It comprises the present state of the automaton, the portion of the input that
the automaton has not yet read, and the contents of the stack. Formally, a configuration of
M is a triple (p, x, α) consisting of a state p ∈ Q (the present state of the automaton), a string
x ∈ Σ∗ (the portion of the input not yet read), and a string α ∈ Γ∗ (the present contents of
the stack). In writing the content of the stack as a string X1X2 . . . Xk ∈ Γ∗, X1 is the symbol
at the top of the stack, X2 is the symbol below X1 and so on; Xk is the symbol at the bottom
of the stack. By convention, we use lower-case letters near the start of the Latin alphabet,
such as a, b, c, to denote individual input symbols in Σ (or, sometimes, ǫ); lower-case letters
near the end of the Latin alphabet, such as w, x, y, z, to denote input strings in Σ∗; upper-case
letters near the end of the Latin alphabet, such as X, Y, Z, to denote individual stack symbols
in Γ (or, sometimes, ǫ); and lower-case letters near the start of the Greek alphabet, such as
α, β, γ to denote stack strings in Γ∗.

A move of M describes how the configuration of M changes as a result of a single state
transition of M . Suppose that the present configuration of M is (p, ax,Xα). This means that
M is in state p, the unread portion of its input is ax (where a is the leftmost unread symbol of
the input or ǫ), and the stack contains Xα (where X is the symbol at the top of the stack or ǫ).
Then, if δ(p, a,X) = (q, Y ), in one move M can read the leftmost input symbol a, replace the
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symbol X at the top of the stack by Y , and change its state to q. As a result of this move the
configuration becomes (q, x, Y α). More formally, we say that M moves in one step from
configuration C to configuration C ′, written C ⊢M C ′, if and only if C = (p, ax,Xα),
C ′ = (q, x, Y α) and (q, Y ) ∈ δ(p, a,X), for some p, q ∈ Q, a ∈ Σ∪ {ǫ}, x ∈ Σ∗, X, Y ∈ Γ∪ {ǫ}
and α ∈ Γ∗.

Let C and C ′ be configurations of M . A computation of M from C to C ′ is a sequence of
configurations C1, . . . , Ck, where k is a positive integer, so that C1 = C, Ck = C ′, and for all i
such that 1 ≤ i < k, Ci ⊢M Ci+1. The number of steps in this computation is defined to be
k − 1. If there is a computation of M from C to C ′, we write C ⊢∗M C ′. Note that for every
configuration C of M , C ⊢∗M C, through a computation of zero steps. When the automaton
M is clear from the context we may drop the subscript M from ⊢M and ⊢∗M .

We now have all the equipment we need to define formally the set of strings accepted by
the PDA M . Informally, M starts in an initial configuration, with M in its start state s, the
entire input string x being unread, and the stack being empty. We will say that x is accepted
by M if there is a computation at the end of which M is in a configuration where M is left
in an accepting state, all of x has been read, and the stack is left empty. More precisely,
the PDA M = (Q,Σ,Γ, δ, s, F ) accepts x ∈ Σ∗ if and only if there is some q ∈ F so that
(s, x, ǫ) ⊢∗M (q, ǫ, ǫ). The language accepted by M , denoted L(M), is the set of all strings
accepted by M :

L(M) = {x ∈ Σ∗ : M accepts x}.

Note that our definition of PDA allows for non-deterministic behaviour: In general, in a
single step the automaton may move from its present configuration to one of a number of
possible configurations. Thus, from a given initial configuration with input string x there may
be several different computations leading to configurations in which the entire input has been
read. If there is at least one computation leading to such a configuration where the automaton
is in an accepting state and the stack is empty, then x is accepted according to our definition.
This is similar to our definition of acceptance by nondeterministic FSA.

It is possible to define a deterministic version of PDA by suitably restricting the transition
function so as to ensure that from each configuration the automaton can move in one step to
at most one configuration. We note in passing that in the case of PDA, this restriction limits
the class of languages that are accepted. That is, there exist languages that can be accepted
by nondeterministic PDA which, however, cannot be accepted by any deterministic PDA. This
is in sharp contrast to the corresponding situation with FSA: as we have seen (via the subset
construction) the deterministic and nondeterministic versions of FSA accept the same class of
languages.

8.5.3 Examples of PDA

We now demonstrate some concrete PDA. Similar to FSA, PDA can be conveniently described
diagrammatically. The states of the PDA are the nodes of a directed graph, with the initial
state and accepting states designated exactly as in the case of FSA. A directed edge from node
q to node q′ labeled with “a : X → Y ”, where a ∈ Σ ∪ {ǫ} and X, Y ∈ Γ ∪ {ǫ}, indicates that
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the PDA can move from state q to state q′ if it reads a from its input string and replaces the
X at the top of the stack by Y — in other words, it indicates that in the transition function
δ of the PDA, (q′, Y ) ∈ δ(q, a,X).

Example 8.4 The diagram of a PDA that accepts {0n1n : n ∈ N} is shown below.

0 : ǫ → X
1 : X → ǫ

1 : X → ǫ
e

0 : ǫ → X
z o

Formally, this is the PDA M = (Q,Σ,Γ, δ, s, F ) where

• Q = {e, z, o}

• Σ = {0, 1}

• Γ = {X}

• s = e

• F = {e, o}
and the transition function δ is defined as follows. For all q ∈ Q, a ∈ Σ∪{ǫ} and Y ∈ Γ∪{ǫ},

δ(q, a, Y ) =





{(z,X)}, if q ∈ {e, z}, a = 0 and Y = ǫ

{(o, ǫ)}, if q ∈ {z, o}, a = 1 and Y = X

∅, otherwise

Intuitively, this PDA works as follows. It starts in state e. If the input string is ǫ, it stays
in that state and accepts (since the stack is empty). If the input string starts with 1, the
automaton rejects: there is no state to which it can go on input 1 from state e. If the input
string starts with 0, the automaton enters state z, indicating that it is now processing the
prefix of consecutive 0s, and pushes X onto the stack. As long as the automaton reads 0s, it
remains in state z and pushes one X on the stack for each 0 it reads. When the automaton
first sees a 1, it moves to state o, indicating that it is now processing the suffix of consecutive
1s, and pops X from the top of the stack. As long as the automaton reads 1s, it remains in
that state and pops an X from the stack for each 1 it reads. If the automaton reads 0 while in
state o, it rejects: there is no state to which it can go on input 0 from state o. The automaton
accepts a nonempty input string x if, when it is done reading x, it is in state o and the stack is
empty. This indicates that the input string consisted of a some number of 0s followed by the
same number of 1s.

To see, in more rigorous terms, that this PDA accepts {0n1n : n ∈ N}, we note the following
“state invariants”: The PDA is in
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• state e if and only if the prefix of the input string that it has processed so far is ǫ and
the stack is empty.

• state z if and only if the prefix of the input string that it has processed so far is 0n and
the stack is Xn, where n is a positive integer.

• state o if and only if the prefix of the input string that it has processed so far is 0n1m

and the stack is Xn−m, where m and n are positive integers such that m ≤ n.

More precisely,

(e, x, ǫ) ⊢∗ (e, y, α) ⇔ x = y and α = ǫ

(e, x, ǫ) ⊢∗ (z, y, α) ⇔ x = 0ny and α = Xn, for some positive integer n

(e, x, ǫ) ⊢∗ (o, y, α) ⇔ x = 0n1my and α = Xn−m, for some positive integers m ≤ n.

These “state invariants” can be easily proved by induction on the length of the input string
prefix that has been processed so far.

The correctness of the PDA, i.e., the fact that it accepts {0n1n : n ∈ N}, follows immediately
from this: Since e and o are all the accepting states of the PDA, a string x is accepted by the
PDA if and only if (e, x, ǫ) ⊢∗ (e, ǫ, ǫ) or (e, x, ǫ) ⊢∗ (o, ǫ, ǫ). By the state invariant, this implies
that M accepts x if and only if x = ǫ or x = 0n1n for some positive integer n, i.e., if and only
if x ∈ {0n1n : n ∈ N}. End of Example 8.4

Example 8.5 Below is the diagram of a PDA that accepts the language

Le = {x ∈ {0, 1}∗ : x has the same number of 0s and 1s}.

1 : $ → ǫ

0 : ǫ → X

1 : ǫ → X

1 : ǫ → $

0 : ǫ → $

e

z

o

0 : X → ǫ

1 : X → ǫ

0 : $ → ǫ
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Informally, the PDA works as follows: It is in state e as long as the prefix of the input
string that it has processed so far has the same number of 0s and 1s and the stack is empty.
From this state, upon seeing a 0, the PDA enters state z and pushes the symbol $ on the
stack. This indicates that this is the last (bottom) symbol in the stack. While in state z, as
long as the PDA sees a 0, it pushes an X on the stack and remains in state z. Being in this
state indicates that the prefix of the input string processes so far has an excess of 0s. The
stack contains $Xn−1, where n is the number of excess 0s in the prefix. While in state z, if
the PDA sees a 1 and the top symbol of the stack is an X, it removes that symbol (reducing
the number of excess 0s by one) and remains in state z. If in state z and the top symbol on
the stack is $, the PDA removes that symbol (making the stack empty) and returns to state
e. This indicates that the prefix seen so far has an equal number of 0s and 1s. A symmetric
situation arises when the PDA is in state e and sees a 1: It then enters state o, which indicates
that the prefix seen so far has an excess of 1s, and keeps track of the number of excess 1s in
the stack as before.

The correctness of this PDA is based on the following state invariants, which can be proved
easily by induction on the length of the input string prefix processed so far. The PDA is in

• state e if and only if the prefix of the input string that it has processed so far has an
equal number of 0s and 1s and the stack is empty.

• state z if and only if the prefix of the input string that it has processed so far has n more
0s than 1s and the stack is $Xn−1, where n is a positive integer.

• state o if and only if the prefix of the input string that it has processed so far has n more
1s than 0s and the stack is $Xn−1, where n is a positive integer.

End of Example 8.5

8.6 Equivalence of CFG and PDA

We now prove that CFG and PDA are equivalent, in that they describe the same class of
languages. More precisely, for every CFG there is a PDA that accepts the language generated
by that grammar. Conversely, for every PDA there is a CGF that generates the language
accepted by that automaton.

8.6.1 From a CFG to a PDA

First we prove that, given any CFG G there is a PDA that accepts the language generated by
G. The proof explicitly constructs the PDA.

Leftmost derivations

To understand this construction we need to focus on a special class of derivations. We say that
a derivation is leftmost iff in every step the variable that gets replaced by the right-hand side
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of some production is the leftmost one. More precisely, the derivation α1 ⇒ α2 ⇒ · · · ⇒ αk is
leftmost if, for each i such that 1 ≤ i < k, αi = xAγ, for some x ∈ Σ∗, A ∈ V and γ ∈ (Σ∪V )∗;
and αi+1 = xβγ, for some production A→ β.

Example 8.6 Let G be the grammar with start symbol S and the following productions:

S → ABS A→ 001

S → B B → 01

B → 11

Shown below is a derivation of 001110010111 in this grammar.

S ⇒ ABS

⇒ ABABS

⇒ ABABB

⇒ 001BABB

⇒ 001BAB11

⇒ 001B001B11

⇒ 001110010111

This is not a leftmost derivation. A leftmost derivation of the same string (in the same
grammar) is

S ⇒ ABS

⇒ 001BS

⇒ 00111S

⇒ 00111ABS

⇒ 00111001BS

⇒ 0011100101S

⇒ 0011100101B

⇒ 001110010111

End of Example 8.6

The phenomenon observed in the preceding example is not an accident: If a string has
a derivation from a context-free grammar, it must also have a leftmost derivation from that
grammar. Intuitively this is because every variable that appears in a derivation must sooner
or later be replaced by the right-hand side of some production, and we can always choose to
replace the leftmost variable in each step. A rigorous argument proving this is given below.
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Lemma 8.7 Let G = (V,Σ, P, S) be a CFG, and x ∈ Σ∗ be such that S ⇒∗ x. Then there is
a leftmost derivation of x in G.

Proof. Let x ∈ Σ∗ be such that S ⇒∗ x. We must prove that there is a leftmost derivation
of x from S. We call a step of a derivation leftmost if the production used in that step is
applied to the leftmost variable. Thus, a derivation is leftmost if and only if every step is a
leftmost step.

Let D be a derivation of x from S, and let n be the number of steps in D. So, D is
α0 ⇒ α1 ⇒ · · · ⇒ αn, where α0 = S and αn = x. Without loss of generality we can assume
that the first non-leftmost step of D, if any, is no earlier than the first non-leftmost step of any
other n-step derivation of x from S.

We claim that D is a leftmost derivation. To prove this, we will assume the contrary and
derive a contradiction. So, assume D is not a leftmost derivation, and let k be the first non-
leftmost step of D. Thus, for some A,B ∈ V , y ∈ Σ∗ and α, β, β′ ∈ (V ∪Σ)∗, αk−1 = yAαBβ,
αk = yAαβ′β and B → β′ is a production. Since x ∈ Σ∗, there is a later step of D, say step
ℓ > k, where the leftmost A in αk is eliminated by the application of some production. That
is, for some γ ∈ (V ∪ Σ)∗, αℓ−1 = yAγ, αℓ = yα′γ, and A → α′ is a production. Thus, the
derivation D is:

S︸︷︷︸
α0

⇒ · · · ⇒ yAαBβ︸ ︷︷ ︸
αk−1

⇒ yAαβ′β︸ ︷︷ ︸
αk

⇒ · · · ⇒ yAγ︸︷︷︸
αℓ−1

⇒ yα′γ︸︷︷︸
αℓ

⇒ · · · ⇒ x︸︷︷︸
αn

From this it follows that αβ′β ⇒∗ γ in (ℓ − 1) − k = ℓ − k − 1 steps, and that yα′γ ⇒∗ x in
n− ℓ steps. This implies that the following is a derivation:

S ⇒∗ yAαBβ [in k − 1 steps, as in D]

⇒ yα′αBβ [in 1 step, applying A→ α′]

⇒ yα′αβ′β [in 1 step, applying B → β′]

⇒∗ yα′γ [in ℓ− k − 1 steps]

⇒∗ x [in n− ℓ steps]

Thus, this is an n-step derivation of x from S in which the first non-leftmost step occurs later
than in step k. This contradicts the definition of D, as the n-step derivation of x from S in
which the first non-leftmost step (if any) occurs as late as possible. We conclude that D is a
leftmost derivation, which proves the lemma.

Informal description of the PDA construction

Suppose now we are given a CFG G = (V,Σ, P, S). We show how to construct a PDA M =
(Q,Σ,Γ, δ, s, F ) that accepts the language generated by G. Intuitively, M works as follows.
To accept a string x generated by G, M “simulates” a leftmost derivation of x, by keeping the
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string derived so far on the stack. It starts by placing S on the stack, and then simulates the
steps of x’s derivation one a time, by replacing the leftmost variable in the string generated
so far by the right-hand side of the production used in that step. M uses nondeterminism to
“guess” which of the potentially several productions with a given variable on the left-hand side
to apply. The only difficulty with implementing this idea is that M can only look at the top
symbol on the stack, and the leftmost variable of the string generated so far, i.e., the symbol
it needs to replace, might not be at the top of the stack. This problem can be easily solved as
follows. Notice that any symbols to the left of the leftmost variable in the string generated so
far must match a prefix of the input string x. Thus, M removes from the stack any prefix of
the input string, thereby “consuming” the corresponding portion of the input.

Example 8.7 Consider the grammar in Example 8.6. We will show how the PDA con-
structed to simulate this grammar accepts the string 001110010111. The PDA starts by push-
ing the start symbol of the grammar S on the stack. It then pops the top symbol of the stack
and, without “consuming” any input string symbols, it pushes the symbols ABS on the stack.
(The PDA can push only one symbol at a time so, technically, it needs three steps to do so:
First a step to push S, then one to push B and finally one to push A.) After these actions are
taken, the PDA is in a configuration where it has consumed none of the input and the stack
contains ABS.

Note that the PDA had a choice when it popped the top symbol S from the stack. It could
have replaced it by ABS or by B, since our grammar has productions S → ABS and S → B.
The PDA will nondeterministically choose the first of these because that’s the one used in the
leftmost derivation it is simulating. Because PDA can be nondeterministic, “guessing” which
production to apply is not a problem.

In its next step, the PDA pops the top symbol on the stack, A, and pushes 001 on the stack,
thereby simulating the second step in the leftmost derivation, which applies the production
A→ 001. Again this is done without the PDA “consuming” any symbols from the input. Thus,
the PDA is now in a configuration where the input is 001110010111 and the stack contains
001BS.

Note that the top symbol on the stack is a terminal, so the PDA cannot simulate a pro-
duction to replace it. Instead, in its next step, the PDA “matches” the 001 on top of the
stack to the prefix 001 of the input string. In other words, it removes 001 from the stack and
“consumes” 001 from the input string (in three steps). The PDA is now left with the task of
simulating the derivation of the remainder of the input, namely 110010111, from the contents
of the stack, namely BS.

To do so, it repeats the process described above: Without consuming any symbols from the
remainder of the input, it pops the top symbol of the stack, B, and replaces it by the right-hand
side of the production applied in the next step of the leftmost derivation it simulates, namely,
B → 11. Now the PDA is in a configuration where the remainder of the input is 110010111
and the stack contains 11S.

The PDA “matches” the 11 at the top of the stack with the prefix 11 of the remainder of
the input, by popping that string from the stack and “consuming” it from the input. This
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causes the PDA to enter the configuration with 0010111 as the remainder of the input and S
on the stack.

The rest of the computation proceeds as follows:

• The PDA simulates the next production in the derivation, S → ABS, resulting in con-
figuration where the remainder of the input is 0010111 and the stack contains ABS.

• The PDA simulates the next production in the derivation, A→ 001, resulting in config-
uration where the remainder of the input is 0010111 and the stack contains 001BS.

• The PDA consumes 001 from the input and removes it from the stack, resulting in
configuration where the remainder of the input is 0111 and the stack contains BS.

• The PDA simulates the next production in the derivation, B → 01, resulting in configu-
ration where the remainder of the input is 0111 and the stack contains 01S.

• The PDA consumes 01 from the input and removes it from the stack, resulting in con-
figuration where the remainder of the input is 11 and the stack contains S.

• The PDA simulates the next production in the derivation, S → B, resulting in configu-
ration where the remainder of the input is 11 and the stack contains B.

• The PDA simulates the next production in the derivation, B → 11, resulting in configu-
ration where the remainder of the input is 11 and the stack contains 11.

• The PDA consumes 11 from the input and removes it from the stack, resulting in con-
figuration where the remainder of the input is ǫ and the stack also contains ǫ.

At this point the simulation ends, and since the entire input has been consumed and the stack
is empty, the input string is accepted. End of Example 8.7

The PDA construction

As gleaned from this example, the PDA simulating grammar G performs two types of actions:

(I) simulating the application of a production A → α of G, by replacing the variable A at
the top of the stack by the string α; and

(II) consuming a portion w of the input string and popping w from the stack.

We will refer to these as type (I) and type (II) actions, respectively.
We now present the formal details of this construction. Let G = (V,Σ, P, S) be a CFG.

Define the PDA M = (Q,Σ,Γ, δ, s, F ) as follows; this will be the PDA that simulates G.

• Q consists of the start state s, the “main” state of the automaton q, and a set of “extra”
states E needed for the moves that implement type (I) actions of M . Each production
π ∈ P will require us to add some states in E, as we will explain below. So, Q = {s, q}∪E.
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• Γ = V ∪ Σ. The stack will contain a string of variables and terminals of G.

• The start state of M is s.

• F = {q}.

It remains to we define the transition function δ ofM . To get the simulation going, the PDA
first pushes S onto the stack, and enters its “main” state, q. Thus, we have δ(s, ǫ, ǫ) = {(q, S)}.

To implement actions of type (II), we add the following transitions: for each a ∈ Σ,
δ(q, a, a) = {(q, ǫ)}. That is, while in its “main” state q, M can consume a terminal from its
input string and pop the same terminal from the top of the stack.

Finally, we implement actions of type (I) as follows. For each production π ∈ P , where π
is A → a1a2 . . . ak for some a1, a2, . . . , ak ∈ V ∪ Σ, the set of “extra” states E contains states
q1π, q

2
π, . . . , q

k−1
π and the transition function δ has the following transitions:

δ(q, ǫ, A) = {(qk−1
π , ak)}

δ(qiπ, ǫ, ǫ) = {(qi−1
π , ai)}, for all i, 1 < i < k

δ(q1π, ǫ, ǫ) = {(q, a1)}

Informally, these transitions replace A from the top of the stack by a1a2 . . . ak, enabling M to
simulate the production A→ a1a2 . . . ak.

Proof that the constructed PDA accepts L(G)

We can now prove that L(M) = L(G). That is, for every x ∈ Σ∗,

x ∈ L(G) if and only if x ∈ L(M). (8.1)

The forward direction (only if) of (8.1) follows immediately from the following:

Lemma 8.8 For every x ∈ Σ∗ and α ∈ (V ∪ Σ)∗ so that α is either empty or starts with a
variable, if there is a leftmost derivation S ⇒∗ xα then (q, x, S) ⊢∗ (q, ǫ, α).

The desired result follows from this lemma by taking α = ǫ: If x ∈ L(G) then there is a
derivation S ⇒∗ x. By Lemma 8.7, there is a leftmost derivation S ⇒∗ x. By Lemma 8.8,
(q, x, S) ⊢∗ (q, ǫ, ǫ). By construction of the PDA, (s, x, ǫ) ⊢ (q, x, S). Combining with the
preceding computation, (s, x, ǫ) ⊢∗ (q, ǫ, ǫ). Since q is an accepting state, x ∈ L(M). We now
give the proof of Lemma 8.8.

Proof. The proof is by induction on the number of steps in the leftmost derivation S ⇒∗ xα.
To be more precise, consider the predicate

P (n) : for every x ∈ Σ∗ and α ∈ (V ∪ Σ)∗ s.t. α is either empty or starts with a variable,

if there is an n-step leftmost derivation S ⇒∗ xα, then (q, x, S) ⊢∗ (q, ǫ, α).

We use induction to prove that P (n) is true for all n ∈ N.
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Basis: n = 0. If the derivation has zero steps, then x = ǫ and α = S, and so (q, x, S) ⊢∗
(q, ǫ, α) is a zero-step computation. So, P (0) holds.

Induction Step: Let k be an arbitrary natural number and suppose that P (k) holds. We
will prove that P (k + 1) holds as well. Let x ∈ Σ∗ and α ∈ (V ∪ Σ)∗, where α is either empty
or starts with a variable. Suppose that there is a (k + 1)-step leftmost derivation S ⇒∗ xα.
We must prove that (q, x, ǫ) ⊢∗ (q, ǫ, α).

Consider the last step of the leftmost derivation S ⇒∗ xα. This step must be yAβ ⇒ yγβ,
for some y ∈ Σ∗, A ∈ V and β, γ ∈ (V ∪Σ)∗, where A→ γ is a production of G, and yγβ = xα.
Recall that x ∈ Σ∗ and α is either empty or starts with a variable. So,

γβ = y′α, for some y′ ∈ Σ∗ such that yy′ = x. (8.2)

Since yAβ ⇒ yγβ is the last step of the (k + 1)-step leftmost derivation S ⇒∗ xα, there is a
k-step leftmost derivation S ⇒∗ yAβ. By induction hypothesis,

(q, y, ǫ) ⊢∗ (q, ǫ, Aβ). (8.3)

Since A→ γ is a production of G, using transitions that implement type (I) actions it follows
that (q, ǫ, Aβ) ⊢∗ (q, ǫ, γβ), and since γβ = y′α (see (8.2))

(q, ǫ, Aβ) ⊢∗ (q, ǫ, y′α). (8.4)

Combining (8.3) and (8.4), (q, y, ǫ) ⊢∗ (q, ǫ, y′α). From this it follows that

(q, yy′, ǫ) ⊢∗ (q, y′, y′α). (8.5)

By using transitions that implement type (II) actions, (q, y′, y′α) ⊢∗ (q, ǫ, α). Combining this
with (8.5) and recalling that yy′ = x (see (8.2)), we get that (q, x, ǫ) ⊢∗ (q, ǫ, α), as wanted.

The backward direction (if) of (8.1) follows from the following:

Lemma 8.9 For every x ∈ Σ∗ and α ∈ (V ∪Σ)∗, if (q, x, S) ⊢∗ (q, ǫ, α) then there is a leftmost
derivation S ⇒∗ xα.

The desired result follows from this by taking α = ǫ: If x ∈ L(M) then there must be
a computation (s, x, ǫ) ⊢∗ (q, ǫ, ǫ). Since the only transition from s pushes S onto the stack
without reading anything from the input, if we eliminate the first move from this computation
it follows that (q, x, S) ⊢∗ (q, ǫ, ǫ). By the lemma, S ⇒∗ x, i.e., s ∈ L(G). We now give the
proof of Lemma 8.9.

Proof. Recall that computations of M involve “actions” of two types: Type (I) actions
replace the top variable on the stack by the right-hand side of a production π without reading
any symbols from the input string. Type (II) actions read one symbol from the input string
and pop that same symbol from the top of the stack. The proof of this lemma is by induction
on the number of actions in the computation (q, x, S) ⊢∗ (q, ǫ, α) (Recall that each type (II)
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action is implemented by a sequence of steps: one to pop the variable from the top of the
stack, and one for each symbol on the right-hand side of the production that has to be pushed
onto the stack. It is for this reason that the induction is on the number of actions, rather than
on the number of steps, in the computation.)

Consider the predicate

P (n) : for every x ∈ Σ∗ and α ∈ (V ∪ Σ)∗, if there is a computation (q, x, S) ⊢∗ (q, ǫ, α)
with n actions, then S ⇒∗ xα.

We use induction to prove that P (n) is true for all n ∈ N.

Basis: n = 0. If the computation has zero actions, then x = ǫ and α = S, and so S ⇒∗ xα is
a zero-step derivation. So, P (0) holds.

Induction Step: Let k be an arbitrary natural number and suppose that P (k) holds. We
will prove that P (k + 1) holds as well. Let x ∈ Σ∗ and α ∈ (V ∪ Σ)∗. Suppose that there
is a computation (q, x, S) ⊢∗ (q, ǫ, α) with k + 1 actions. We must prove that S ⇒∗ xα.
There are two cases, depending on the type of the last action of the computation (q, x, S) ⊢∗
(q, ǫ, α).

Case 1. The last action is of type (I). In this case we have

(q, x, S) ⊢∗ (q, ǫ, Aβ) ⊢∗ (q, ǫ, γβ)

where (q, x, S) ⊢∗ (q, ǫ, Aβ) is a computation with k actions, A ∈ V and β, γ ∈ (V ∪ Σ)∗ such
that A→ γ is a production of G and γβ = α. By the induction hypothesis, S ⇒∗ xAβ. Since
A→ γ is a production, S ⇒∗ xγβ. And since γβ = α, S ⇒∗ xα, as wanted.

Case 2. The last action is of type (II). In this case we have

(q, x, S) ⊢∗ (q, a, aα) ⊢ (q, ǫ, α)

where (q, x, S) ⊢∗ (q, a, aα) is a computation with k actions and a ∈ Σ. Then x = ya, for
some y ∈ Σ∗, and (q, y, S) ⊢∗ (q, ǫ, aα) is a computation with k actions. By the induction
hypothesis, S ⇒∗ yaα, and since ya = x, S ⇒∗ xα, as wanted.

As we have seen, Lemmata 8.8 and 8.9 imply (8.1) — i.e., that the language accepted
by the constructed PDA M is the same as the language generated by the given grammar G.
Therefore,

Corollary 8.10 Every context-free language is accepted by a PDA.

8.6.2 From a PDA to a CFG

Now we prove the other half of the equivalence of CFG and PDA: Given a PDA M we show
how to construct a CFG G that generates the language accepted by M . Thus, the grammar
G should be constructed in such a manner that for any x ∈ Σ∗, there is a derivation S ⇒∗ x
if and only if x is accepted by M .
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Informal description of the CFG construction

To develop some intuition about how this construction works, let’s recall the construction of a
regular expression that denotes the language accepted by a given DFSA (cf. Theorem 7.23).
In that case we wanted to show how to construct a regular expression that denotes a string x
if and only if x takes the automaton from the start state to an accepting state. To do this,
however, we had to do more: We showed how to construct regular expressions that denote the
strings that take the automaton from any state p (not necessarily the start state) to any state
q (not necessarily an accepting state).

In a similar spirit, we will construct a grammar with variables Apq, for every pair of states
p and q of the given PDA. The grammar is constructed so that for every x ∈ Σ∗, there is a
derivation Apq ⇒∗ x if and only if the PDA has a computation (p, x, ǫ) ⊢∗ (q, ǫ, ǫ). In other
words, if and only if the PDA, started in state p with empty stack and input string x, can
“consume” x and end up in state q with empty stack. If we can do this, we can then introduce
a new variable S and productions S → Asp, for s the start state of M and each accepting state
p of M . This grammar will generate precisely the set of strings accepted by M .

To accomplish this, we need to make a simplifying assumption about the given PDA.
Namely, in each move it either pushes or pops a symbol on top of the stack. Thus, our PDA
does not have any moves in which it does not change the stack, or any moves in which it directly
replaces the symbol at the top of the stack by another symbol. We can make this assumption
without loss of generality because we can convert any given PDA to one that accepts the same
language and satisfies this assumption. We can do this as follows:

• We replace every transition from state p to state q in which the given PDA reads a ∈
Σ ∪ {ǫ} from the input string and does not change the stack, by a pair of consecutive
transitions: In the first of these the PDA, upon reading a, moves from state p to an
intermediate state labeled (p, q), and pushes a dummy symbol X onto the stack. In
the second, the PDA moves from the intermediate state (p, q) to state q and pops the
just-pushed dummy symbol X from the stack, without reading anything from the input
string.

• We replace every transition from state p to state q in which the given PDA reads a ∈
Σ∪{ǫ} from the input string and changes the top of the stack from X to Y , by a pair of
consecutive transitions: In the first of these the PDA, upon reading a, moves from state
p to an intermediate state labeled (p, Y, q), and pops X from the stack. In the second,
the PDA moves from the intermediate state (p, Y, q) to state q and pushes Y onto the
stack, without reading anything from the input string.

To understand how G is constructed, consider a computation of the automaton M that
takes it from state p with empty stack to state q with empty stack, consuming input string x. If
this computation is nontrivial (i.e., contains at least one step) then there are two possibilities:

(a) The stack becomes empty at some intermediate stage of this computation. This means
that the automaton goes from state p with empty stack to some intermediate state r with
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empty stack, having consumed some prefix y of x, and then goes from state r with empty
stack to state q with empty stack, having consumed the remainder of x. We capture this
case by introducing the production Apq → AprArq in our grammar. Intuitively this says
that if a string y takes M from state p (with empty stack) to state r (with empty stack),
and a string y′ takes M from state r (with empty stack) to state q (with empty stack),
then the string yy′ takes M from state p (with empty stack) to state q (with empty stack).

(b) The stack does not become empty at any intermediate stage of this computation. Recall
that every step of our automaton must either push or pop a symbol on the stack. When
the computation starts, the stack is empty; thus, its first step must push some symbol on
the stack. Similarly, when the computation ends, the stack is empty; thus, its last step
of must pop that symbol from the stack. In more detail, in this case, in the first step of
such a computation, the automaton starts in state p with empty stack, reads some symbol
a ∈ Σ∪{ǫ} from the input, pushes some symbol X onto the stack and enters some state p′.
Then, it follows a computation that takes it from state p′ with just X on the stack to some
state q′ again with just X on the stack. And, finally, in the last step of the computation,
it reads some symbol b ∈ Σ ∪ {ǫ} from the input, pops the X from the stack and moves
from state q′ to q with empty stack. We capture this case by introducing the production
Apq → aAp′q′b for our grammar, whenever the automaton has a transition that takes it
from state p to state p′ and pushes X onto the stack upon reading a ∈ Σ ∪ {ǫ}, and a
transition that takes it from state q′ to state q and pops X from the stack upon reading
b ∈ Σ ∪ {ǫ}. Intuitively this production says that, when such transitions exist, if a string
y takes M from state p′ (with empty stack) to state q′ (with empty stack), then the string
ayb takes M from state p (with empty stack) to state q (with empty stack).

Finally, the grammar “simulates” trivial zero-step computations by introducing productions
App → ǫ, for every state p of the PDA M . Intuitively, such transitions say that the input string
ǫ takes M from p (with empty stack) to p (with empty stack).

The CFG construction

With this informal description and partial justification in mind, we give the details of the
construction and a rigorous proof that it works. Given a PDA M = (Q,Σ,Γ, δ, s, F ) we
construct the following CFG G = (V,Σ, P, S). As explained earlier, we can assume without
loss of generality that δ is such that in each move of M the automaton either pushes a new
symbol on top of the stack, or pops the symbol presently on top of the stack.

The set of variables of G is V = {Apq : p, q ∈ Q} ∪ {S}. The set of productions P of G
consists of the following four types of productions:

• Apq → AprAqr, for all p, q, r ∈ Q.

• Apq → aAp′q′b, for all p, q, p′, q′ ∈ Q and a, b ∈ Σ ∪ {ǫ} so that for some X ∈ Γ,
(p′, X) ∈ δ(p, a, ǫ) and (q, ǫ) ∈ δ(q′, b,X).

• App → ǫ, for all p ∈ Q.
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• S → Asp, for all p ∈ F (recall that s is the start state of M).

Proof that the constructed CFG generates L(M)

We will now prove that the constucted CFG G generates the language accepted by M . This
follows directly from the following:

Lemma 8.11 For all x ∈ Σ∗ and all p, q ∈ Q, (p, x, ǫ) ⊢∗ (q, ǫ, ǫ) if and only if Apq ⇒∗ x.

Proof. First we prove the forward direction by induction on the number of steps in the
computation (p, x, ǫ) ⊢∗ (q, ǫ, ǫ). Consider the predicate

P (n) : For all x ∈ Σ∗ and all p, q ∈ Q,

if there is an n-step computation (p, x, ǫ) ⊢∗ (q, ǫ, ǫ) then Apq ⇒∗ x.

We will prove that P (n) holds for all n ∈ N using complete induction. Let k be an arbitrary
natural number. Assume that P (j) holds for all integers j such that 0 ≤ j < k. We must prove
that P (k) holds as well. Let x ∈ Σ∗ and p, q ∈ Q be such that there is a k-step computation
(p, x, ǫ) ⊢∗ (q, ǫ, ǫ). We must prove that Apq ⇒∗ x.

Case 1. k = 0. If (p, x, ǫ) ⊢∗ (q, ǫ, ǫ) is a zero-step computation, it must be that p = q and
x = ǫ. Then App → ǫ is a production and so App ⇒∗ ǫ, as wanted.

Case 2. There are two subcases, depending on whether the computation (p, x, ǫ) ⊢∗ (q, ǫ, ǫ)
includes an intermediate configuration with empty stack.

Subcase 2(a). There is some r ∈ Q and x1, x2 ∈ Σ∗ so that x1x2 = x,

(p, x1x2, ǫ) ⊢∗ (r, x2, ǫ) (8.6)

is a k1-move computation, and
(r, x2, ǫ) ⊢∗ (q, ǫ, ǫ) (8.7)

is a k2-move computation, where k1 and k2 are positive integers such that k1 + k2 = k.
Thus, 0 < k1, k2 < k, and the induction hypothesis applies to computations with k1 and
k2 steps. By (8.6) there is a k1-step computation (p, x1, ǫ) ⊢∗ (r, ǫ, ǫ), and so by the
induction hypothesis, Apr ⇒∗ x1. By (8.7) and the induction hypothesis, Arq ⇒∗ x2. Since
Apq → AprArq is a production of G, we have Apq ⇒ AprArq ⇒∗ x1x2, and since x1x2 = x,
Apq ⇒∗ x, as wanted.

Subcase 2(b). There is no intermediate configuration with empty stack in the compu-
tation (p, x, ǫ) ⊢∗ (q, ǫ, ǫ). Recall that, by assumption, every step of M either pushes a
symbol onto the stack or pops one from the stack. Since at the start of this computation
the stack is empty, the first step must push some symbol X onto the empty stack, read
some a ∈ Σ∪ {ǫ} from the input string, and change the state from p to some p′. Similarly,
since at the end of the computation the stack is empty, the last step of the computation
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must pop from the stack the X pushed by the first step, read some b ∈ Σ ∪ {ǫ} from the
input string, and change the state from some q′ to q. In other words, the computation is

(p, ayb, ǫ) ⊢ (p′, yb,X) ⊢∗ (q′, b,X) ⊢ (q, ǫ, ǫ)

where x = ayb for some a, b ∈ Σ∪ {ǫ} and y ∈ Σ∗. The step (p, ayb, ǫ) ⊢ (p′, yb,X) implies
that (p′, X) ∈ δ(p, a, ǫ), and the step (q′, b,X) ⊢ (q, ǫ, ǫ) implies that (q, ǫ) ∈ δ(q′, b,X).
Then, by construction,

Apq → aAp′q′b is a production of G. (8.8)

The computation (p′, yb,X) ⊢∗ (q′, b,X) has k − 2 steps. Thus, there is a (k − 2)-step
computation (p′, y, ǫ) ⊢∗ (q′, ǫ, ǫ). By the induction hypothesis,

Ap′q′ ⇒∗ y. (8.9)

By (8.8) and (8.9), Apq ⇒ aAp′q′b⇒∗ ayb. Since x = ayb, we have Apq ⇒∗ x, as wanted.

We now prove the backward direction of the lemma by induction on the number of steps
in the derivation Apq ⇒∗ x. Consider the predicate

Q(n) : For all x ∈ Σ∗ and all p, q ∈ Q,

if there is an n-step derivation Apq ⇒∗ x then (p, x, ǫ) ⊢∗ (q, ǫ, ǫ).

We will use complete induction to prove that Q(n) holds for all positive integers n. Let k be
an arbitrary positive integer. Assume that Q(j) holds for all integers j such that 1 ≤ j < k.
We must prove that Q(k) holds as well. Let x ∈ Σ∗ and p, q ∈ Q be such that there is a k-step
derivation Apq ⇒∗ x. We must prove that (p, x, ǫ) ⊢∗ (q, ǫ, ǫ).

Case 1. k = 1. There is only one type of production in G that has no variables on the
right-hand side, namely App → ǫ, where p ∈ Q. So, if Apq ⇒∗ x is a one-step derivation, it
must be that q = p and x = ǫ. In that case, (p, x, ǫ) ⊢∗ (q, ǫ, ǫ) via a zero-step computation.

Case 2. There are two types of productions with Apq on the left-hand side. Accordingly,
there are two subcases, depending on the first step of the derivation Apq ⇒∗ x.

Subcase 2(a). The derivation Apq ⇒∗ x starts with Apq ⇒ AprArq, for some r ∈ Q.
Then there are x1, x2 ∈ Σ∗ such that x = x1x2, and Apr ⇒∗ x1 and Arq ⇒∗ x2. The
number of steps in each of the derivations Apr ⇒∗ x1 and Arq ⇒∗ x2 is strictly less than
k and so, by the induction hypothesis, there exist computations (p, x1, ǫ) ⊢∗ (r, ǫ, ǫ) and
(r, x2, ǫ) ⊢∗ (q, ǫ, ǫ). Thus, there exists a computation

(p, x1x2, ǫ) ⊢∗ (r, x2, ǫ) ⊢∗ (q, ǫ, ǫ)

and since x1x2 = x, (p, x, ǫ) ⊢∗ (q, ǫ, ǫ), as wanted.
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Subcase 2(b). The derivation Apq ⇒∗ x starts with Apq ⇒ aAp′q′b, for some p′, q′ ∈ Q
and a, b ∈ Σ ∪ {ǫ}. Then the derivation aAp′q′b⇒∗ x has fewer than k steps, and so there
is a derivation Ap′q′ ⇒∗ y with fewer than k steps, where y ∈ Σ∗ is such that ayb = x. By
the induction hypothesis,

(p′, y, ǫ) ⊢∗ (q′, ǫ, ǫ) (8.10)

The fact that Apq → aAp′q′b is a production implies that, for someX ∈ Γ, (p′, X) ∈ δ(q, a, ǫ)
and (q, ǫ) ∈ δ(q′, b,X). Thus,

(p, ayb, ǫ) ⊢ (p′, yb,X) (8.11)

and
(q′, b,X) ⊢ (q, ǫ, ǫ) (8.12)

From (8.10), it follows that
(p′, yb,X) ⊢∗ (q′, b,X) (8.13)

By (8.11), (8.13) and (8.12), and recalling that ayb = x, we get that (p, x, ǫ) ⊢∗ (q, ǫ, ǫ), as
wanted.

Using this lemma it is now easy to see that L(G) = L(M). For any x ∈ Σ∗,

x ∈ L(G) iff S ⇒∗ x [by definition of L(G)]

iff Asp ⇒∗ x, for some p ∈ F [because all productions with S on the

left are of the form S → Asp, p ∈ F ]

iff (s, x, ǫ) ⊢∗ (p, ǫ, ǫ) [by Lemma 8.11]

iff x ∈ L(M) [by definition of L(M)]

Therefore,

Corollary 8.12 Every language accepted by a PDA is context-free.

We can summarise Corollaries 8.10 and 8.12 as

Corollary 8.13 The class of languages accepted by PDA is the class of context-free languages
(i.e., the class of languages generated by CFG).
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Exercises

1. Give a CFG that generates and a PDA that accepts each of the following languages:

• {x#xR : x ∈ {0, 1}∗}
• {xxR : x ∈ {0, 1}∗}
• {0n12n : n ∈ N}
• {0m1n2m+n : m,n ∈ N}
• {0m1n0k1ℓ : m,n, k, ℓ ∈ N and m+ n = k + ℓ}
• {0m1n2k : m = n or n = k}

2. Prove that the following CFL generates the set of strings over {0, 1} that have equally
many 0s as 1s:

S → 0S1S

S → 1S0S

S → ǫ

3. Let Σ = {∅, ǫ, 0, 1,+, ∗, (, )}. Give a CFG with set of terminals Σ that generates the set
of regular expressions over {0, 1}.

4. Define the “shuffle” L ⊲⊳ L′ of two languages L and L′ as follows:

L ⊲⊳ L′ = {x ∈ Σ∗ : either x = ǫ, or

there is an integer k > 0 and strings y1, y2, . . . , yk ∈ L and y′1, y
′
2, . . . , y

′
k ∈ L′

so that x = y1y
′
1y2y

′
2 · · · yky′k}

Prove that, for all context-free languages L and L′, L ⊲⊳ L′ is also a context-free language.


