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Communication

I will make all announcements through Ed (which will send you an
email notification).

You can find all course material on the course website:

https://www.cs.toronto.edu/~shaharry/csc236/

https://www.cs.toronto.edu/~shaharry/csc236/


Syllabus

All the course policies can be found on the syllabus, so make sure
you read it carefully!

https://www.cs.toronto.edu/~shaharry/csc236/resources/syllabus.pdf


Prerequisites

CSC165 (or equivalent)

• Sets

• Graphs

• Proofs

• Mathematical Logic

• Asymptotics

Here are some course notes by David Liu and Toniann Pitassi if
you’d like to review something!

https://www.cs.toronto.edu/~david/course-notes/csc165.pdf


Grading Breakdown

1.) TA check-ins: 10% (5× 2%)

2.) Midterm: 40%

3.) Final: 50%

4.) Ed Contributor Prize 2%



HW + Check Ins (10%)

• There will be 5 HWs throughout the semester and one check
in per HW.

• You will get full credit for check ins if you manage to convince
your TAs that you made an honest attempt at trying to solve
the HW problems.

• See the guide to hw, and guide to check ins for more
information and tips for the HW and the check ins!

https://www.cs.toronto.edu/~shaharry/csc236/resources/guide-to-hw.pdf
https://www.cs.toronto.edu/~shaharry/csc236/resources/guide-to-check-ins.pdf


Exams (40% + 50%)

• At least 20% of the exam with be based on the HW problems.

• The midterm will June 28, 6-9PM at EX100.

• The final will be sometime August 17 - 25.



Support

Sign up for Ed! Please ask and answer questions!

Come to office hours!

The TAs and I are here for you, so please don’t hesitate to reach
out. The best way to get in touch is through Ed.



Course overview

Part 1: Mathematical tools.

Part 2: Algorithm correctness and runtime.

Part 3: Finite automata.
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Welcome!



Questions we care about in Theory

 Is it possible to

solve problem X
send secure messages

guarantee privacy

convey information efficiently and robustly
have fair machine learning algorithms may
play a game optimally



Questions we care about in Theory

Is it possible to

cryptography

send sea messages

solve problem X

guarantee privacy

differentialprivacy

convey information efficiently and robustly countryhave fair machine learning algorithms r algorithmic
fairness

reach collective decisions to maximize social welfare

social choice theoryplay a game optimally
game theory



Questions we care about in Theory

If so how Also how muchmany

time

space
randomness

processors

man
Circuit gates

do we need



Questions we care about in Theory

If so how Also how muchmany

time algorithm design

space
randomness

t

quantum bits quantumcomputation

do we need Complexitytheory



The sell

For programmers:

• Rigorously analyze your programs.

• Model real world problems as well studied problems in theory
and apply known algorithms.

In general:

• There are no compiler issues in Theory Land: problems are
distilled to the core puzzle.

• CS Theory is a fascinating and new field! There are lots of
unknowns, and breakthroughs happen very often.
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Are there problems computers can’t solve?



Set theory review
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Set theory review
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Functions

f Iif f is a function from A to B

domain
I
codomain

Think of the domain as a set of inputs
and the codomain as a set of outputs

Fae A fla e B



Functions

f A B

A B

a fat
y

a flail

Everything inA is mappedto Noteverything in B needs

something in B to be mapped to



Examples

Piglatin English Strings

welcome selcamway

science siencesay
hundred sundredhay

I xazbte



Examples

What is the domain/codomain here?



Is this a function?

Bends Gang Elements

Hang 1
Sokka
Katara T É
Toph s

Zuko

A



Is this a function?

Bends Gang Elements

Hang 1
Sokka
Katara SEE
Toph s

Zuko

A
mapped to one thingNota function II mapped to something



A fix - change the codomain!

Bends Gang P Elements

13 ÉHang
Sokka
Katara 3
Toph EE
Zuko IE IE

Ms



A function that we’re interested in

Solves Program Problems
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Injective

A function is injective if nothing in the codomain is hit more than
once. Formally,

Definition (Injective)

A function f : A → B is injective if

∀x , y ∈ A.(x ̸= y =⇒ f (x) ̸= f (y))

“If the inputs are different, the outputs are different”

Sometimes, the equivalent contrapositive is easier to work with

∀x , y ∈ A.(f (x) = f (y) =⇒ x = y)

“If the outputs are the same, the inputs are the same”
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f A B

A
B

f : A → B is injective if
∀x , y ∈ A.(x ̸= y =⇒ f (x) ̸= f (y))



Example - People and Chairs

Alice

Bob É
Charlie

Danny Et

É
Different people different chairs

f : A → B is injective if
∀x , y ∈ A.(x ̸= y =⇒ f (x) ̸= f (y))



Example - Musical Chairs

Is there an injective function between these two sets?

Alice

Bob

Charlie Q
Danny

É

No! If there are fewer chairs than people, no matter how you as-
sign people to chairs, at least one person will have to share. I.e.,
someone goes out after every round of musical chairs. This phe-
nomenon has a special name...

f : A → B is injective if
∀x , y ∈ A.(x ̸= y =⇒ f (x) ̸= f (y))
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The Pigeonhole Principle

Theorem (The Pigeonhole Principle)

Let A, B be finite sets where |A| > |B|. Then there is no injective
function f : A → B.

Think of A as a set of pigeons and B as a set of pigeonholes. The
pigeonhole principle is a fancy way of saying that if you have more
pigeons than you have pigeonholes, no matter how you assign
pigeons to pigeonholes, some pigeonhole will have at least two
pigeons.

We will see more of this in tutorial!

f : A → B is injective if ∀x , y ∈
A.(x ̸= y =⇒ f (x) ̸= f (y))



Example - Hilbert’s Hotel

Imagine you’re working at a unique hotel. The hotel has an infinite
number of rooms. To be precise, it has one (single person) room
for every natural number 0, 1, 2, ...

Your job is to assign customers to rooms. Just when you thought
your job was easy, a bus containing an infinite number of people,
let’s call them a0, a1, a2, ... shows up and requests rooms.
Assume the hotel is empty to start. How do you assign the
customers to rooms? Since only one person can stay in each room,
we need the assignment to be injective.

f : A → B is injective if ∀x , y ∈
A.(x ̸= y =⇒ f (x) ̸= f (y))



Example - Hilbert’s Hotel

People HotelRoom

90 50
At s 1

A y 2

9 s 3

flail i I

f : A → B is injective if ∀x , y ∈
A.(x ̸= y =⇒ f (x) ̸= f (y))



Example - Hilbert’s Hotel

Nice! You managed to assign an infinite number of people to
rooms! However, another bus arrives, and it again contains an
infinite number of people. Let’s call them b0, b1, b2....

You look at the rooms. Currently, each room is occupied! In
particular, room number i is taken by customers ai .

However, eager to impress your boss, you try to think of a way to
do the impossible - fit an infinite number of people into an already
filled hotel. So how do you do it?

f : A → B is injective if ∀x , y ∈
A.(x ̸= y =⇒ f (x) ̸= f (y))



Example - Hilbert’s Hotel

People HotelRoom

90 50
As s 1

A y 2

9 33

bo
by
be where can

these

people go

f : A → B is injective if ∀x , y ∈
A.(x ̸= y =⇒ f (x) ̸= f (y))



Example - Hilbert’s Hotel

People HotelRoom

OGo

As 1

A 2

9 7 3

i 4
5

bo
be

i

f ai Zi

f bi Ziti

f : A → B is injective if ∀x , y ∈
A.(x ̸= y =⇒ f (x) ̸= f (y))



Proof: f is injective

Let x , y be customers such that x ̸= y . We’ll show that f (x) ̸=
f (y). There are several cases.

• Suppose x and y were on different busses. WLOG, assume x
was on the first and y was on the second. Then f (x) ̸= f (y)
since f (x) is even and f (y) is odd.

• If x and y were both on the first bus, then since x ̸= y ,
x = ai and y = aj for some i ̸= j . Thus 2i ̸= 2j and
f (x) ̸= f (y) as required.

• The case where x and y were both the second bus is similar.

f (x) =

{
2i x = ai

2i + 1 x = bi

f : A → B is injective if
∀x , y ∈ A.(x ̸= y =⇒ f (x) ̸= f (y))
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Surjective

A function is surjective if everything in the codomain is hit.

Formally, f : A → B is surjective if

∀b ∈ B.∃a ∈ A.(f (a) = b)



f A B

A
B

f is surjective if
∀b ∈ B.∃a ∈ A.(f (a) = b).



Example

Is f defined by f (n) = n surjective?

It depends on the domain/codomain! For example, f : N → N
defined by f (n) = n is surjective, but f : N → R defined by
f (n) = n is not!

It’s essential to always specify the domain and codomain when
defining a function.

f is surjective if
∀b ∈ B.∃a ∈ A.(f (a) = b).
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Bijective

A function is bijective if everything in the codomain is hit exactly
once. Formally,

f : A → B is bijective if f is both injective and surjective.



Examples

fmathbbR

f R R treat numbers

f x 742

2 71

3 7 15

T V2

1000 500

1 28 7 64



Proof - Half is Bijective

We’ll show f : R → R defined by f (x) = x/2 is a bijection. To do
so, we’ll show that f is both injective and surjective.

Injective. Let a, b ∈ R and assume f (a) = f (b). By the definition
of f , this implies a/2 = b/2, which in turn implies a = b. Thus f
is injective.

Surjective. Let b ∈ R. To show f is surjective, we need to find
some number a ∈ R such that f (a) = b. We claim that a = 2b
does the trick. We have

f (a) = f (2b) = 2b/2 = b,

and thus f is surjective.

injective: ∀x , y ∈ A.(x ̸= y =⇒ f (x) ̸= f (y))

surjective: ∀b ∈ B.∃a ∈ A.(f (a) = b).
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Summary of definitions

Let f : A → B be a function.

f is... if ∀b ∈ B, b is hit... Formally...

Injective 1 or 0 times ∀x , y ∈ A.(x ̸= y =⇒ f (x) ̸= f (y))
Surjective at least 1 time ∀b ∈ B.∃a ∈ A.(f (a) = b)
Bijective exactly 1 time Injective and Surjective

b ∈ B is hit k times by f if there are k distinct a ∈ A are such that
f (a) = b. I.e.

|{a ∈ A : f (a) = b}| = k .
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Cantor’s Theorem

Theorem (Cantor’s Theorem)

For any set A, there is no surjection between A and ℘(A)

• f is surjective if ∀b ∈ B.∃a ∈ A.(f (a) = b)

• ℘(A) = {B : B ⊆ A}



Proof of Cantor’s Theorem

Let f A PCA be
any function
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f is surjective if
∀b ∈ B.∃a ∈ A.(f (a) = b).



Proof of Cantor’s Theorem

A i

fl a
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f is surjective if
∀b ∈ B.∃a ∈ A.(f (a) = b).



Proof of Cantor’s Theorem

Let f : A → ℘(A) be any function. Let D = {a ∈ A : a /∈ f (a)}
and note that D ⊆ A, and hence D ∈ ℘(A). To show f is not
surjective, we’ll show that in particular, there is no a ∈ A such that
f (a) = D.

By contradiction, assume D = f (a) for some a ∈ A. There are two
cases, either a ∈ D or a /∈ D.

• If a ∈ D, then a /∈ f (a) by the definition of D. But f (a) = D,
so a /∈ D, which is a contradiction.

• Otherwise a /∈ D, then a ∈ f (a) but f (a) = D by assumption,
so a ∈ D, which is again a contradiction.

Since we reached a contradiction in both cases, our assumption
must have been false. Thus, f is not surjective.

surjective:
∀b ∈ B.∃a ∈ A.(f (a) = b).
D = {a ∈ A : a /∈ f (a)}
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Are the problems computers can’t solve?

Let’s apply our knowledge of functions to answer the question!



Formalizing the question - Problems

Let Strings be the set of all possible strings. For each subset
A ⊆ Strings (each A ∈ ℘(Strings)), there is the problem of
determining whether or not a given input is in A or not in A.

For example

A = {w ∈ Strings : w is a palindrome},

or
A = {w : w is a C program with no syntax errors}.

Let’s just consider problems of this type. So set

Problems = ℘(Strings).
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Formalizing the question - Programs

For concreteness, let’s say, a program P solves a problem
A ⊆ Strings, if ∀w ∈ Strings,

w ∈ A ⇐⇒ P run on input w prints 1 and nothing else

Identify every program with its source code (a string), so
Programs ⊆ Strings.



Formalizing the question - Solves

Let Solves : Programs → ℘(Strings) be the function that maps
each program to the problem it solves. Since each program solves
at most one problem, this function is well defined.

Our question about whether or not computers can solve all
problems is the question of whether or not Solves is ...



Formalizing the question - Solves

Let Solves : Programs → ℘(Strings) be the function that maps
each program to the problem it solves. Since each program solves
at most one problem, this function is well defined.

Our question about whether or not computers can solve all
problems is the question of whether or not Solves is surjective!



Proof (Picture)

Strings P Strings

Programs



Proof - There is a problem that computers can’t solve

The answer to our question is no - computers can not solve all
problems! We will prove this by showing that Solves is not
surjective.

By contradiction, assume Solves : Programs → ℘(Strings) is
surjective. The strategy will be to construct a surjective function
from Strings → ℘(Strings) which contradicts Cantor’s Theorem.

Let f : Strings → ℘(Strings) be defined as follows

f (w) =

{
Solves(w) w ∈ Programs

∅ else
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Proof - Cont.

We claim that f is surjective. Let b ∈ ℘(Strings), since Solves is
surjective, there is some a ∈ Programs such that Solves(a) = b.
Since Programs ⊆ Strings, a ∈ Strings. By the definition of f ,

f (a) = Solves(a) = b.

Thus, f is surjective, contradicting Cantor’s Theorem.

Since we have reached a contradiction, the assumption must have
been false. Therefore, Solves is not surjective.

f (w) =

{
Solves(w) w ∈ Programs

∅ else



There is a problem that computers can’t solve

What are your questions?



FAQ

• “How many problems can/can’t computers solve?”

• “What is a particular problem that we can’t solve with
computers”

• “How can we tell if a problem can or can’t be solved by
computers?”

• “Some problems can be solved and other can not - so some
problems are computationally “harder” than others. Are there
more ways to compare how computationally hard problems
are?”

Answer: Take CSC448 and CSC463 :)



FAQ

• “How many problems can/can’t computers solve?”

• “What is a particular problem that we can’t solve with
computers”

• “How can we tell if a problem can or can’t be solved by
computers?”

• “Some problems can be solved and other can not - so some
problems are computationally “harder” than others. Are there
more ways to compare how computationally hard problems
are?”

Answer: Take CSC448 and CSC463 :)



Additional Notes

• ‘hits’ in the definitions of injective/surjective/bijective is not
standard terminology. The standard way to express the same
meaning is to use the word ‘preimage.’ In your proofs you
should use the formal FOL definitions.

• The visual part of the proof of Cantor’s Theorem is a little
misleading. It makes an additional assumption that you can
list the elements of A using the natural numbers (N) (this
property is called ‘countable’). But this is not true for all sets!
For example, apply Cantor’s Theorem to N to show that ℘(N)
can not be listed using the natural numbers!

• Cantor’s Theorem is fundamental and deep. In particular, it
implies that there are bigger and smaller infinities (!). I.e., the
powerset of an infinite set is strictly bigger. The powerset of
that set is strictly bigger again, and so on. If this interests
you, take a class on Set Theory!
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The goal

The goal of today’s lecture is to have you see graphs everywhere in
the world.
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Definitions

A graph G = (V ,E ) is a pair of sets (V ,E ), where V is a set of
vertices and E is a set of pairs of vertices.

If E is a set of unordered pairs, the graph is called undirected and
if the E is a set of ordered pairs, the graph is called directed.



Examples








































F a be d e f
b Undirected

E bid a b die
c e die e c a f

b c f d
a f

sitDirected

E lb a af Gb c L s e

dis bad ed
Ge If d at f



Weights








































G d

7 11 5

3

2

e2

4
fd

Sometimes edges may have an associated weights. Formally, we
can define a function w : E → R where w({u, v}) is the weight of
the edge {u, v}.



Seeing graphs everywhere

• Functions

• Binary relations

• Maps

• Web links

• Tournament brackets

• Game trees

• ...
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An Important Skill

The ability to model problems in real life as graph problems is
super useful.

You will study algorithms to solve graph problems in CSC373.

Sometimes modelling the problem is enough since there are
libraries that implement the algorithms for you!

One such library is the networkx (Python). We will see some
examples...

https://networkx.org/documentation/stable/reference/algorithms/index.html


Matching

Let G = (V ,E ) be a graph. A matching M ⊆ E is a subset of
edges that do not share any endpoints. I.e. every vertex appears in
at most one edge in M.

A matching is perfect if every vertex appears exactly once in the
matching.

If each edges has a weight, then the weight of a matching is the
sum of the weights of edges in M.



Examples
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Matching problem

Input: A graph G = (V ,E ).

Output: A matching M ⊆ E .

Usually we want |M| to be as large as possible. Sometimes, we
want to maximize/minimize the weight of the matching as well.



How would you find the maximum matching?








































b 6 I
2

5
3

e e

4
a f

b 6 I

7 11 g
2

3
c e

4
a if



Example: Matchings in the real world

Here’s the set up: There are n students in a class that need to be
matched with partners. Each student fills out a form to indicate a
list of times they are available to work and if they prefer to work
in-person or virtually.

Let a, b be any two distinct students. a and b are incompatible if
they don’t share any available times. Otherwise, the compatibility
score for a and b is the number of timeslots in which they overlap
in their availability plus one if they additionally have the same
preference to work in person or virtually.

Your task is to find a pairing with the following properties

• As many students should be matched as possible.

• Aim to have high compatibility score.



Modelling as a matching problem.

• What are the vertices of the graph?

• What are the edges of the graph?

• What are the edge weights?

• What properties of the matching do we want?



Modelling as a matching problem.

• Students.

• There’s an edge if they have non-zero compatibility score.

• Compatibility score.

• We want the largest matching (match as many students as
possible) with the highest total compatibility!



Coding (?!)



Screenshots of Coding1

Note: Real data from this class with fake names.

1Screenshots are from when I taugh last summer, names are replaced with
fake names
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Screenshots of Coding1

1Screenshots are from when I taugh last summer, names are replaced with
fake names



Paths

Let G = (V ,E ) be a graph.

• Two vertices u, v ∈ V are adjacent if {u, v} ∈ E

• A sequence of distinct vertices (v1, ..., vn) is a path from v1 to
vn if for every i ∈ {1, ..., n− 1}, vi and vi+1 are adjacent. The
length of the path is the number of edges in the path.



Example
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Whats the shortest path from a to e



Path Finding Problem

Input: A graph G = (V ,E ) and two vertices u, v ∈ V .

Output: A path from u to v in G . I.e. a sequence of vertices
(v1, v2, ..., vn) where v1 = u and vn = v .

Typically, we want to find the path with the smallest length. If
each edge has a weight we also may want to find the path with the
smallest total weight.



Wikipedia Game

Here are the rules:

• Start with a random article

• Your goal is to find your way to the
University of Toronto wiki page

• The only way you can move is by clicking
on links

Let’s play!



Modelling as a shortest path problem

• V = {wiki pages}
• E = {(u, v) ∈ V × V : u links to v}

Let G = (V ,E ). Then, given a random Wikipedia page u, the
shortest path from u to UniversityofToronto is the optimal
solution for the Wikipedia Game.



Modelling as a shortest path problem

• V = {wiki pages}
• E = {(u, v) ∈ V × V : u links to v}

Let G = (V ,E ). Then, given a random Wikipedia page u, the
shortest path from u to UniversityofToronto is the optimal
solution for the Wikipedia Game.



Cycles

Let G = (V ,E ) be a graph

• A sequence of vertices (v1, ..., vn), is a cycle if (v1, ..., vn−1) is
a path, v1 = vn, and {vn−1, vn} ∈ E .

• A cycle is called Hamiltonian if every vertex appears in the
cycle exactly once (except for the start/end vertex which
appears twice).

The minimum length of a cycle is 3 (i.e. n ≥ 4).



Example - Cycle
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Example - Hamiltonian Cycle
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Traveling Salesman Problem

Input: A graph G = (V ,E ) and a starting vertex h

Output: A Hamiltonian cycle in G starting from h that minimizes
the total edge weights.



Selling Strawberries

Imagine you’re a door to door strawberries salesperson. Let H be
the set of homes in your neighborhood. You live at h ∈ H.



Selling Strawberries





 home

Your goal is to start at home, and visit every house in your neigh-
borhood while walking the shortest distance possible.



Selling Strawberries
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Selling Strawberries
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This corresponds exactly to the solution to the Traveling Salesman
Problem. I.e. we’re looking for the Hamiltonian cycle that mini-
mizes the total weight!



Definitions

Modelling with Graphs
Problem 1. Matching
Problem 2. Shortest Path
Problem 3. The Traveling Salesman

Trees - A special type of graph
Problem 4. Minimum Spanning Tree



Trees

Let G = (V ,E ) be any graph.

• G is connected if for every pair of distinct vertices u, v , there
is some path from u to v .

• G is acyclic if there are no cycles in G .

• G is called a tree if G is both connected and acyclic.



Examples



Trees - on a knife’s edge

If G has many edges, it’s more likely to be connected, but also
more likely to have a cycle.

If G has fewer edges, it’s more likely to be acyclic but less likely to
be connected.

Since trees are both connected and acyclic, trees represent a
perfect compromise. However, as we will see on the next slide, any
addition or subtraction of an edge will destroy the balance.



Trees - on a knife’s edge

Trees are minimally connected graph, meaning that it is connected
but removing any edge causes the tree to be disconnected.

Trees are maximally acyclic graph, meaning that there is no cycle
but adding any edge creates a cycle.



Trees - on a knife’s edge

Trees are minimally connected graph, meaning that it is connected
but removing any edge causes the tree to be disconnected.

Trees are maximally acyclic graph, meaning that there is no cycle
but adding any edge creates a cycle.



Proof: Minimally Connected

Let G = (V ,E ) be a tree. Suppose {u, v} is an edge in G . Let
G ′ = (V ,E \ {{u, v}}) be the graph with {u, v} removed. We’ll
show that G ′ is disconnected - in particular, there is no path from
u to v .

By contradiction, if there was a path P = (u = v1, v2, ..., vn = v)
from u to v in G ′, then the C = (u = v1, v2, ..., vn = v , u) is a
cycle in G . However, G is acyclic so this is a contradiction.

Tree: connected and acyclic.
WTS: removing any edge causes
tree to be disconnected.
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Tree: connected and acyclic.
WTS: removing any edge causes
tree to be disconnected.



Proof: Maximally Acyclic

Let G = (V ,E ) be a tree. Suppose {u, v} is an edge not in G . Let
G ′ = (V ,E ∪ {{u, v}}) be the graph with the edge {u, v} added.
We’ll show that G ′ has a cycle.

Since G is connected, there is some path P = (u = v1, ..., vn = v)
from u to v in G . Then C = (u = v1, ..., vn = v , u) is a cycle in
G ′.

Tree: connected and acyclic.
WTS: adding any edge creates a
cycle
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G ′ = (V ,E ∪ {{u, v}}) be the graph with the edge {u, v} added.
We’ll show that G ′ has a cycle.

Since G is connected, there is some path P = (u = v1, ..., vn = v)
from u to v in G . Then C = (u = v1, ..., vn = v , u) is a cycle in
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Tree: connected and acyclic.
WTS: adding any edge creates a
cycle



Converses

Let G be a graph.

• If G is minimally connected. Then G is a tree.

• If G is maximally acyclic. Then G is a tree.

Are these also true? Yes!
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Let G be a graph.

• If G is minimally connected. Then G is a tree.

• If G is maximally acyclic. Then G is a tree.

Are these also true? Yes!



How many edges does a tree have?

|V | − 1. We will prove this next time.



How many edges does a tree have?

|V | − 1. We will prove this next time.



Electrical Grid

Given a set of houses, what is the most efficient way to connect an
electrical grid?

The goal is to connect homes so that all of the homes are
connected to each other by some path using the least amount of
cable.



Electrical Grid
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Minimum Spanning Tree

Input: A connected, weighted graph G = (V ,E ).

Output: A graph T = (V ,E ′), where E ′ ⊆ E , such that T is a
tree that minimizes the total edge weights.



Which of these problems seem more difficult?

• Minimum Spanning Tree

• Shortest Path

• Matching

• Traveling Salesman

We know fast algorithms for the first three, but NOT for the last
one. In fact, the Traveling Salesman problem is conjectured to
have no efficient algorithm.



Which of these problems seem more difficult?

• Minimum Spanning Tree

• Shortest Path

• Matching

• Traveling Salesman

We know fast algorithms for the first three, but NOT for the last
one. In fact, the Traveling Salesman problem is conjectured to
have no efficient algorithm.



Additional Notes

• The skill I want you to develop here is to identify how real
world problems can be translated to known problems on
graphs.

• We did not study in detail HOW to solve such problems
(that’s the main topic of CSC373).

• Even though we don’t know of a good algorithm for TSP, we
do have fast approximation algorithms for it.



Additional Notes

Here are some references for some algorithms in case you are
curious.

• Matching: [1 (Blossom Algorithm)], [2]

• Shortest Path: [1 (Dijkstra’s Algorithm)]

• TSP: [1 (Christofides Algorithm)]

• MST: [1 (Prim’s Algorithm)], [2 (Kruskal’s Algorithm)]

https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
https://www.researchgate.net/publication/221499631_An_Osqrtv_E_Algorithm_for_Finding_Maximum_Matching_in_General_Graphs
https://en.wikipedia.org/wiki/Dijkstra's_algorithm
https://en.wikipedia.org/wiki/Christofides_algorithm
https://en.wikipedia.org/wiki/Prim's_algorithm
https://en.wikipedia.org/wiki/Kruskal's_algorithm
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What is induction used for

Induction is used to prove statements of the following form:

∀n ∈ N.(P(n)).

Note that P is a predicate on the natural numbers. I.e. for any
natural number n, P(n) is either true or false. For example, P(n)
might be

• The sum of the first n odd numbers is n2.

• (12n − 1) is divisible by 11.

• Trees with n vertices have n − 1 edges.

Induction is super useful when analyzing the correctness and
runtime of algorithms.



Induction
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Principle of Mathematical Induction



Induction

(P(0) ∧ ∀k ∈ N.(P(k) =⇒ P(k + 1))) =⇒ ∀n ∈ N.(P(n))



Induction

(P(0) ∧ ∀k ∈ N.(P(k) =⇒ P(k + 1))) =⇒ ∀n ∈ N.(P(n))

“If I can show that the first domino falls, and I can show that for
any domino, if that domino falls, the next one falls, every domino
falls”.

Here, the kth domino falling is analogous to P(k) being true.



Proofs by induction

(P(0) ∧ ∀k ∈ N.(P(k) =⇒ P(k + 1))) =⇒ ∀n ∈ N.(P(n))

If we want to prove a statement of the form ∀n ∈ N.(P(n)), it
suffices to prove

1. P(0) (base case)

2. ∀k ∈ N.(P(k) =⇒ P(k + 1)) (inductive step)



Induction template

Say we wanted to prove ∀n ∈ N.(P(n)). Here is the template:

The assumption, P(k), in the inductive step is called the inductive
hypothesis (IH).

By induction.

Base case. [Prove P(0) is true]

Inductive step. Let k ∈ N be an arbitrary natural number,
and assume P(k). We’ll show P(k + 1). [Prove P(k + 1)
assuming P(k)]. This completes the induction.



Flexibility

There is some flexibility in the proof by induction template. For
example, sometimes, we want to prove a statement is true for all
n ≥ 1, so the base case starts at 1 instead of 0. Sometimes, for the
inductive step, we need to show that if the previous two dominoes
fall, then the next one falls. In this case, we would need to prove
two base cases. These will come up in the examples, and you will
see why we can do this next week.

You should be okay as long as you showed enough so that “all the
dominoes fall”.



Induction

Examples of Proofs by Induction

Complete Induction
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Perfect binary trees

In a perfect binary tree, all leaves are at the same level, and every
other vertex has two children and one parent (except for the root,
which does not have a parent).



Number of vertices of perfect binary trees

How many vertices does perfect binary tree of height n have?



Number of vertices of perfect binary trees

1 20

2 21

4 2

8 3



∀n ∈ N.(20 + 21 + ...+ 2n = 2n+1 − 1)

By induction.

Base case. For the base case, we need to check 20 = 20+1 − 1.
This holds, since they are both equal to 1.

Inductive step. Let k ∈ N be an arbitrary natural number, and
assume

∑k
i=0 2

i = 2k+1 − 1. We’ll show
∑k+1

i=0 2i = 2k+2 − 1. We
have

k+1∑
i=0

2i = 2k+1 +
k∑

i=0

2i

= 2k+1 + 2k+1 − 1

= 2k+2 − 1

as required.
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By induction.

Base case. For the base case, we need to check 20 = 20+1 − 1.
This holds, since they are both equal to 1.

Inductive step. Let k ∈ N be an arbitrary natural number, and
assume

∑k
i=0 2

i = 2k+1 − 1. We’ll show
∑k+1

i=0 2i = 2k+2 − 1. We
have

k+1∑
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= 2k+1 + 2k+1 − 1

= 2k+2 − 1

as required.



Sum of first n odd numbers is the nth square
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Sum of first n odd numbers is the nth square

We want to prove ∀n ∈ N, n ≥ 1.(
∑n

i=1 2i − 1 = n2)

Base case.2

2 · 1− 1 = 1 = 12,

so the base case holds.
Inductive step. Let k ∈ N, k ≥ 1 be an arbitrary natural number,
and assume

∑k
i=1 2i − 1 = k2. We’ll show

∑k+1
i=1 2i − 1 = (k +1)2.

k+1∑
i=1

2i − 1 = 2(k + 1)− 1 +
k∑

i=1

2i − 1

= 2k + 1 + k2

= (k + 1)2

as required.

2Here we prove P(1) instead of P(0) since the statement we are trying to
prove starts at 1.



Sum of first n odd numbers is the nth square

We want to prove ∀n ∈ N, n ≥ 1.(
∑n

i=1 2i − 1 = n2)
Base case.2

2 · 1− 1 = 1 = 12,

so the base case holds.
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and assume

∑k
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k∑

i=1
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= (k + 1)2

as required.

2Here we prove P(1) instead of P(0) since the statement we are trying to
prove starts at 1.



∀n ∈ N.(n3 − n + 3) is divisible by 3

By induction.

Base case. For the base case, we have 03 − 0 + 3 = 3 which is
divisible by 3.

Inductive step. Let k ∈ N by any natural number and assume
k3 − k + 3 is divisible by 3, i.e. k3 − k + 3 = 3p for some p ∈ N.
We will show (k + 1)3 − (k + 1) + 3 is also divisible by 3. We have

(k + 1)3 − (k + 1) + 3 = k3 + 3k2 + 3k + 1− k − 1 + 3

= (k3 − k + 3) + 3k2 + 3k + 1− 1

= 3p + 3k2 + 3k

= 3(p + k2 + k)

as required.



∀n ∈ N.(n3 − n + 3) is divisible by 3

By induction.

Base case. For the base case, we have 03 − 0 + 3 = 3 which is
divisible by 3.

Inductive step. Let k ∈ N by any natural number and assume
k3 − k + 3 is divisible by 3, i.e. k3 − k + 3 = 3p for some p ∈ N.
We will show (k + 1)3 − (k + 1) + 3 is also divisible by 3. We have

(k + 1)3 − (k + 1) + 3 = k3 + 3k2 + 3k + 1− k − 1 + 3

= (k3 − k + 3) + 3k2 + 3k + 1− 1

= 3p + 3k2 + 3k

= 3(p + k2 + k)

as required.



∀n ∈ N. the units digit of 7n is 1, 3, 7, or 9

By induction.

Base case. 70 = 1, so the base case holds.

Inductive step. Let k ∈ N be an arbitrary natural number, and
assume the units digit of 7k is either 1, 3, 7 or 9. There are several
cases.

• If it was 1, 7k+1 has units digit 7.

• If it was 3, 7k+1 has units digit 1.

• If it was 7, 7k+1 has units digit 9.

• If it was 9, 7k+1 has units digit 3.

Thus, the inductive step holds and we are done.



∀n ∈ N. the units digit of 7n is 1, 3, 7, or 9

By induction.

Base case. 70 = 1, so the base case holds.

Inductive step. Let k ∈ N be an arbitrary natural number, and
assume the units digit of 7k is either 1, 3, 7 or 9. There are several
cases.

• If it was 1, 7k+1 has units digit 7.

• If it was 3, 7k+1 has units digit 1.

• If it was 7, 7k+1 has units digit 9.

• If it was 9, 7k+1 has units digit 3.

Thus, the inductive step holds and we are done.



∀n ∈ N.(n2 ≤ 2n)

False! E.g. for n = 3, the LHS is 9 and the RHS is 8.
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False! E.g. for n = 3, the LHS is 9 and the RHS is 8.



∀n ∈ N, n ≥ 4.(n2 ≤ 2n)



∀n ∈ N, n ≥ 4.(n2 ≤ 2n)

By induction.

Base case. 42 = 16 and 24 = 16, so the base case holds.
Inductive step. Let k ∈ N be an arbitrary natural number with
k ≥ 4, and assume k2 ≤ 2k . We’ll show (k + 1)2 ≤ 2k+1. We have

(k + 1)2 = k2 + 2k + 1

≤ k2 + (k − 2)k + 1 (k − 2 ≥ 2)

= k2 + k2 − 2k + 1

≤ 2k2 (−2k + 1 ≤ 0)

≤ 2 · 2k (IH)

= 2k+1,

completing the induction.
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By induction.

Base case. 42 = 16 and 24 = 16, so the base case holds.
Inductive step. Let k ∈ N be an arbitrary natural number with
k ≥ 4, and assume k2 ≤ 2k . We’ll show (k + 1)2 ≤ 2k+1. We have

(k + 1)2 = k2 + 2k + 1

≤ k2 + (k − 2)k + 1 (k − 2 ≥ 2)

= k2 + k2 − 2k + 1

≤ 2k2 (−2k + 1 ≤ 0)

≤ 2 · 2k (IH)

= 2k+1,

completing the induction.



All birds have the same color

Claim. ∀n ∈ N, a set of n birds will all have the same color.

Is this claim true?

No, of course not!3

3This example is usually “all horses have the same color,” but I do not
know how to draw horses - hence “all birds have the same color”



All birds have the same color

Claim. ∀n ∈ N, a set of n birds will all have the same color.

Is this claim true?

No, of course not!3

3This example is usually “all horses have the same color,” but I do not
know how to draw horses - hence “all birds have the same color”



All birds have the same color - “proof”

Base Case. For n = 0, the claim is vacuously true.

Claim. ∀n ∈ N, a set
of n birds will all
have the same color.



All birds have the same color - “proof”

eg k 3

Inductive step. Let k ∈ N be any number and assume a set of
k birds will all have the same color. Let S be a set of k + 1 birds,
we’ll show that all the birds in S have the same color.



All birds have the same color - “proof”

eg k 3

Remove an arbitrary bird b1.



All birds have the same color - “proof”

eg k 3

The remaining k birds must have the same color by the inductive
hypothesis.



All birds have the same color - “proof”

eg k 3

The remaining k birds must have the same color by the inductive
hypothesis.



All birds have the same color - “proof”

eg k 3

Add back the removed bird and now remove a different bird, b2.



All birds have the same color - “proof”

eg k 3

1
By the same reasoning, the remaining k birds must have the same
color. Therefore b1 has the same color as birds which have not
been removed which in turn have the same color as b2.



All birds have the same color - “proof”

eg k 3

All birdshave the same color



What went wrong?



What went wrong?

eg k 3

1
By the same reasoning, the remaining k birds must have the same
color. Therefore b1 has the same color as the birds which have not
been removed which in turn have the same color as b2.

a

aThere is an implicit assumption here that there is another bird other
than b1 and b2! I.e. for this to hold, we need |S | ≥ 3! In particular, it does
not hold for k = 1, (|S | = 2).



Takeaway

Induction can be tricky! Make sure your inductive step does not
assume anything more than what you claim! For example, in the
n2 ≤ 2n example, we could assume k ≥ 4 since we were restricting
to the case where k ≥ 4, but we couldn’t do the same for the “all
birds have the same color” example.



Induction

Examples of Proofs by Induction

Complete Induction



Complete Induction

Complete induction is another way to prove statements of the form
∀n ∈ N.(P(n)).



Another way to get all the dominoes to fall

If I want to show ∀n ∈ N.(P(n)), it suffices to prove

• P(0)

• ∀k ∈ N.(P(k) =⇒ P(k + 1))

• ∀k ∈ N.((P(0) ∧ P(1) ∧ ... ∧ P(k)) =⇒ P(k + 1))

“If I can show that the first domino falls, and I can show that for
any domino, if that domino falls and all previous dominoes fall,
that the next one also falls, every domino falls”.



Complete Induction template

Say we wanted to prove ∀n ∈ N.(P(n)). Here is the template:

Note. ∀i ∈ N, i ≤ k.(P(k)) is just another way of writing P(0) ∧
P(1) ∧ ... ∧ P(k). This is again called the inductive hypothesis.

By complete induction.

Base case. [Prove P(0) is true]

Inductive step. Let k ∈ N be an arbitrary natural number,
and assume for every i ∈ N with i ≤ k, P(i) holds. We’ll show
P(k + 1). [Prove P(k + 1) using this assumption]



Chocolate

How many breaks do you need to split the chocolate bar into indi-
vidual pieces?



Chocolate - Attempted proof by regular induction

Claim: Let n ∈ N, n ≥ 1 be any natural number. A chocolate bar
with n individual pieces requires n − 1 breaks to split the bar into
individual pieces.

Let P(n) be the predicate: A bar of chocolate composed of n
individual pieces requires n − 1 breaks.

Base case. For n = 1, the chocolate bar is already a single piece
of chocolate and so requires 1− 1 = 0 breaks.

Inductive step. Let k ∈ N, k ≥ 1 be an arbitrary natural number
at least 1, and assume P(k) is true. We need to show P(k + 1) is
true. Let B be a bar of chocolate with k + 1 pieces and pick a way
break a chocolate. We are left with two blocks of chocolate of size
a and b respectively where a+ b = k + 1.

What now? We can’t
apply the IH since a, b might not be k!



Chocolate - Attempted proof by regular induction

Claim: Let n ∈ N, n ≥ 1 be any natural number. A chocolate bar
with n individual pieces requires n − 1 breaks to split the bar into
individual pieces.

Let P(n) be the predicate: A bar of chocolate composed of n
individual pieces requires n − 1 breaks.

Base case. For n = 1, the chocolate bar is already a single piece
of chocolate and so requires 1− 1 = 0 breaks.

Inductive step. Let k ∈ N, k ≥ 1 be an arbitrary natural number
at least 1, and assume P(k) is true. We need to show P(k + 1) is
true. Let B be a bar of chocolate with k + 1 pieces and pick a way
break a chocolate. We are left with two blocks of chocolate of size
a and b respectively where a+ b = k + 1. What now? We can’t
apply the IH since a, b might not be k!



Chocolate - Proof by Complete Induction

Let P(n) be the predicate: A bar of chocolate composed of n
individual pieces requires n − 1 breaks.

Base case. For n = 1, the chocolate bar is already a single piece
of chocolate and so requires 1− 1 = 0 breaks.

Inductive step. Let k ∈ N, k ≥ 1 be an arbitrary natural number
at least 1, and assume P(i) is true for all i ≤ k . We need to show
P(k + 1) is true. Let B be a bar of chocolate with k + 1 pieces
and select any way break the bar. We are left with two blocks of
chocolate of size a and b respectively where a+ b = k + 1, a ≤ k ,
and b ≤ k . Applying the inductive hypothesis to each of these
blocks, we have that the two blocks require a− 1 and b − 1 breaks
respectively, so the total number of breaks (including the initial) is
a+ b − 2 + 1 = k , as required.



Chocolate - Proof by Complete Induction

I break
32

xxÉE E Existed.IEEati KE MEEEE.liEEA
EÉEH E É EU E É E Marta

xxÉE xE EEt xE a EEI.liEI MEEA
ixbEEixedixedIEEAIKEAIEA Miata

b FixedÉE xEI aEI.imxEEaEÉEDMEEEED
iEIIIESIIII i II EE É E Miata
ixatiEIEE ixainaina.IE EatMEEA
ixxaxeixed ixedixed KEEE.io I EE

t requires11 breaks t requires 19 breaks

total 19 141 31 breaks



Number of Edges in a Tree
As a reminder, a tree is a graph G = (V ,E ) that is both acyclic
(has no cycles) and connected (every pair of vertices is connected
by some path). What was our conjecture from last time?



A tree has |V | - 1 edges



Why would I ever use regular induction if I can just use
complete induction?

You can always use complete induction if you wish! The inductive
hypothesis is stronger (I.e., you get to assume P(0) ∧ ... ∧ P(k)
instead of just P(k)), but still lets you prove the same statement:
∀n ∈ N.(P(n)).

That being said, some mistakes are easier to make when using
complete induction, and sometimes regular induction is easier to
work with.



Why would I ever use regular induction if I can just use
complete induction?

You can always use complete induction if you wish! The inductive
hypothesis is stronger (I.e., you get to assume P(0) ∧ ... ∧ P(k)
instead of just P(k)), but still lets you prove the same statement:
∀n ∈ N.(P(n)).

That being said, some mistakes are easier to make when using
complete induction, and sometimes regular induction is easier to
work with.



Induction and Algorithms

Proof by induction is an incredibly powerful technique that will
allow us to prove strong guarantees about the runtime and
correctness of algorithms.

I.e. Induction let’s us prove ∀n ∈ N.(P(n)) consider what this
means when

• P(n) is: Algorithm X is correct on inputs of size n.

• P(n) is: Algorithm X is correct if the for loop runs for at
most n iterations.

• P(n) is: The runtime of Algorithm X is Θ(n2).

• ..etc.



A note about style

Sometimes you might find it easier to define a predicate in the
following way: “Let P(n) be the predicate...” for example, in the
chocolate example. This approach allows you to refer to the
predicate easily. For example, defining P allows you to say
“Assume P(k) is true...”

Other times, you might find it easier to directly work with the
predicate without giving it a name, for example, in the divisibility
example. This approach makes stating the inductive hypothesis a
little more troublesome but reminds the reader of exactly what
you’re trying to prove.

Both are fine!



Additional Notes

• Induction and recursive algorithms are closely linked. Think of
how! We will explore this in future classes.

• Induction is a hard concept to grasp. In particular, it takes a
little bit of faith to believe that simply showing a base case
and an inductive step allows us to prove a statement is true
for all natural numbers. It’s good to keep the domino analogy
in mind, i.e., when writing your proofs, ask - ‘did I show all
the dominoes fall?’

• Although intuition is important, at the end of the day,
remember that the base case and inductive step are both
mathematical statements that you need to prove. I.e., you
should approach proving ∀k ∈ N.(P(k) =⇒ P(k + 1)) like
you would approach proving any other FOL statement.
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Well Ordering Principle and Proof by Infinite Descent



Induction and Complete Induction

To prove
∀n ∈ N.(P(n))

it is enough to prove P(0) and one of the following

• ∀k ∈ N.[P(k) =⇒ P(k + 1)]

• ∀k ∈ N.[(P(0) ∧ P(1) ∧ ... ∧ P(k)) =⇒ P(k + 1)]



Intuition: why does (regular) induction work again?

Say I managed to show P(0), and ∀k ∈ N.(P(k) =⇒ P(k + 1)).
Then let n ∈ N be any number, here’s why P(n) is true:

• P(0) =⇒ P(1), and P(0), so P(1)

• P(1) =⇒ P(2), and P(1), so P(2)

• ...

• P(n − 1) =⇒ P(n), and P(n), so P(n).



Intuition: why does (complete) induction work again?

Say I managed to show P(0), and
∀k ∈ N.((P(0) ∧ P(1) ∧ ...P(k)) =⇒ P(k + 1)). Then let n ∈ N
be any number, here’s why P(n) is true:

• P(0) =⇒ P(1), and P(0), so P(1)

• P(0) ∧ P(1) =⇒ P(2), and P(0) ∧ P(1), so P(2)

• ...

• (P(0) ∧ .... ∧ P(n− 1)) =⇒ P(n), and P(0) ∧ ... ∧ P(n− 1),
so P(n).



Postage Stamps

Say that you have an unlimited number of 3 cent and 5 cent
postage stamps. Can you make any postage exactly?

No, i.e. 1, 2, 4, 7 can’t be made.

Can you make any postage ≥ 8 cents exactly?



Postage Stamps

Say that you have an unlimited number of 3 cent and 5 cent
postage stamps. Can you make any postage exactly?

No, i.e. 1, 2, 4, 7 can’t be made.

Can you make any postage ≥ 8 cents exactly?



Rephrasing the problem mathematically

Claim: For any n ≥ 8, there exists a, b ∈ N such that n = 3a+ 5b



Proof, attempt 1 (wrong!)

By complete induction.

Base case. We can make an 8 cent postage using one 3 cent
stamp and one 5 cent stamp.

Inductive step. Let k ≥ 8 and assume for any 8 ≤ i ≤ k , we can
make a postage of i cents using only 3 and 5 cent stamps. We’ll
show that you can also make a k + 1 postage. Use one 3-cent
stamp. We now need to make a k − 2 postage. By the induction
hypothesis, we can make k − 2 using only 3 cent and 5 cent
stamps, so together, we have made a k + 1 postage.

What’s the problem here?

Claim: For any n ≥ 8, there exists
a, b ∈ N such that n = 3a+ 5b



Proof, attempt 1 (wrong!)

By complete induction.

Base case. We can make an 8 cent postage using one 3 cent
stamp and one 5 cent stamp.

Inductive step. Let k ≥ 8 and assume for any 8 ≤ i ≤ k , we can
make a postage of i cents using only 3 and 5 cent stamps. We’ll
show that you can also make a k + 1 postage. Use one 3-cent
stamp. We now need to make a k − 2 postage. By the induction
hypothesis, we can make k − 2 using only 3 cent and 5 cent
stamps4, so together, we have made a k + 1 postage.

4k − 2 might be 6 which is not covered by the induction hypothesis

Claim: For any n ≥ 8, there exists
a, b ∈ N such that n = 3a+ 5b



Problem

Out induction hypothesis was P(8),P(9), ...,P(k), and we wanted
to show P(k + 1). However, when k = 8 or 9, k − 2 is 6 or 7
which is not covered by the induction hypothesis! So our argument
in the inductive step doesn’t work for k = 8 or k = 9.

To fix this, we can just prove P(k + 1) directly for these cases for
k = 8 and k = 9.



Proof 1. multiple base cases

By complete induction.

Base cases. Since 8 = 3 + 5, 9 = 3 + 3 + 3, 10 = 5 + 5, we can
make postages of 8, 9, 10.

Inductive step. Let k ≥ 10 and assume for any 8 ≤ i ≤ k , we can
make a postage of i cents using only 3 and 5 cent stamps. We’ll
show that you can also make a k + 1 postage. Use one 3 cent
stamp, we now need to make a k − 2 postage. Since 8 ≤ k − 2,
the induction hypothesis applies, and we can make k − 2 using
only 3 cent and 5 cent stamps, so together, we have made a k + 1
postage.

Claim: For any n ≥ 8, there exists
a, b ∈ N such that n = 3a+ 5b



Proof 1. multiple base cases

By complete induction.

Base cases. Since 8 = 3 + 5, 9 = 3 + 3 + 3, 10 = 5 + 5, we can
make postages of 8, 9, 10.

Inductive step. Let k ≥ 10 and assume for any 8 ≤ i ≤ k , we can
make a postage of i cents using only 3 and 5 cent stamps. We’ll
show that you can also make a k + 1 postage. Use one 3 cent
stamp, we now need to make a k − 2 postage. Since 8 ≤ k − 2,
the induction hypothesis applies, and we can make k − 2 using
only 3 cent and 5 cent stamps, so together, we have made a k + 1
postage.

Claim: For any n ≥ 8, there exists
a, b ∈ N such that n = 3a+ 5b



Proof 2. Regular induction

By regular induction.

Base case. Same as before
Inductive step. Let k ≥ 8, and assume there are a, b ∈ N such
that k = 3a = 5b. There are two cases

• If b ≥ 1, we can create k + 1 by removing a 5 cent stamp and
adding two 3 cent stamps.

• If b = 0, then since k ≥ 8, a ≥ 3, and we can create k + 1 by
removing three 3 cent stamps and adding two 5 cent stamps.

Claim: For any n ≥ 8, there exists
a, b ∈ N such that n = 3a+ 5b



Proof 2. Regular induction

By regular induction.

Base case. Same as before
Inductive step. Let k ≥ 8, and assume there are a, b ∈ N such
that k = 3a = 5b. There are two cases

• If b ≥ 1, we can create k + 1 by removing a 5 cent stamp and
adding two 3 cent stamps.

• If b = 0, then since k ≥ 8, a ≥ 3, and we can create k + 1 by
removing three 3 cent stamps and adding two 5 cent stamps.

Claim: For any n ≥ 8, there exists
a, b ∈ N such that n = 3a+ 5b



∀n ∈ N.(2n = 0)

By complete induction.

Base case. 2 · 0 = 0 so the base case holds.

Inductive step. Let k ∈ N be an arbitrary natural number and
assume 2 · k = 0, we’ll show 2 · (k + 1) = 0. Write k + 1 = i + j
for some smaller natural numbers i , j . Then we have

2(k + 1) = 2(i + j) = 2i + 2j = 0 + 0,

where we used the inductive hypothesis on i and j in the last
equality.



∀n ∈ N.(2n = 0)

By complete induction.

Base case. 2 · 0 = 0 so the base case holds.

Inductive step. Let k ∈ N be an arbitrary natural number and
assume 2 · k = 0, we’ll show 2 · (k + 1) = 0. Write k + 1 = i + j
for some smaller natural numbers i , j5. Then we have

2(k + 1) = 2(i + j) = 2i + 2j = 0 + 0,

where we used the inductive hypothesis on i and j in the last
equality.

5you can’t do this for k = 0



Induction

Structural Induction

Well Ordering Principle and Proof by Infinite Descent



Induction

So far, we’ve been able to use the powerful tools of induction and
complete induction to prove statements of the form.

∀n ∈ N.(P(n)).

However, in life, we are also interested in objects other than the
natural numbers. For example, lists, trees, and logical formulas.
I.e., we may want to prove statements like

∀TreesT .(P(T )),

and
∀Formulasf .(P(f )).

We “need”6 a more general tool.

6the quotes here will be explained later



Another view of N

Here’s another one way to define N = {0, 1, 2, ...}.
Let AddOne be the function that maps x → x + 1.

Then, N is the set of objects can be reached by applying
AddOne to {0} a finite number of times.



Defining Sets Inductively

• Let B ⊆ U (think B for base cases)

• Let F be a set of functions, where each function f ∈ F has
domain Um and codomain U. I.e. f maps a tuple of elements
of U to a single element of U (think of F as a set of
construction operations)

The set generated from B by the functions in F is the set of
elements that can be obtained by applying functions in F to
elements of B a finite number of times.



Alternatively

An equivalent way to express
“A is the set of elements that can be obtained by applying
functions in F to elements of B a finite number of times.”
is to define

A is the smallest set satisfying the following conditions.

• B ⊆ A

• ∀a ∈ A, f ∈ F , f (a) ∈ A.



Example: N

• B = {0}
• F = {AddOne}

1. N is the set generated from {0} by {AddOne}

2. Alternatively, N is the smallest set that contains 0, and for
each n ∈ N, N also contains AddOne(n).



Example: N

• B = {0}
• F = {AddOne}

1. N is the set generated from {0} by {AddOne}
2. Alternatively, N is the smallest set that contains 0, and for

each n ∈ N, N also contains AddOne(n).



Example: Z

1. Z is the set generated from {0} by {AddOne,MinusOne}

2. Alternatively, Z is the smallest set that contains 0, and for
each z ∈ Z, Z also contains AddOne(z), and MinusOne(z).



Example: Z

1. Z is the set generated from {0} by {AddOne,MinusOne}
2. Alternatively, Z is the smallest set that contains 0, and for

each z ∈ Z, Z also contains AddOne(z), and MinusOne(z).



Example: List[X ]

Let X be some set, and let List[X ] be the set of lists of elements
in X .

For each x ∈ X define the function Appendx be the function that
takes in a l and appends x to l .

• B = {[]}
• F = {Appendx : x ∈ X}

List[X ] is the set generated from B by functions in F .



Example: List[X ]

Let X be some set, and let List[X ] be the set of lists of elements
in X .

For each x ∈ X define the function Appendx be the function that
takes in a l and appends x to l .

• B = {[]}
• F = {Appendx : x ∈ X}

List[X ] is the set generated from B by functions in F .



Propositional logic

Propositional logic is logic without predicates or quantifiers. For
example ((A ∧ B) ∨ (¬C )) is a propositional formula. Let Prop be
the set of propositional formulas. Define Prop inductively.

• B = {A,B,C , ...} be a set of variables

• F = {E¬,E∧,E∨}
Where E¬(A) = (¬A), E∧(A,B) = (A ∧ B), and
E∨(A,B) = (A ∨ B).



Propositional logic

Propositional logic is logic without predicates or quantifiers. For
example ((A ∧ B) ∨ (¬C )) is a propositional formula. Let Prop be
the set of propositional formulas. Define Prop inductively.

• B = {A,B,C , ...} be a set of variables

• F = {E¬,E∧,E∨}
Where E¬(A) = (¬A), E∧(A,B) = (A ∧ B), and
E∨(A,B) = (A ∨ B).



Structural Induction

Let C be a set generated from B by the functions in F .

If

• for every b ∈ B, P(b),

• and for every f ∈ F on m inputs, for every
a1, ..., am ∈ C ,
(P(a1) ∧ P(a2) ∧ ... ∧ P(am)) =⇒ P(f (a1, ..., am))

Then ∀x ∈ C .(P(x))



Structural Induction in English

Let P be any predicate.

• If I can show P is true of all the base cases,

• and I can show that for every construction function, if P holds
for the the inputs to the construction function then P must
hold for the output of the construction function,

Then P holds for every element constructed from the bases cases
and the construction functions.



Recovering regular induction

N is generated by {0} and AddOne. So substituting N for C , {0}
for B and {AddOne} for F in structural induction, we get

• for every b ∈ {0}, P(b), this is just P(0)
• and for every f ∈ {AddOne} on m inputs, for every
a1, ..., am ∈ N,

(P(a1) ∧ P(a2) ∧ ... ∧ P(am)) =⇒ P(f (a1, ..., am))

this is just ∀k ∈ N.(P(k) =⇒ P(k + 1))

Then ∀x ∈ N.(P(x)).



Flexibility

This more general version formalizes the intuition for why were
were able to change the base cases when trying to prove, for
example, ∀n ∈ N, n ≥ 4.(P(n)).

We really just showed P holds for every number in the set
N≥4 = {4, 5, 6, ...} which is generated from the singleton set {4},
and the function AddOne.



Perfect Binary Trees (Again)

Last time we showed a perfect binary tree of height h has 2h+1 − 1
vertices. By showing 20 + 21 + ...+ 2h = 2h+1 − 1 for all h ∈ N.

1 20

2 21

4 2

8 3



An alternate way of looking at things



Perfect Binary Trees

Let PerfectBinaryTrees be the set of perfect binary trees, and let’s
write it as being generated from a set by some function.

• U (for example might be the set of all graphs).

• B = {single node}
• JoinPerfectTrees : U × U → U maps (G1,G2) to the tree
with G1 as left subtree and G2 as right subtree if and only if
G1 and G2 are perfect binary trees of the same height.
Otherwise, map to the graph with a single node.



Perfect Binary Trees

Let PerfectBinaryTrees be the set of perfect binary trees, and let’s
write it as being generated from a set by some function.

• U (for example might be the set of all graphs).

• B = {single node}
• JoinPerfectTrees : U × U → U maps (G1,G2) to the tree

with G1 as left subtree and G2 as right subtree if and only if
G1 and G2 are perfect binary trees of the same height.
Otherwise, map to the graph with a single node.



JoinPerfectTrees

JoinPerfectTrees I th t

in in



A perfect binary tree of height h has 2h+1 − 1 vertices

Let P(G ) be the predicate that if G is a perfect binary tree of
height h, then G has 2h+1 − 1 vertices.

By structural induction.

Base case. The base case is the graph consisting of a single node.
It has height 0 and 20+1 − 1 = 1 vertices so the base case is true.



A perfect binary tree of height h has 2h+1 − 1 vertices

Let P(G ) be the predicate that if G is a perfect binary tree of
height h, then G has 2h+1 − 1 vertices.

By structural induction.

Base case. The base case is the graph consisting of a single node.
It has height 0 and 20+1 − 1 = 1 vertices so the base case is true.



A perfect binary tree of height h has 2h+1 − 1 vertices

Inductive step. Let G1 = (V1,E1),G2 = (V2,E2) be perfect
binary trees and assume P holds for G1 and G2. We’ll show that P
also holds for JoinPerfectTrees(G1,G2).

Note that if G1 and G2 not are of the same height h,
JoinPerfectTrees(G1,G2) is the single node graph, which is just
the base case. Otherwise, G1 and G2 are both perfect binary trees
of the same height h. By the induction hypothesis,
|V1| = |V2| = 2h+1 − 1. JoinPerfectTrees(G1,G2) is then a perfect
binary tree of height h + 1 with

1 + 2(2h+1 − 1) = 2h+2 − 1

vertices as required.



Postage Stamps (Again)

By structural induction.

N≥8 is generated by {8, 9, 10} and {Add3}. (You need to justify
this part...)

Base Case. You can make 8 = 3 + 5, 9 = 3 · 3, 10 = 5 · 2.

Inductive Step. Let k ∈ N≥8, and assume k = 3a+ 5b for some
a, b ∈ N. Then Add3(k) = k + 3 + 3a+ 5b + 3 = 3(a+ 1) + 5b.



Structural vs. Complete Induction

If you prefer complete induction to structural induction, you can
always opt to use complete induction instead. The following slides
will detail why.



Construction Sequences

Let C be the set generated from B by the functions in F . Define a
construction sequence of length n, to be a sequence of elements
(x0, .., xn) where for each xi in the sequence, either

• xi ∈ B,

• or xi = f (xj1 , ..., xjm) for some f ∈ F , and j1, ..., jm < i .

I.e., every element in the sequence is either in the base set B
or is constructed by applying a construction function to
earlier elements in the sequence.



Example - construction sequence

Construction Fns Er Er Er
E x na E tiny xn y Ev ay x vy

Construct KA v13 at AaB

A B AVB AaB 1 CanB RA VB at AaB

A AVB KA v B M A B

B AaB GLAAB



Structural vs. Complete Induction

Define Ci be the set where x ∈ Ci if there exists some construction
sequence of length at most i ending in x . Then C = C0 ∪ C1 ∪ ....

Instead of doing structural induction, we can do induction on the
length of the construction sequence. I.e., show that if P holds for
every element with construction sequences of at most k, then P
also holds for elements with construction sequences of length at
most k + 1.

Usually, length of construction sequence is represented by some
measure of complexity of the object, for example, ‘height of a tree’
or ‘number of parenthesis,’ or ‘length of the list.’



Perfect Binary Trees (again again)

Claim. A perfect binary tree of height h has 2h+1 − 1 vertices.

Base case. A perfect binary tree of height 0 has 20+1 − 1 = 1
vertices so the base case holds.

Inductive step. let k ∈ N be any natural number and assume
perfect binary trees of height k have 2k+1 − 1 vertices. Let T be a
perfect binary tree of height k + 1. Note that T is constructed of
an additional node joining two perfect binary trees of height k.
Thus T has 2(2k+1 − 1) + 1 = 2k+2 − 1 vertices as required.

Note: Here, we used the tree’s height as a proxy for the length of
the construction sequence.



Level of Formality

So far, we have seen many examples of proof by induction. You
can use any approach you wish.

You don’t need to talk about construction sequences in your proofs
and can instead say, for example, ‘by induction on the height of
the tree.’

Structural induction is usually trickier to get right, so I’d
recommend sticking to complete/regular induction whenever
possible. We present it here since

1. It allows us to introduce iterative/recursive definitions.

2. Its generality allows us to explain some variants of regular
induction (e.g., why we can start at n = 4 if we want to.)



Induction

Structural Induction

Well Ordering Principle and Proof by Infinite Descent



The Well Ordering Principle

Let S ⊆ N be a non-empty subset, a is a minimal element of S if
∀b ∈ S .(a ≤ b)

The Well Ordering Principle states that for any non-empty subset
S ⊆ N, S has a minimal element.

In particular, this is true even for infinite subsets.

Thoughts? Is this obvious?
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Well Ordering Principle

Well Ordering Principle: For any non-empty subset S ⊆ N, S has a
minimal element.

What if we replace N with Q,Z,R? Is it still true?
No, for example Z ⊆ Z ⊆ Q ⊆ R has no minimal element!
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Well Ordering Principle

Well Ordering Principle: For any non-empty subset S ⊆ N, S has a
minimal element.

What if we replace N with Q,Z,R? Is it still true?
No, for example Z ⊆ Z ⊆ Q ⊆ R has no minimal element!



Proofs using the Well Ordering Principle

The Well Ordering Principle also lets us prove statements of the
form ∀n ∈ N.(P(n)). Here’s how:

• Check P(0) is true.

• By contradiction, assume ∃n ∈ N.(¬P(n)). So the set
S = {n ∈ N : ¬P(n)} is non-empty.

• By the Well Ordering Principle, S has a minimal element, m
(i.e. m is the smallest natural number for which P doesn’t
hold.) Since we know P(0), m ≥ 1.

• Derive a contradiction by showing P(m), or by finding a
m′ < m, for which ¬P(m′).



For all n ∈ N, n ≥ 2. n has a prime divisor

A prime divisor p of a number n is a prime number such that there
exists k ∈ N such that pk = n.

By contradiction, assume ∃k ∈ N, k ≥ 2 that does have a prime
divisor. Let

S = {k ∈ N : k ≥ 2, and k doesn’t have a prime divisor}

By WOP, S has a minimal element m. If m is prime, then m is a
prime divisor of itself. Thus, m is not prime. Hence m = ab for
1 < a, b < m. Since a < m, and m was minimal in S , a /∈ S , and
hence a has a prime divisor c . But since m = ab, c is also a prime
divisor of m, which contradicts the fact that m ∈ S .



For all n ∈ N, n ≥ 2. n has a prime divisor

A prime divisor p of a number n is a prime number such that there
exists k ∈ N such that pk = n.

By contradiction, assume ∃k ∈ N, k ≥ 2 that does have a prime
divisor. Let

S = {k ∈ N : k ≥ 2, and k doesn’t have a prime divisor}

By WOP, S has a minimal element m. If m is prime, then m is a
prime divisor of itself. Thus, m is not prime. Hence m = ab for
1 < a, b < m. Since a < m, and m was minimal in S , a /∈ S , and
hence a has a prime divisor c . But since m = ab, c is also a prime
divisor of m, which contradicts the fact that m ∈ S .



√
2 is irrational (a classic)

Let P(n) be the predicate, there does not exists m ∈ N,m ≥ 1
such that n/m =

√
2. If ∀n.(P(n)), then

√
2 can not be written as

a fraction as is therefore irrational.

By contradiction, assume the set S = {n ∈ N : ¬P(n)} is
non-empty. Then by the WOP, S has a minimal element x . Since
x ∈ S , there exists y ∈ N such that x/y =

√
2. Squaring both

sides, we have x2/y2 = 2. Thus, x2 = 2y2 and x must be even.
Therefore x = 2z for some z ∈ N. But then (2z)2 = 2y2, so
2z2 = y2, so y must also be even! Therefore, (x/2) is an positive
integer and (y/2) is positive integer such that and with

(x/2)

(y/2)
=

√
2.

Thus, x/2 ∈ S , which contradicts the minimality of x in S .
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Induction in disguise

Let’s take another look at the complete induction. We want to
show that P(0) and

(∀k ∈ N.(P(0), ...,P(k))) =⇒ P(k + 1)

Usually, we prove the inductive step directly by picking an arbitrary
k ∈ N and assuming P(0)∧ ...∧ P(k), and then showing P(k + 1).

If we instead chose to do it by contradiction, it might look like
this. Let k ∈ N be any natural number, and assume
P(0) ∧ ... ∧ P(k), by contradiction, assume ¬P(k + 1). At this
point, our assumptions are

P(0) ∧ ... ∧ P(k) ∧ ¬P(k + 1).



Induction in disguise

But
P(0) ∧ ... ∧ P(k) ∧ ¬P(k + 1)

is exactly what it means for k +1 to be the minimal element of the
set S = {n ∈ N : ¬P(n)}.

Thus, proving the inductive step for complete induction by
contradiction amounts to finding a contradiction by assuming there
was a minimal element of the set S = {n ∈ N : ¬P(n)}, which is
exactly the same as what we’d do in a proof using the WOP.



Additional notes

• This presentation of structural induction loosely follows the
one in A Mathematical Introduction to Logic by Herbert
Enderton. So check that out as supplementary reading.

• Our approach for proving a mathematical statement using the
Well Ordering Principle is sometimes called ‘proof by infinite
descent’. Read all about that here.

https://en.wikipedia.org/wiki/Proof_by_infinite_descent
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Recurrences

A recursive function is one that depends on itself. Here are some
examples.

• F (n) = F (n − 1) + 1

• F (n) = 2F (n − 1) + 1

• F (n) = F (n − 1) + F (n − 2)

• F (n) = 2F (n/2) + n

• F (n) = F (n/2) + 1

• F (n) = 2F (n − 2) + F (n − 1)

• ...



Recursive ambiguity

There can be many functions that satisfy a single recurrence
relation, for example
F (n) = n + 5 and F (n) = n + 8 both satisfy

F (n) = F (n − 1) + 1

Thus, to specify a recursive function completely, we need to give it
a (some) base case(s). I.e.

F (n) =

{
5 n = 0

F (n − 1) + 1 n > 0

Specifies the function F (n) = n + 5.



Why do we care about recurrences?

• The runtime of recursive programs can be expressed as
recursive functions.

• Expressing something recursively is often an easier than
expressing something explicitly.



The problem with recurrences

Here’s the bad news. It’s hard to answer questions like the
following.

If

F (n) =


2 n = 0

7 n = 1

2F (n − 2) + F (n − 1) + 12 n > 1,

what is F (100)?

We could do it - it would just take a while. Also, it is not
immediately obvious what the asymptotics are. As computer
scientists, we care about asymptotics. A lot.
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Recursive to Explicit

Thus, once we have modelled something as a recurrence, it’s still
useful to convert that to an explicit definition of the same function.

Actually, since we’re computer scientists, what we really care about
is the asymptotics - we usually don’t need a fully explicit
expression.



Recursive to Explicit Examples

What is the explicit formula for

F (n) =

{
1 n = 0

2F (n − 1) n ≥ 1

F (n) = 2n. How can we prove it? By induction!
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Recursive to Explicit Examples

F (n) =

{
1 n = 0

2F (n − 1) n ≥ 1

Claim. F (n) = 2n.

Base case. The base case holds because F (0) = 20 = 1.

Inductive step. Let k ∈ N be any natural number and assume
F (k) = 2k . Then we have

F (k + 1) = 2 · F (k) = 2 · 2k = 2k+1,

where the first inequality holds by the recursive definition of F and
then second holds by the inductive hypothesis.



Recursive to Explicit Examples

What is the explicit formula for

F (n) =

{
4 n = 0

3 + F (n − 1) n ≥ 1

F (n) = 4 + 3n
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Recursive to Explicit Examples
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F (n) =

{
1 n = 0

−F (n − 1) n ≥ 1

F (n) = (−1)n
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Recursive to Explicit Examples

What is the explicit formula for

F (n) =


0 n = 0

1 n = 1

2F (n − 1)− F (n − 2) + 2 n ≥ 2

Claim. F (n) = n2.



Recursive to Explicit Examples

What is the explicit formula for

F (n) =


0 n = 0

1 n = 1

2F (n − 1)− F (n − 2) + 2 n ≥ 2

Claim. F (n) = n2.



Proof

Base case. The base cases hold because F (0) = 0 = 02, and
F (1) = 1 = 12.
Inductive step. Let k ∈ N be any natural number with k ≥ 1.
Assume F (i) = i2 for all i ∈ N, i ≤ k. We’ll show
F (k + 1) = (k + 1)2. By the definition of F , we have

F (k + 1) = 2F (k)− F (k − 1) + 2

= 2k2 − (k − 1)2 + 2

= 2k2 − k2 + 2k − 1 + 2

= (k + 1)2

as required.

F (n) =


0 n = 0

1 n = 1

2F (n − 1)− F (n − 2) + 2 n ≥ 2



The functions we care about

Let’s always imagine the function in question is the runtime of
some algorithm. I.e., it maps the size of the input to the running
time of the algorithm. Thus, we assume it has the following
properties.

• domain N.
• codomain R>0. An algorithm can’t take negative time

• non-decreasing. An algorithm shouldn’t get faster for larger
inputs.
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Big-O

f = O(g) means

∃k ∈ R>0(

∃n0 ∈ N.(
∀n ∈ N.(n > n0 =⇒

f (n) ≤ k · g(n)
)

)

).

Less formally, f is at most kg(n) for large enough inputs, where k
is some constant.



Big-O

No



In the following slides, the differences in the formal definitions from
Big-O are highlighted in red.



Big-Omega

f = Ω(g) means

∃k ∈ R>0(

∃n0 ∈ N.(
∀n ∈ N.(n > n0 =⇒

f (n) ≥ k · g(n)
)

)

).

Less formally, f is at least kg(n) for large enough inputs, where k
is some constant.



Big-Theta

f = Θ(g) means

∃k1, k2 ∈ R>0(

∃n0 ∈ N.(
∀n ∈ N.(n > n0 =⇒

k1 · g(n) ≤ f (n) ≤ k2 · g(n)
)

)

).

Less formally, f is between k1 · g(n) and k2 · g(n) for large enough
inputs, where k1 and k2 are some constants.

Equivalently, f = O(g) and f = Ω(g).



Little-o

f = o(g) if

∀k ∈ R>0(

∃n0 ∈ N.(
∀n ∈ N.(n > n0 =⇒

f (n) < k · g(n)
)

)

).

Less formally, no matter how small a constant k I multiply g by,
for all large enough inputs, f (n) is less than g(n).



Little-omega

f = ω(g) if

∀k ∈ R>0(

∃n0 ∈ N.(
∀n ∈ N.(n > n0 =⇒

f (n) > k · g(n)
)

)

).

Less formally, no matter how large a constant k I multiply g by, for
all large enough inputs, f (n) is greater than g(n).



A note about the definitions

There is some flexibility in these definitions. I.e. You can replace <
with ≤ and > with ≥ (and vice versa) wherever your want.

You can also change the side the constant k is multiplied on if you
want. I.e. multiply k to f instead of g .

It’s a good exercise to prove this.



Asymptotics and orders

We can think of these asymptotics relations as

• f = o(g) is like f < g

• f = O(g) is like f ≤ g

• f = Θ(g) is like f ≈ g

• f = Ω(g) is like f ≥ g

• f = ω(g) is like f > g

We’ll sometimes use ≺,⪯,≈,⪰,≻ for o,O,Θ,Ω, ω respectively.



Logs in this class

log in this class is always log2 unless otherwise specified. It is the
true inverse of the the function that maps x 7→ 2x . I.e., for any
x ∈ R.

log(2x) = x ,

and for any y ∈ R>0

2log(y) = y .



Fast Rules

1 ≺ log(n) ≺ n0.001 ≺ n ≺ n log(n) ≺ n1.001 ≺ n1000 ≺ 1.001n ≺ 2n

Helpful alternative definition for little-o if you know limits:

lim
n→∞

f (n)

g(n)
= 0 ⇐⇒ f ≺ g
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Dominoes

How many ways are there to tile a 2× n grid using 2× 1 dominoes?



Examples

2 3

T 3 3



Number of tilings

Let T (n) be the number of tilings of a 2× n grid using 2× 1
dominoes.



T (4)



T (4)

747 5



T (5)



T (5)

T 5 8



Number of tilings - Recursively

Every tilingof 2n iseitheri
1 followed by a filing of

2x in 1

me
2 followed by a filingof

2 n 2
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Th Th 1 Tin2



Fibonacci Numbers

Fib(n) =


0 n = 0

1 n = 1

Fib(n − 1) + Fib(n − 2) n ≥ 2

We’ll now study the asymptotics of Fib(n).

Note that T (n) and Fib(n) have the same recursive relation. T (n) are just the Fibonacci numbers shifted by one.
I.e. T (n) = Fib(n + 1).



An upper bound

Base case. Fib(0) = 0 ≤ 20 = 1, and Fib(1) = 1 ≤ 21 = 2.
Thus the base case holds.

Inductive step. Let k ∈ N with k ≥ 1, and assume Fib(i) ≤ 2i

for all i ≤ k , we’ll show Fib(k + 1) ≤ 2k+1. We have

Fib(k + 1) = Fib(k) + Fib(k − 1)

≤ 2k + 2k−1 (IH)

≤ 2k + 2k

= 2k+1

so we’re done.

Claim. ∀n ∈ N.(F (n) ≤ 2n)



Tightening the analysis

Base case. Fib(0) = 0 ≤ 20 = 1, and Fib(1) = 1 ≤ 21 = 2.
Thus the base case holds.

Inductive step. Let k ∈ N with k ≥ 1, and assume Fib(i) ≤ 2i

for all i ≤ k , we’ll show Fib(k + 1) ≤ 2k+1. We have

Fib(k + 1) = Fib(k) + Fib(k − 1)

≤ 2k + 2k−1 (IH)

≤∗ 2k + 2k

= 2k+1

so we’re done.
∗This inequality is pretty loose!

Claim. ∀n ∈ N.(F (n) ≤ 2n)



Tightening the analysis

Let’s try the same proof with 1.8 = 9/5 instead of 2, does it still
work? (Forget the base case for now).

Inductive step. Let k ∈ N with k ≥ 1, and assume Fib(i) ≤ 1.8i

for all i ≤ k , we’ll show Fib(k + 1) ≤ 1.7k+1. We have

Fib(k + 1) = Fib(k) + Fib(k − 1)

≤ 1.8k + 1.8k−1 (IH)

= 1.8k(1 + 5/9)

≤ 1.8k(1.56)

≤ 1.8k+1

so we’re done.



Tightening the analysis

Let’s try the same proof with 1.5 = 3/2 instead, does that still
work? (Forget the base case for now).

Inductive step. Let k ∈ N with k ≥ 1, and assume Fib(i) ≤ 1.5i

for all i ≤ k , we’ll show Fib(k + 1) ≤ 1.5k+1. We have

Fib(k + 1) = Fib(k) + Fib(k − 1)

≤ 1.5k + 1.5k−1 (IH)

= 1.5k(1 + 2/3)

≤ 1.5k(1.67)

but 1.67 ̸≤ 1.5, so we can’t say 1.5k(1.67) ≤ 1.5k+1. The real
answer must be somewhere in between 1.5n and 1.8n!



Fibonacci - Code!

https://colab.research.google.com/drive/1BDDuqPioEWCvMeO8E5LUHMSipsXWmzBo?usp=sharing
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Optimizing the base

Let’s run the proof this time with the base of the exponent as a
variable x .
Inductive step. Let k ∈ N with k ≥ 1, and assume Fib(i) ≤ x i

for all i ≤ k , we’ll show Fib(k + 1) ≤ xk+1. We have

Fib(k + 1) = Fib(k) + Fib(k − 1)

≤ xk + xk−1 (IH)

= xk(1 + 1/x)

To prove the inductive step, we need xk(1 + 1/x) ≤ xk+1. I.e.
xk + xk−1 ≤ xk+1 dividing through by xk−1 and rearranging, we
need x2 − x − 1 ≥ 0. Finding the minimum value of x for which
this happens will give us a tight bound on the base.



x2 − x − 1 ≥ 0

Solving this quadratic, we find that x ≥ 1+
√
5

2 or x ≤ 1−
√
5

2 .

Note that this means φ2 − φ− 1 = 0, or φ2 = φ+ 1.

So the smallest positive value for x that makes this happen is
1+

√
5

2 ≈ 1.618. This value has a name and is called φ ‘phi’ or the
‘golden ratio’.



Upper bound

Base case. Fib(0) = 0 ≤ φ0 = 1, and Fib(1) = 1 ≤ φ1 ≈ 1.618.
Thus the base case holds.

Inductive step. Let k ∈ N with k ≥ 1, and assume Fib(i) ≤ φi

for all i ≤ k , we’ll show Fib(k + 1) ≤ φk+1. We have

Fib(k + 1) = Fib(k) + Fib(k − 1)

≤ φk + φk−1 (IH)

≤ φk−1(φ+ 1)

= φk−1φ2 (φ2 = φ+ 1)

= φk+1

so we’re done.

Claim. ∀n ∈ N.(Fib(n) ≤ φn)



A lower bound
The previous slide shows that Fib(n) = O(φn), we’ll show here
that Fib(n) = Ω(φn). In particular, for all
n ∈ N, n ≥ 1.(Fib(n) ≥ 0.3 · φn)

Base case. For the base cases we have
Fib(1) = 1 ≥ 0.3 · φ ≈ 0.48, Fib(2) = 1 ≥ 0.3 · φ2 ≈ 0.78

Inductive step. Let k ∈ N with k ≥ 2, and assume Fib(i) ≥ 0.3φi

for all i ≤ k, we’ll show Fib(k + 1) ≥ 0.3φk+1. We have

Fib(k + 1) = Fib(k) + Fib(k − 1)

≥ 0.3(φk + φk−1) (IH)

= 0.3φk−1(φ+ 1)

= 0.3φk−1φ2

= 0.3φk+1.



Fibonacci

Fib(n) = Θ(φn).



The complete answer - Binet’s formula

Fib(n) =
φn − (1− φ)n√

5

Note that 1− φ ≈ −0.618, so the (1− φ)n term goes to zero
really quickly and becomes irrelevant.

In fact, since |(1− φ)n/
√
5| is always less than 1/2, Fib(n) is just

φn
√
5
rounded to the nearest whole number!

See the suggestions on slide 262 for further reading on solving
recurrences exactly.
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Takeaway

You can show the asymptotics of recurrences by induction!
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Searching in a sorted array

Inputs:

• A sorted list l

• A target value target

Output: The index of target in l. None if target is not in l.



Binary search intuition

f
target

i
mid

if mid target were done

if mid target target is in the right half
if mid forget forget is in the left half



Binary Search - Code



Binary Search - Code

7

7searches l between indices low inclusive and high exclusive



Binary Search - Code



Binary Search

Let TBinSearch be the the function that maps the length of the
input array to the worst case running time of the binary search
algorithm. What is the recurrence for TBinSearch?

Let’s say doing a comparison and returning a value takes 1 unit of
work (we could replace this with a constant amount of work c).
The point is, the amount of work required to do these operations
does not grow with the array length.

If n = 0 we return None, so TBinSearch(0) = 1. In the recursive
case, the value in the middle is not equal to the target. One side of
the middle has ⌈(n − 1)/2⌉ values and the other has ⌊(n − 1)/2⌋.
In the worst case, we call the algorithm recursively on a list of size
⌈(n − 1)/2⌉ = ⌊n/2⌋. Thus, for n ≥ 1,

TBinSearch(n) = TBinSearch(⌊n/2⌋) + 1
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Some values

n TBinSearch(n)

0 1
1 2
2 3
3 3
4 4
5 4
6 4
7 4
8 5
15 5
16 6
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An upper bound

Claim. TBinSearch(n) = O(n). In particular, we claim for all
n ∈ N.n ≥ 1,TBinSearch(n) ≤ n + 1.

Base case. TBinSearch(1) = 2 ≤ 1 + 1.

TBinSearch(n) = TBinSearch(⌊n/2⌋) + 1



An upper bound

Claim. TBinSearch(n) = O(n). In particular, we claim for all
n ∈ N.n ≥ 1,TBinSearch(n) ≤ n + 1.

Inductive step. Let k ∈ N, k ≥ 1, and assume TBinSearch(i) ≤ i
for all 1 ≤ i ≤ k . Then we have

TBinSearch(k + 1) = TBinSearch(⌊(k + 1)/2⌋) + 1

≤ ⌊(k + 1)/2⌋+ 2 (IH)

≤ (k + 1)/2 + 2 (⌊x⌋ ≤ x)

≤ 2k/2 + 2 (k ≥ 1)

= (k + 1) + 1

as required.

TBinSearch(n) = TBinSearch(⌊n/2⌋) + 1



What should the actual runtime be?

2

2

2

Everytime the array gets halved if we start w

2 elements we get to a single element in n steps

if we started with a elements we need a loga steps



TBinSearch(n) = O(log(n))

Claim: TBinSearch(n) = O(log(n)). In particular, for all n ≥ 1,
TBinSearch(n) ≤ c log(n) + d where c and d are constants that we
will pick later.

TBinSearch(n) = TBinSearch(⌊n/2⌋) + 1



A better upper bound

Base case. For the base case we have

TBinSearch(1) = 2 ≤ c log(1) + d

Note that log(1) = 0 so we will need d ≥ 2.

TBinSearch(n) = TBinSearch(⌊n/2⌋) + 1



A better upper bound

Inductive step. Let k ∈ N with k ≥ 1. Assume for all 1 ≤ i ≤ k,
TBinSearch(i) ≤ c log(i) + d . Then we have

TBinSearch(k + 1) = TBinSearch(⌊(k + 1)/2⌋) + 1

≤ c log(⌊(k + 1)/2⌋) + d + 1

≤ c log((k + 1)/2) + d + 1

= c log(k + 1)− c log(2) + d + 1

= c log(k + 1)− c + d + 1

Where we get the second line by the inductive hypothesis, the third
by the fact that log is increasing and ⌊x⌋ ≤ x for all x ∈ R, the
fourth by log rules and the fifth by the fact that log(2) = 1.

TBinSearch(n) = TBinSearch(⌊n/2⌋) + 1



A better upper bound

We want

c log(k + 1)− c + d + 1 ≤ c log(k + 1) + d .

Which is true, for example, when c = 1. Thus,
TBinSearch(n) = O(log(n))

TBinSearch(n) = TBinSearch(⌊n/2⌋) + 1



Tips

Here are some tips for showing T (n) = O(f (n))

• Try proving T (n) ≤ cf (n) + d for some numbers c and d .
After running the proof go back and figure out what c and d
need to be for your proof to work.

• Sometimes in the inductive step, you might find it helpful to
assume k is larger that some constant for example, k ≥ 3. If
this is the case, show ∀n ∈ N, n ≥ 3.T (n) ≤ f (n), and change
the base case! (This is like the n2 ≤ 2n example from two
lectures ago where we used the assumption that k ≥ 4 in the
inductive step.)



The exact answer

n TBinSearch(n)

1 2
2 3
3 3
4 4
5 4
6 4
7 4
8 5
15 5
16 6

Write any n ∈ N with n ≥ 1 as 2i + x for some i ∈ N, x ∈ N with
x ≤ 2i − 1.

Claim. ∀i ∈ N, ∀x ∈ N, x ≤ 2i − 1.(TBinSearch(2
i + x) = i + 2)



TBinSearch(2
i + x) = i + 2

By induction on i .

Base case. For i = 0, we have
TBinSearch(2

0) = TBinSearch(1) = 2 = 0 + 2.



TBinSearch(2
i + x) = i + 2

Inductive step. Let i ∈ N be any integer and assume for all
x ≤ 2i − 1, TBinSearch(2

i + x) = i + 2. Now we consider the i + 1
case. Let x ≤ 2i+1 − 1, then we have

TBinSearch(2
i+1 + x) = TBinSearch

(⌊
2i+1 + x

2

⌋)
+ 1

= TBinSearch

(
2i +

⌊x
2

⌋)
+ 1

= i + 2 + 1

= (i + 1) + 2,

where the third inequality holds by the inductive hypothesis since⌊
x
2

⌋
≤ 2i − 1, as x ≤ 2i+1 − 1. This completes the induction. Note

this means TBinSearch(n) = ⌊log(n)⌋+ 2 for n ∈ N, n ≥ 1.



Getting a good guess

Making a good guess is important in solving recurrences by
induction. We’ll see a method to do this next week.



Additional Notes

If you want a general method for fully solving recurrences, you’ll
need to study generating functions and partial fraction
decomposition. See chapter 7 of Concrete Mathematics by Don
Knuth for an excellent introduction. Or take a class on
combinatorics.



CSC 236 Lecture 6: Recurrences 2

Harry Sha

June 14, 2023



Today

Recurrences

Merge Sort

The Master Theorem



Recurrences

Merge Sort

The Master Theorem



Recurrences

Last time we used induction to prove asymptotic bounds on
recursive functions. For example, we showed that

Fib(n) = Θ(φn),

and

TBinSearch(n) = Θ(log(n)).



Last time’s approach

Last time, the process looked like

• Guess an upper bound.

• Try to prove the upper bound.

• Try to prove a tighter upper bound or a matching lower
bound.

Here are two weaknesses to this approach.

• What if you get unlucky with your guess?

• The proofs were slow, technical and not incredibly intuitive.



Last time’s approach

Last time, the process looked like

• Guess an upper bound.

• Try to prove the upper bound.

• Try to prove a tighter upper bound or a matching lower
bound.

Here are two weaknesses to this approach.

• What if you get unlucky with your guess?

• The proofs were slow, technical and not incredibly intuitive.



Today’s approach

Today we will see how to

1. Remove technical details.

2. Make better guesses.

3. Streamline the process for solving certain types of recurrences.



Technicalities



Technicalities - Base Cases

The base case typically involves calculating some values of the
recursive function, and picking constants large enough so that
things work out.

The base usually works out and is a little tedious to check, so for
the rest of this class, you may skip this step - as long as you swear
the following oath

I swear that I understand that a full proof by induction
requires a base case



Technicalities - Floors and Ceilings

In divide and conquer algorithms, we typically split up the problem
in to subproblems of roughly even size. For example, we might
split a problem of size n into 2 sub problems of size n/2. When n
is not divisible by 2, this is really one subproblem of ⌊n/2⌋ and
another of ⌈n/2⌉.

However, replacing ⌈n/2⌉ and ⌊n/2⌋ with n/2 has a negligible
impact on the asymptotics so we can just ignore floors and
ceilings. See Introduction To Algorithms (CLRS), section 4.62 for
a discussion on this.



The substitution method

The substitution method for solving recurrences is proof by
(complete) induction with the simplifications applied.



The substitution method

1. Remove all the floors and ceilings from the recurrence T .

2. Make a guess for f such that T (n) = O(f (n)).

3. Write out the recurrence: T (n) = ....

4. Whenever T (k) appears on the RHS of the recurrence,
substitute it with cf (k).

5. Try to prove T (n) ≤ cf (n).

6. Pick c to make your analysis work!



The substitution method

• If you want to show T = Θ(f ), you also need to show
T (n) = Ω(f (n)). This is the same as steps 3-6 where the ≤
in step 5 is replaced by a ≥.

• You can also add as many lower order terms as you want. I.e.
you can show T (n) = cf (n) + d .

• The constant c that you pick when trying to show T = Ω(f )
can be different to the constant that you picked when trying
to show T = O(f ).



Today’s approach

Claim. TBinSearch(n) = O(log(n)).

Use the substitution method.

TBinSearch(n) = TBinSearch(n/2) + 1

≤ c log(n/2) + 1

= c(log(n)− log(2)) + 1

= c log(n)− c + 1,

which is at most c log(n) when c ≥ 1.

TBinSearch(n) = TBinSearch(n/2) + 1



Recurrences

Merge Sort

The Master Theorem



The Sorting Problem

Input. A list l .

Output. l , but sorted.

Let’s think of l ∈ List[N], i.e. l is a list of natural numbers is
sorted iff i ≤ j =⇒ l [i ] ≤ l [j ].

In general, sorting makes sense for l ∈ List(A), as long as the
elements of A can be ordered.



The Sorting Problem

Input. A list l .

Output. l , but sorted.

Let’s think of l ∈ List[N], i.e. l is a list of natural numbers is
sorted iff i ≤ j =⇒ l [i ] ≤ l [j ].

In general, sorting makes sense for l ∈ List(A), as long as the
elements of A can be ordered.



Merge Sort - Code

https://colab.research.google.com/drive/1UBXDH0lf0JyStyaY1MryWkByGyEigfH4?usp=sharing


Screenshots of Code



Screenshots of Code



Screenshots of Code



Merge Sort Complexity

TMS(n) = 2TMS(n/2) + TMerge(n)



Merge Sort Complexity

TMS(n) = 2TMS(n/2) + TMerge(n)



Merge Complexity

Let n be the total number of elements in l1 and l2, what is the
complexity of merge in terms of n?

Θ(n). Explanation: each iteration of the while loop adds at least
one element to the merged list.



Merge Complexity

Let n be the total number of elements in l1 and l2, what is the
complexity of merge in terms of n?

Θ(n). Explanation: each iteration of the while loop adds at least
one element to the merged list.



Merge Sort Complexity

TMS(n) = 2TMS(n/2) + n

Note that the +n is really a +Θ(n), but since we care about
asymptotics, this is another simplification that is ok!



Merge Sort Complexity

TMS(n) = 2TMS(n/2) + n

Note that the +n is really a +Θ(n), but since we care about
asymptotics, this is another simplification that is ok!



Recurrences as Sums

TMS(n) = 2TMS(n/2) + n

= 2(2TMS(n/4) + n/2) + n

= 4TMS(n/4) + 2n

= 4(2TMS(n/8) + n/4) + 2n

= 8TMS(n/8) + 3n

= 8(2TMS(n/16) + n/8) + 3n

= 16TMS(n/16) + 4n

...

Let’s say n = 2k for some k . Then eventually, we get to...

TMS(n) = 2kTMS(n/2
k) + kn = nTMS(1) + kn = Θ(n log(n))

TMS(n) = 2TMS(n/2) + n



Recursion Trees

Recursion Trees are a great way to visualize the sum



Recursion Trees

nodes work node total

I n n n

2 Mz n
Mz

4 My n My 44 V4 V4

n I n 1

n login

TMS(n) = 2TMS(n/2) + n



Using recursion trees

Like in the previous example, we can sometimes use the recursion
tree to compute the runtime directly.

Other times, we won’t be able to compute the runtime directly, but
we can still use recursion trees to make a good guess. We can then
prove our guess was correct using the substitution method.



T (n) = T (n/3) + T (2n/3) + n

n

M3 243

alg Mla and any



T (n) = T (n/3) + T (2n/3) + n

n Each level stilldoes
In work however the

Ms 2ns tree is not perfect

Ma Ma and any Theleftside reachesthe
base case first

logs

logan



T (n) = T (n/3) + T (2n/3) + n

n

M3 243

alg Mla and any

Lower bound: Remove all nodes with height > log3(n). The
remaining tree is perfect, has height log3(n), and n work at each
level. So guess n log(n).



T (n) = T (n/3) + T (2n/3) + n

n

M3 243

alg Mla and any

Upper bound: Imagine levels below log3(n) also do n work. In this
case, we do n work for log3/2(n) levels, so again guess n log(n).



T (n) = T (n/3) + T (2n/3) + n

Prove the guess using the substitution method (exercise).



Recurrences

Merge Sort

The Master Theorem



Standard Form Recurrences

A recurrence is in standard form if it is written as

T (n) = aT (n/b) + f (n)

For some constants a ≥ 1, b > 1, and some function f :
N → R.

Most divide and conquer algorithms will have recurrences that look
like this.



Thinking about the parameters

T (n) = aT (n/b) + f (n)

• a is the branching factor of the tree - how many children does
each node have?

• b is the reduction factor - how much smaller is the subproblem
in the next level of the tree compared to this level?

• f (n) is the non-recursive work - how much work is done
outside of the recursive call on inputs of size n? Again we
make the assumption that f is positive and non-decreasing.



Recursion tree for standard form recurrences

Draw a recursion tree for the standard form recurrence. In terms of
a, b, f ...

• What is the height of the tree?

• What is the number of vertices at height h?

• What is the subproblem size at height h?

• What is the total non-recursive work at level h?



Recursion tree for standard form recurrences

I

1



Recursion tree for standard form recurrences

height non recwork

0 fln
1 afinist

it
2 asf Ny ng

login a f 1 1

nogs



Summary

• The height of the tree is logb(n)

• The number of vertices at level h is ah

• The total non-recursive work done at level h is ahf (n/bh). Of
note are
▶ Root work. f (n)
▶ Leaf work. alogb(n) · f (1) = Θ(nlogb(a))7.

• Summing up the levels, the total amount of work done is

logb(n)∑
h=0

ahf (n/bh).

7for calculation see slide 308



The Master Theorem

The Master Theorem is a way to solve most standard form
recurrences quickly.

We get the Master Theorem by analyzing the recursion tree for a
generic standard form recurrence.



The Master Theorem

Theorem (The Master Theorem)

Let T (n) = aT (n/b) + f (n). Define the following cases based on
how the root work compares with the leaf work.

1. Leaf heavy. f (n) = O(nlogb(a)−ϵ) for some constant ϵ > 0.

2. Balanced. f (n) = Θ(nlogb(a))

3. Root heavy. f (n) = Ω(nlogb(a)+ϵ) for some constant ϵ > 0,
and af (n/b) ≤ cf (n) for some constant c < 1 for all
sufficiently large n.

Then,

T (n) =


Θ(nlogb(a)) Leaf heavy case

Θ(f (n) log(n)) Balanced case

Θ(f (n)) Root heavy case



ϵ

f (n) = O(nlogb(a)−ϵ) for some ϵ > 0 means that f (n) is smaller
than nlogb(a) by a factor of at least nϵ. You might find it easier to

think of ϵ as 0.0001, and nlogb(a)−ϵ as nlogb(a)

nϵ .

For example,
n1.9 = O(n2−ϵ)

for some ϵ > 0 (e.g ϵ = 0.01), but

n2/ log(n) ̸= O(n2−ϵ)

for any ϵ > 0 since n2−ϵ = n2/nϵ, and log(n) = O(nϵ) for any
choice of ϵ > 0.



Root heavy case additional regularity condition.

The condition in the root heavy case that af (n/b) ≤ cf (n) for
some constant c < 1 for all sufficiently large n is called the
regularity condition.

In the root heavy case, most of the work is done at the root.
af (n/b) is the total work done at level 1 of the tree. The
regularity condition says if most of the work is done at the root, we
better do more at the root than at level 1 of the tree!



What you need to know

I will now present the proof of the Master Theorem.

In this class, you only need to know how to apply the master
theorem.

However, understanding the proof is incredibly helpful for getting
an intuition for the case splits, remembering the conditions, and
applying the theorem.

Here we go.



Proof Outline for Master Theorem

Analyze the recursion tree for the generic standard form
recurrence. Apply the case splits to f .



Geometric Series

Before we prove the Master Theorem, let’s remind ourselves about
geometric series. A geometric series is a sum that looks like

S = a+ ar + ar2 + ...arn−1 =
n−1∑
i=0

ar i

I.e. each term in the sum is obtained by multiplying the previous
term by r .

The closed-form solution for S is

S = a

(
rn − 1

r − 1

)



Proof

A short proof. rS = ar + ar2 + ...arn = S + arn − a. Rearrange.

S = a+ ar + ar2 + ...arn−1



Balanced case

height non recwork

0 fln
1 afinist
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2 asf Ny ng

login a f 1 1

nogs

f (n) = Θ(nlogb(a))



Balanced case

height non recwork

O nlogba my
1 a f 1099 a nlogsa

a I

2 a g
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login 0410959 I

f (n) = Θ(nlogb(a))



Balanced case

height non recwork

O nlogba

I Hoga n I
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2 nlogsa Me
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f (n) = Θ(nlogb(a))



Leaf heavy case

height non recwork

O nlogyne

1
a ng ogsafy

a 1 11 9 12 12

login noga t

f (n) = O(nlogb(a)−ϵ)



Leaf heavy case

height non recwork

O nlogyne

I plogsa Nfa Mb

T T

nlog.gg2 My

login noga t

f (n) = O(nlogb(a)−ϵ)



Leaf heavy case

Total

twitter.am
eometrseneswatobe
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f (n) = O(nlogb(a)−ϵ)



Root heavy case

The third case is similar to the previous cases. Check CLRS section
4.6.1 for the details.



Applying the Master Theorem

1. Write the recurrence in standard form to find the parameters
a, b, f

2. Compare nlogb(a) to f to determine the case split.

3. Read off the asymptotics from the relevant case.



Master Theorem applied to Merge Sort

TMS(n) = 2TMS(n/2) + n

TMS is a standard form recurrence with a = 2, b = 2, f (n) = n.
We have nlog2(2) = n1. Thus, f = Θ(nlogb(a)) and we are in the
balanced case of the Master Theorem. Hence
TMS(n) = Θ(n log(n)).



Master Theorem applied to Merge Sort

TMS(n) = 2TMS(n/2) + n

TMS is a standard form recurrence with a = 2, b = 2, f (n) = n.
We have nlog2(2) = n1. Thus, f = Θ(nlogb(a)) and we are in the
balanced case of the Master Theorem. Hence
TMS(n) = Θ(n log(n)).



Master Theorem applied to Binary Search

TBinSearch(n) = TBinSearch(n/2) + 1

TBinSearch is a standard form recurrence with
a = 1, b = 2, f (n) = 1. We have nlog2(1) = n0 = 1. Thus, we are in
case 2 of the Master Theorem. Hence TBinSearch(n) = Θ(log(n)).



Master Theorem applied to Binary Search

TBinSearch(n) = TBinSearch(n/2) + 1

TBinSearch is a standard form recurrence with
a = 1, b = 2, f (n) = 1. We have nlog2(1) = n0 = 1. Thus, we are in
case 2 of the Master Theorem. Hence TBinSearch(n) = Θ(log(n)).



Summary of Methods

Method Pros Cons
Induction Always

works, can
get more
precision

Requires a guess, can get techni-
cal, and proofs can get quite com-
plex.

Substitution Always works Requires a guess and is slower
than the below.

Recursion
Tree

More Intu-
itive/Visual

Doesn’t always work but is a good
starting point and good for gener-
ating guesses.

Master Theo-
rem

Proofs are
super short

Restricted scope (recurrence must
be in standard form and must fall
into one of the cases).



Log calculation

alogb(n) = a
loga(n)
loga(b) (Change of base)

=
(
aloga(n)

)1/ loga(b)

= n1/ loga(b)

= nlogb(a) (1/ loga(b) = logb(a))
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Today

Correctness - Merge Sort

Multiplication

Correctness - Binary Search



Algorithm Correctness

Today, we will see how to prove algorithms are “correct”.

What does it mean for an algorithm to be correct?



Correctness (formally)

For any algorithm/function/program, define a precondition and a
postcondition.

• The precondition is an assertion about the inputs to a
program.

• The postcondition is an assertion about the end of a program.

An algorithm is correct if the precondition implies the
postcondition.

I.e. “If I gave you valid inputs, your algorithm should give me the
expected outputs.”

This is essentially a design specification.



Documentation Analogy



What is the pre/post conditions for mergesort(l)?

• Precondition: l should be a list of natural numbers.

• Postcondition: The return value of mergesort should contain
the elements of l in sorted order.



What is the pre/post conditions for mergesort(l)?

• Precondition: l should be a list of natural numbers.

• Postcondition: The return value of mergesort should contain
the elements of l in sorted order.



What is the pre/post condition for binsearch(l , t, a, b)?

• Precondition: l ∈ List[N], l is sorted, t, a, b ∈ N,
a, b ≤ len(l).

• Postcondition: If t is in l [a : b] return the index of t in l ,
otherwise, return None.



What is the pre/post condition for binsearch(l , t, a, b)?

• Precondition: l ∈ List[N], l is sorted, t, a, b ∈ N,
a, b ≤ len(l).

• Postcondition: If t is in l [a : b] return the index of t in l ,
otherwise, return None.



How do you prove correctness for recursive functions?

By induction on the size of the inputs!



How do you prove correctness for recursive functions?

By induction on the size of the inputs!



Notation

Let’s use CS/Python notation. I.e., the elements of a list of length
n in order are l [0], l [1], ..., l [n − 1].

Slicing:
l [i : j ] = [l [i ], l [i + 1], ..., l [j − 1]]

By convention, if j ≤ i , then l [i : j ] = [].



Conventions

Today, let’s think of all lists as being lists of natural numbers.



Correctness - Merge Sort

Multiplication

Correctness - Binary Search



Merge Sort



Merge Sort - Correctness

As usual, we break this down and show for all n ∈ N, if
l ∈ List[N] is a list of length n, then mergesort works on l .



Correctness

P(n): Let l ∈ List[N] be a list of natural numbers of length n,
then mergesort(l) returns the sorted list.

Claim: ∀n ∈ N.(P(n)).



Correctness of Merge

For now, let’s assume merge is correct. I.e. that on sorted lists
left and right, merge(left, right) returns a sorted list
containing all the elements in either list.

We’ll come back and prove that later!



Base case

Let l be a list of length 0 or 1. Note that l is already sorted. In
this case, mergesort(l) returns l as expected.



Inductive step

Let k ∈ N with k ≥ 1, and assume for all i ∈ N with 0 ≤ i ≤ k,
mergesort works on lists of length i . We’ll show that mergesort
also works on lists of length k + 1. Let l be a list of length k + 1.



Inductive step

Let k ∈ N with k ≥ 1, and assume for all i ∈ N with 0 ≤ i ≤ k,
mergesort works on lists of length i . We’ll show that mergesort
also works on lists of length k + 1. Let l be a list of length k + 1.

Since k + 1 ≥ 2, we fall into the else case. The left sublist is a list
of length ⌊(k + 1)/2⌋. We have

⌊(k + 1)/2⌋ ≤ (k + 1)/2

≤ (k + k)/2 (k ≥ 1)

≤ k

Thus, by the inductive hypothesis, mergesort correctly sorts the
left sublist, and left contains the sorted left sublist.



Inductive Step

The right sublist is a list of length ⌈(k + 1)/2⌉. Since k ≥ 1,
⌈(k + 1)/2⌉ ≤ ⌈(k + k)/2⌉ = k .

Thus, by the inductive hypothesis, mergesort correctly sorts the
right sublist, and right contains the sorted right sublist.



Inductive Step

The right sublist is a list of length ⌈(k + 1)/2⌉. Since k ≥ 1,
⌈(k + 1)/2⌉ ≤ ⌈(k + k)/2⌉ = k .

Thus, by the inductive hypothesis, mergesort correctly sorts the
right sublist, and right contains the sorted right sublist.

Since we’re assuming that merge works, and left, and right are
sorted lists, and l is composed of the elements in left and right,
we return merge(left, right) which is the sorted version of l .



Notes

The fact that the algorithm terminates (i.e. doesn’t get stuck in
an infinite loop) is implied by the statement of the claim in the
word returns.



Correctness - Merge Sort

Multiplication

Correctness - Binary Search



Recursive Algorithms

This next example will put together what we have studied so far on
recursive runtime and correctness.



Multiplication

Let’s study multiplication!

If I gave you two 10 digit numbers, how would you multiply them?



Grade School Multiplcation



Lower bound for the Grade School Multiplcation Algorithm

Suppose I gave you two n-digit numbers. What is a lower bound
for the runtime of the Grade School Multiplication Algorithm?

n2. For each digit of the second number, I need to multiply it with
every digit of the first number.



Lower bound for the Grade School Multiplcation Algorithm

Suppose I gave you two n-digit numbers. What is a lower bound
for the runtime of the Grade School Multiplication Algorithm?
n2. For each digit of the second number, I need to multiply it with
every digit of the first number.



Can we do better?



Karatsuba’s Algorithm

What are x // 10**m, and x % 10**m? the first ⌈n/2⌉, and last
⌊n/2⌋ digits of x .



Karatsuba’s Algorithm

Trace the algorithm by hand on inputs a = 31 and b = 79, report
the values of each of the variables m, al , au, bl , bu, z0, z1, z2 as well
as the result.



Karatsuba’s Algorithm

Write a recurrence for the runtime of Karatsuba’s algorithm. Solve
the recurrence. T (n) = 3T (n/2) + n, which is Θ(nlog3(2)) by the
Master Theorem - this is asymptotically better than the Grade
School Algorithm!



Correctness

P(n) : If max(x , y) = n, then karat(x , y) returns xy . We’ll show
∀n ∈ N, n ≥ 1.P(n)

Base case(s). We will show P(0), ...,P(9) In these cases, both x
and y are a single digit and we enter the base case and return xy
as required.

Precondition. x , y ∈ N, Postcondition. Return xy

• m = ⌊n/2⌋, xh = ⌊x/10m⌋, xl = x%10m

• z0 = xlyl , z1 = (xl + xh)(yl + yh), z2 = xhyh
• return (z2 · 102m) + ((z1 − z2 − z0) · 10m) + z0



Correctness

Inductive step. Let k be an arbitrary natural number with
k ≥ 10, and suppose P(0), ...,P(k − 1). We’ll show P(k). To
apply the inductive hypotheses to the recursive calls, we need
xh, xl , yh, yl , xh + xl , yh + yl to all be < k . Since k ≥ 10, we have
that m ≥ 1.
Since x ≤ k, and x = xh10

m + xl , we have xh + xl < k .
Additionally, since xh, xl are non-negative, they must also be
individually less than k . Same for yh and yl . Thus, the inductive
hypothesis applies to the recursive calls, and z0, z1, z2 contain the
correct products.

Precondition. x , y ∈ N, Postcondition. Return xy

• m = ⌊n/2⌋, xh = ⌊x/10m⌋, xl = x%10m

• z0 = xlyl , z1 = (xl + xh)(yl + yh), z2 = xhyh
• return (z2 · 102m) + ((z1 − z2 − z0) · 10m) + z0



Correctness

Inductive step cont... Then, the return value is

(z2 · 102m) + ((z1 − z2 − z0) · 10m) + z0

= xhyh10
2m + ((xh + xl)(yl + yh)− xhyh − xlyl) · 10m + xlyl

= xhyh10
2m + (xhyl + yhxl) · 10m + xlyl

= (xh10
m + xl)(yh10

m + yl)

= xy

Precondition. x , y ∈ N, Postcondition. Return xy

• m = ⌊n/2⌋, xh = ⌊x/10m⌋, xl = x%10m

• z0 = xlyl , z1 = (xl + xh)(yl + yh), z2 = xhyh
• return (z2 · 102m) + ((z1 − z2 − z0) · 10m) + z0



An alternate P(n)

Instead of letting n be the maximum value of x and y , could we
have set n to be the maximum length of x and y? You will run
into trouble in the inductive step. For example if x = 99, then
xl = xh = 9, which have fewer digits, but xl + xh = 18 which is still
2 digits long so you can’t use the inductive hypothesis! You can fix
this by extending the base case to 3, but this is more work!



Summary: Correctness for Recursive Algorithms

Prove the correctness of recursive algorithms by induction. The
link between recursive algorithms and inductive proofs is strong.

• The base case of the recursive algorithm corresponds to the
inductive proof’s base case(s).

• The recursive case of the recursive algorithm corresponds to
the inductive step.

• The ‘leap of faith’ in believing that the recursive calls works
correspond to the inductive hypothesis.



Correctness - Merge Sort

Multiplication

Correctness - Binary Search



Binary Search



Correctness Claim: First attempt

P(n): If l ∈ List[N] is a list of length n, binsearch(l , t, a =
0, b = n) returns the index of t if t is in l and None otherwise.

Claim: for all n ∈ N.(P(n)).



Base case

Consider the n = 0 case. let l be any list of length 0, t be any
object, and consider binsearch(l , t, 0, 0).

The check a==b is true since both variables are 0 so we return
None. This is the expected result since an empty list surely does
not contain t.



Inductive Step

Let k ∈ N and assume for all i ∈ N, i ≤ k , binsearch(l , t, 0, i)
returns the desired result for all lists of length i .

Let l ∈ List[N] be a list of length k + 1, and let t ∈ N. Consider
the execution of binsearch(l , t, 0, k + 1). Since k + 1 ≥ 1, the if
condition fails. Let m = (k + 1)//2 = ⌊(k + 1)/2⌋ There are then
3 cases.

• Case 1. l[m] == t.

• Case 2. l[m] < t.

• Case 3. l[m] > t.



Case 1. l[m] == t

In this case binsearch returns m, which is indeed the index of t in
l .



Case 2. l[m] < t

In this case, we return binsearch(l , t,m + 1, k + 1).

...
Here was our inductive hypothesis.

Let k ∈ N and assume for all i ∈ N, i ≤ k , binsearch(l , t, 0, i)
returns the desired result for all lists of length i .

The inductive hypothesis doesn’t apply here! Since a ̸= 0!

How can we fix it?



Case 2. l[m] < t

In this case, we return binsearch(l , t,m + 1, k + 1).
...

Here was our inductive hypothesis.

Let k ∈ N and assume for all i ∈ N, i ≤ k , binsearch(l , t, 0, i)
returns the desired result for all lists of length i .

The inductive hypothesis doesn’t apply here! Since a ̸= 0!

How can we fix it?
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In this case, we return binsearch(l , t,m + 1, k + 1).
...
Here was our inductive hypothesis.

Let k ∈ N and assume for all i ∈ N, i ≤ k , binsearch(l , t, 0, i)
returns the desired result for all lists of length i .

The inductive hypothesis doesn’t apply here! Since a ̸= 0!
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Case 2. l[m] < t

In this case, we return binsearch(l , t,m + 1, k + 1).
...
Here was our inductive hypothesis.

Let k ∈ N and assume for all i ∈ N, i ≤ k , binsearch(l , t, 0, i)
returns the desired result for all lists of length i .

The inductive hypothesis doesn’t apply here! Since a ̸= 0!

How can we fix it?



A fix that doesn’t quite work

Instead of calling binsearch(l , t,m + 1, k + 1) make the recursive
call

binsearch(l [m + 1 : k + 1], t, 0, k + 1)

Why doesn’t this work?

The index of t in l [m+ 1 : k + 1] is different from the index of t in
l!



A fix that doesn’t quite work

Instead of calling binsearch(l , t,m + 1, k + 1) make the recursive
call

binsearch(l [m + 1 : k + 1], t, 0, k + 1)

Why doesn’t this work?

The index of t in l [m+ 1 : k + 1] is different from the index of t in
l!



Correctness Claim, Corrected

Instead of doing induction on the length of the list, do induction
on the length of the search window!
P(n): For all lists l ∈ List[N] and t ∈ N, if b − a = n, then
binsearch(l , t, a, b) returns None if t is not in l [a : b] and the
index of t in l otherwise.

Claim: ∀n ∈ N.P(n).



Base Case

Let l be any list and t suppose b − a = 0. Then l [a : b] = [], so t
can is not in l and we expect the algorithm to return None.

Indeed, since b == a, the first if check passes and
binsearch(l , t, a, b) returns None.



Inductive Step

Let k ∈ N with k ≥ 1, and assume for all i ∈ N, i < k , P(i). We’ll
show P(k). Let l ∈ List[N] be a sorted list, and t, a, b,∈ N such
that b − a = k .

We’ll show that binsearch(l , t, a, b) returns None if t is not in
l [a : b] and the index of t in l otherwise

Since b − a = k ≥ 1, the first if check fails. Let
m = (a + b)//2 = ⌊(a+ b)/2⌋. There are then 3 cases.

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] == t

In this case, the algorithm returns m, which is the index of t in l .

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] == t

In this case, the algorithm returns m, which is the index of t in l .

To prove the exact form of the statement, we need to check that
l [m] = t is actually in l [a : b]. I.e. that a ≤ m ≤ b − 1.

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] == t

We have

m = ⌊(a+ b)/2⌋
≥ ⌊(2a+ 1)/2⌋ (b − a ≥ 1)

≥ ⌊a+ (1/2)⌋
≥ a

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] == t

On the other side, we have

m = ⌊(a+ b)/2⌋
≤ ⌊(2b − 1)/2⌋ (b − a ≥ 1)

≤ ⌊b − (1/2)⌋
= b − 1

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] < t

Since l is sorted and t is greater than the l [m], if t is to be in
l [a : b], it must have an index greater than m. So
binsearch(l , t, a, b) = binsearch(l , t,m + 1, b).

We claim that our inductive hypothesis applies to
binsearch(l , t,m+1, b). We just need to show b− (m+1) < k .

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] < t

WTS: b − (m + 1) ≤ k . From the previous part, we know that
m ≥ a.

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] < t

WTS: b − (m + 1) ≤ k . From the previous part, we know that
m ≥ a.

Then b − (m + 1) ≤ b − (a+ 1) ≤ b − a− 1 = k − 1. Thus, the
inductive hypothesis applies to binsearch(l , t,m + 1, b), and we
are done!

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] > t

Since l is sorted and t is less than the l [m], if t is to be in l [a : b],
it must have an index less than m. So
binsearch(l , t, a, b) = binsearch(l , t, a,m).

We claim that our inductive hypothesis applies to
binsearch(l , t, a,m). We need to show m − a ≤ k .

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] > t

WTS: m − a ≤ k. From the previous part, we have m ≤ b − 1.

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.



l[m] > t

WTS: m − a ≤ k. From the previous part, we have m ≤ b − 1.

Then m− a ≤ b− 1− a ≤ k − 1, so the inductive hypothesis holds
for binsearch(l , t, a,m), and we are done!

P(n): For all sorted lists l ∈ List[N] and t ∈ N, if
b − a = n, then binsearch(l , t, a, b) returns None if
t is not in l [a : b] and the index of t in l otherwise.
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Correctness for Iterative Algorithms

Correctness of merge



Iterative Algorithms

Iterative Algorithms are algorithms with a for loop or a while

loop in them.



Conventions

• “After the kth iteration” refers to the point in the execution
of the program just before the loop condition is evaluated for
the k + 1st time.

• “Before the k + 1th iteration” is the exact same thing as
“after the kth iteration”

• For example, after the kth iteration, the value of i is k



A multiplication algorithm for natural numbers



What is the pre/post condition for mult(x , y)?

• Precondition: x , y ∈ N
• Postcondition: return xy .



What is the pre/post condition for mult(x , y)?

• Precondition: x , y ∈ N
• Postcondition: return xy .



Proof

Assume the precondition that x , y ∈ N, we’ll show that on input
x , y , mult(x , y) return xy .

Let totaln and in be the value of the variables total and i after
the nth iteration. Let P(n) be the following predicate: after the
nth iteration,

a. i = n, and

b. total = ny

We’ll start by showing ∀n ∈ N.P(n). If there is no nth iteration,
P(n) is vacuously true.

By induction on n.



Proof

Base Case. We’ll start with P(0). After the 0th iteration (before
the first iteration), we have i = 0, an total = 0, so the base case
holds.

P(n) :

a. i = n, and

b. total = ny



Proof

Inductive Step. Let k ∈ N be a natural number and suppose
P(k) is true, we’ll show P(k + 1). If there was no k + 1th
iteration, then P(k + 1) is vacuously true, so suppose the k + 1
iteration ran. Then we have

totalk+1 = totalk + y = ky + y = (k + 1)y ,

and
ik+1 = ik + 1 = k + 1.

This completes the induction, and hence ∀n.P(n).

P(n) :

a. i = n, and

b. total = ny



Proof

Then, since x ∈ N, we have P(0),P(1), ...,P(x), by a.) we have
that the loop condition passes after the ith iteration for all i < x ,
and fails after the xth iteration at which point we return the value
of total after the xth iteration which by b.) is equal to xy .

P(n) :

a. i = n, and

b. total = ny



Convention

Use subscripts to denote the value of a variable after iteration i .
E.g., totali is the value of the variable total after iteration i .



General Strategy

Define a loop invariant - some property that is true at the end of
every iteration. Note that it can depend on the iteration number.
Call it, for example, P(n). Another common one is P(i) if you use
i as the iteration counter.

Tip: Since the value of variables in code can change at each
iteration, it is useful to use the convention in the previous slide to
refer to the value of a variable after a certain iteration.



General Strategy

Prove the following:

Initialization. Show that the loop invariant is true at the start of
the loop if the precondition holds.

Maintenance. Show that if the loop invariant is true at the start
of any iteration, it is also true at the start of the next iteration.

Termination. Show that the loop terminates and that when the
loop terminates, the loop invariant applied to the last iteration
implies the postcondition.



Runtime?

Let’s say x and y are both n-digit numbers and it takes time O(n)
time to add two n digit numbers.

What is the worst-case time complexity of mult in terms of n, the
number of digits?



Runtime?

Since y is a n digit number, it can be as large as 999...99
(n-times), which is equal to 10n − 1 = Θ(10n). Thus, the loop
runs for O(10n) iterations!

The eventual result has as many 2n digits. Thus, each addition
takes time O(2n) = O(n). In total, the running time is Θ(n10n).

This is terrible. For reference, Grade School Multiplication gets
O(n2), and Karatsuba’s Algorithm from last week gets O(n1.59).
The best-known algorithm for multiplying has runtime O(n log(n)).
By the way, this fast algorithm was just discovered in 2019 and
published in 2021!

https://projecteuclid.org/journals/annals-of-mathematics/volume-193/issue-2/Integer-multiplication-in-time-Onmathrmlog-n/10.4007/annals.2021.193.2.4.short


for Loops

for loops are another type of loop. You can think of loops as
while loops with an appropriate loop condition. For example



Termination

Termination can usually be proved as a consequence of the loop
invariant.

Usually, the argument will go something like this.

• By contradiction, suppose the loop didn’t terminate. Then it
reaches iteration N (where N is some value you chose, big
enough to derive a contradiction).

• Then the loop invariant P(N) implies that the value of some
variables is something. This implies the loop condition will be
false in the next iteration, which is a contradiction.



Termination

If you’re more precise, you can often find the exact number of
iterations using the Loop Invariant. That looks something like

• Claim: The loop exits after the Nth iteration

• Let i < N, P(i) implies that the loop condition is true.

• Furthermore P(N) implies that the loop condition is false.
Therefore, the loop exists after the Nth iteration.



Mystery algorithm

What does the following algorithm do?
Precondition: x , y ∈ N, y > 0.

Postcondition: Returns
⌈x/y⌉.



Mystery algorithm

What does the following algorithm do?
Precondition: x , y ∈ N, y > 0.

Postcondition: Returns
⌈x/y⌉.



Proof of Correctness

Loop Invariant. P(n) is the following predicate. After the nth
iteration

a.) c = n

b.) val = ny

We’ll show ∀n ∈ N.P(n)



Proof of Correctness

Initialization. For n = 0, c and val are both initialized to be 0, so
c = 0, and val = 0 · y = 0. Thus, the base case holds.

P(n) : After the nth iteration

a.) c = n

b.) val = ny



Proof of Correctness

Maintenance. Suppose P(k), we’ll show that P(k +1) also holds.
If the k + 1th iteration did not run, P(k + 1) is vacuously true.
Suppose the k + 1th iteration runs. Then, the variables are
updated as follows

• ck+1 = ck + 1 = k + 1, and

• valk+1 = valk + y = ky + y = (k + 1)y

this completes the induction.

P(n) : After the nth iteration

a.) c = n

b.) val = ny



Proof of Correctness

Termination. We claim that the loop terminates after at most
n = ⌈x/y⌉ iterations. Indeed, P(n).b implies that after the nth
iteration, val is equal to ⌈x/y⌉ · y ≥ x . Thus, the loop terminates.
Let n be the last iteration that runs so that we return cn = n.
Since the n was the last iteration that runs by the loop condition,
we have

valn−1 < x ≤ valn =⇒ (n − 1)y < x ≤ ny =⇒ n − 1 < x/y ≤ n.

In other words, n is the first integer greater than or equal to x/y ,
i.e., ⌈x/y⌉.

P(n) : After the nth iteration

a.) c = n

b.) val = ny



Convention

If the predicate P(n) has multiple parts like

a.) ...

b.) ...

Use P(n).a, P(n).b,... to refer to specific parts of the predicate.



Variations

• One after the other. Prove the correctness of each loop in
sequence.

• Nested loops. “inside out”. Decompose (or imagine) the inner
loop as a separate function. Prove the correctness of that
function as a lemma, and then prove the correctness of the
outer loop. We will see an example in the tutorial.



Another way to prove termination: descending sequence

Another way to prove termination is to define a descending
sequence of natural numbers, a1, a2, ... indexed by the iteration
number.

By the WOP, this sequence must be finite; otherwise, the set
{a1, a2, ...} has no minimal element!



Another way to prove termination: descending sequence

Another way to prove termination is to define a descending
sequence of natural numbers, a1, a2, ... indexed by the iteration
number.

By the WOP, this sequence must be finite; otherwise, the set
{a1, a2, ...} has no minimal element!



Example

How can we define a descending sequence of natural numbers for
this algorithm?

Idea: an = x + y − valn. Where
valn is the value of val at the start of iteration n.



Descending Sequence
Claim. an ∈ N and is decreasing.
By induction. The base case holds from the precondition.
Assuming the claim is true at the start of iteration k , we’ll show
that it is also true at the start of iteration k + 1. We have

ak+1 = x + y − valk+1

= x + y − valk − y

= ak − y

< ak (y > 0)

Furthermore, canceling the ys in the second line, we get
ak+1 = x − valk , which is greater than 0 since the while check
passes. This combined with the fact that y ∈ N and ak ∈ N
implies that ak+1 ∈ N.

Thus, an is indeed a decreasing sequence of natural numbers, and
the algorithm terminates. (Then argue again that the LI implies
the postcondition after the loop ends.)



Proofs of termination: as a part of the LI vs. descending
sequence

Most of the time, the LI will imply termination, saving you from
having to do another induction proof. I prefer this method.

However, it is easier to define a descending sequence of natural
numbers in some cases - we’ll see some examples in the tutorial.



Proofs of termination: as a part of the LI vs. descending
sequence

Most of the time, the LI will imply termination, saving you from
having to do another induction proof. I prefer this method.

However, it is easier to define a descending sequence of natural
numbers in some cases - we’ll see some examples in the tutorial.



Correctness for Iterative Algorithms

Correctness of merge



Merge



Correctness of Merge

• Precondition?

• Postcondition?



Correctness of Merge

• Precondition: x and y are sorted lists.

• Postcondition: A sorted list containing the elements from x
and y .



Counters

For a list l of natural numbers, let Counter(l) be a mapping of the
elements of l to the number of times they appear. Ways to think
about this

• collections.Counter

• Counter(l) can be thought of as a multiset (an unordered
collection of objects where the same object can appear
multiple times)

• Counter(l) : N → N where Counter(l)(x) is the number of
times x appears in l .

https://docs.python.org/3/library/collections.html


Counters

We can use Counters to express the pre and postconditions more
formally.

Precondition. x and y are sorted lists of natural numbers.

Postcondition. Returns a sorted list l such that
Counter(l) = Counter(x + y), note that the + here is
concatenation of lists. This means the returned list is sorted and
contains all the elements in x and y with the correct frequencies.



Correctness of merge

Loop Invariant.

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.



Correctness of merge

Initialization. We’ll show P(0):

1. is vacuously true since l0 is empty

2. Counter(x0 + y0 + l0) = Counter(x0 + y0 + []) =
Counter(x0 + y0)

3. len(ln) = len([]) = 0.

4. x0, y0 are sorted by the precondition, and l0 is vacuously
sorted.

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.



Correctness of merge

Maintenance. Let k ∈ N be any natural number and suppose
P(k). We’ll show that P(k + 1). There are several cases marked
by the numbers in the comments. Let’s start with case 1.

The variables are updated as follows.

• lk+1 = lk + [yk [0]].

• yk+1 = yk [1 :].

• xk+1 = xk .

In this case, x and y are both non-empty and y [0] ≤ x0. We’ll
show P(k + 1)

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.



Correctness of merge

Maintenance. (a.) We need to show that
a ∈ xk+1 + yk+1 ∧ b ∈ lk+1 =⇒ a ≥ b. Since yk [0] is the only
element that moved, by P(k).a, it suffices to consider when
b = yk [0]. I.e., we need to show that yk [0] is minimal in xk + yk .

Since yk and xk are sorted by P(k).d, yk [0] is minimal in yk , since
yk [0] ≤ xk [0], and xk is sorted, yk [0] is also minimal in xk .

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.



Correctness of merge

Maintenance. (b.) We have

Counter(xk+1 + yk+1 + lk+1) = Counter(xk + yk [1 :] + lk + [yk [0]])

= Counter(xk + yk + lk)

= Counter(x0 + y0).

The second line holds because Counteris unordered, and the third
line holds because of P(k).b

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.
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Correctness of merge

Maintenance. (d.) By P(k).d we have xk , yk , and lk are all
sorted.

• xk+1 = xk , and so is still sorted.

• yk+1 is a sublist of yk and so is also sorted.

• lk+1 = lk + [yk [0]] is sorted because P(k).a implies that
∀b ∈ lk , yk ≥ b.

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).
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Correctness of merge

The other cases are similar; I’ll leave this to you.

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.



Correctness of merge

Termination. Let n = len(x0 + y0). I claim that the algorithm
terminates after n iterations. By P(n).c, we have
len(ln) = len(x) + len(y), by P(n).b, we have
Counter(xn + yn + ln) = Counter(x0 + y0), since
len(ln) = len(x0 + y0), xn and yn must be empty and thus the
loop condition fails. Thus, the algorithm terminates.

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.



Correctness of merge

Now let n be the last iteration that runs. Since the next iteration
did not run, we have xn and yn are both empty. By P(n).b, we
have Counter(xn + yn + ln) = Counter(ln) = Counter(x0 + y0).
Furthermore, by P(n).d , ln is sorted as required.

P(n) : After the nth iteration,

a.) (a ∈ xn + yn ∧ b ∈ ln) =⇒ a ≥ b.

b.) Counter(xn + yn + ln) = Counter(x0 + y0).

c.) len(ln) = n.

d.) xn, yn, ln are all sorted.



Loop Invariants

• It’s normal for the loop invariant to have many parts!

• If you’re trying to prove a loop invariant and you get stuck
and wish some other property holds, try adding what you need
as part of the loop invariant.

• For example, it’s common for part 4. of a loop invariant to
imply part 1. of the loop invariant.



Summary - Correctness of Algorithms

• If the algorithm is recursive, prove correctness directly by
induction.

• For algorithms with loops, prove the correctness of the loop
by defining a Loop Invariant, proving the Loop Invariant, and
showing that the Loop Invariant holding at the end of the
algorithm implies the postcondition.



What are your questions?
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Reference

This lecture loosely follows chapter 1 of Introduction to the Theory
of Computation by Michael Sipser.

The presentation there is a little more formal, but we’ll use the
same notation so it might be useful to check that out for
additional examples.



Problems

In lecture 1 we used Cantor’s Theorem to show that there are
problems that can’t be solved. In that lecture, we defined a
problem for every set.

If A is a set of strings, there is the problem problem of deciding
whether a given input is in A or not.

Examples:

A = {w ∈ Strings : w is a palindrome},

A = {w : w is a C program with no syntax errors}.



Formal Languages

The problems that we consider are still going to be of this type!

This time, we’ll make things a little more formal...



Definitions

• An alphabet, Σ is a non-empty, finite, set of symbols.

• A string w over an alphabet Σ is a finite (0 or more) sequence
of symbols from Σ.

• The set of all strings is denoted Σ∗. (Before now, we’ve been
calling it Strings).

• A language is any subset of Σ∗.

• Denote the empty string by ϵ and note that it is the unique
string with length 0.
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Definitions

• An alphabet, Σ is a non-empty, finite, set of symbols.

• A string w over an alphabet Σ is a finite (0 or more) sequence
of symbols from Σ.

• The set of all strings is denoted Σ∗. (Before now, we’ve been
calling it Strings).
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More definitions

Let x , y ∈ Σ∗ be strings, A,B ⊆ Σ∗ be languages, and n ∈ N be a
natural number

• Write xy to mean the concatenation of x and y .

• Write xn to mean xx ...x︸ ︷︷ ︸
n times

.

• What is x0? ϵ

• Let AB = {ab : a ∈ A, b ∈ B}.
• Let An = AA...A︸ ︷︷ ︸

n times

.

• What is A0? {ϵ}.
• Let A∗ = A0 ∪ A1 ∪ A2 ∪ A3 ∪ ... =

⋃
i∈N Ai
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Generated by...

A while ago we studied what it meant for a set to be generated
from B by the functions in F .

Question. How would you generate Σ∗?

• B = Σ ∪ {ϵ}
• F = {concat}

Where concat(x , y) = xy



Generated by...

A while ago we studied what it meant for a set to be generated
from B by the functions in F .

Question. How would you generate Σ∗?

• B = Σ ∪ {ϵ}
• F = {concat}

Where concat(x , y) = xy



Example - English

• Σ = {a, b, c, ..., z}
• Σ∗ = {ϵ, a, aa, ab, ac, ..., ba, ..., aaa, ...}
• English ⊆ Σ∗



Example - Even

• Σ = {0, 1}
• Σ∗ = {ϵ, 0, 1, 00, 01, ...}
• Even = {w ∈ Σ∗ : w has an even number of 1s}



Alphabet

Any finite set works for the alphabet! However, to make things
simple, we’ll usually take the alphabet to be Σ = {0, 1}, or {a, b}.



The Problem (again)

Given a language A over an alphabet Σ, come up with a program
that decides whether a given string x ∈ Σ∗ is in A or not.



The Problem (again)

Given a language A over an alphabet Σ, come up with a program
that decides whether a given string x ∈ Σ∗ is in A or not.
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What is a program?

To talk formally about computation it’s important to specify a
model of computation.

• What does a program look like?

• What can the program do?



DFAs
DFAs are one model of computation. They look like this.

 

i a
qstat É 91



DFAs

A single DFA corresponds to what we think of as a program.



Computation of a DFA

Input: a string w ∈ Σ∗.
Output: accept/reject.

• The DFA starts at a predefined start state.

• The DFA reads in the input string one character at a time.
Depending on the character read and the current state, the
DFA deterministically moves to a new state.

• When it has read the entire string, the DFA will be in some
state. If that state is one of the accept states, the DFA
accepts. Otherwise, the DFA rejects.



Character e I anddefine how
2Iffitts tu

o character read

single circle

gstat É ga means the state
is rejecting

f
signifies the double circles mean this is

starting state on accepting state There

may be more than 1



Language of a DFA

Let M be a DFA, the language of a DFA, denoted L(M), is the set
of strings w ∈ Σ∗ such that M accepts w .



Example
 

i a
qstat É 91

Does this DFA accept

• 001101?

• 100110?

• 111100?

• 011000?

• ϵ?



Example
 

i a
qstat É 91

What is the language of the DFA?



Example

O

20,1
1

70,1
What is the language of the DFA?



Example

a
o

How about this one?



Example

i

How about this one?



DFAs

• Deterministic. Given the current state and character read, the
next state is always the same.

• Finite. There are a finite number of states.

States are analogous to “memory”, since we can store information
about the input by transitioning to different states.
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Defining a DFA

When defining a DFA, you need to do the following

• Tell me the alphabet, Σ of the DFA.

• Define a finite set of states, Q.

• Tell me a start state qstart ∈ Q.

• Tell me which states are accepting. Formally, find a subset
F ⊆ Q of accept states.

• For each state q and each character x ∈ Σ, tell me which
state to go to next if I read x from state q.

In this class, you may capture all of this information in a
drawing.



Tips

• States ⇐⇒ Memory. Use states to capture information
about the input read so far! What do you need to remember
about the input in order to answer the question?

• It takes some time getting used to the fact that we read the
input left to right, and only get to read each character once!
Keep this in mind when designing DFAs!

• Common pattern: The garbage state.



Example
Design a DFA M such that

L(M) = {w ∈ {0, 1}∗ : w has at least two 1s}

I E
Is 1
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Example
Design a DFA M such that

L(M) = {w ∈ {0, 1}∗ : w does not contain the substring 11}

I got
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Example

Design a DFA M such that

L(M) = {w ∈ {0, 1}∗ : The third last character of w is 1}

Reference: Sipser
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Another model of computation - Nondeterministic Finite
Automata (NFAs)

Here’s an example of an NFA

I 0,1

I O e I



Key differences

j qstart reading 1

Entity

wasting goa
qstat ga 92 I 93

this state has no
transition defined for the
character 0



Key differences

• For each state, there can be multiple arrows labelled with the
SAME character!

• States do not need to have one arrow for each character in Σ.

• Arrows can be labelled with ϵ.



Computation of a NFA
Input: a string w ∈ Σ∗.
Output: accept/reject.

• The NFA starts at a predefined start state.
• The NFA reads in the input string one character at a time.
Let c be the character that was read. There are several cases
depending on the current state.

1. If the state has no arrows coming out of it labelled with c , halt
execution and immediately reject.

2. Otherwise, choose one of the arrows labelled with c and follow
it and read the next character.

3. If there is an arrow labelled with ϵ, you may choose to follow
it. In this case, you don’t read the input character (i.e. the
next character to be read is still the same)

• When it has read the entire string, the NFA will be in some
state. Depending on the choices made, the final state will
either be accepting or rejecting. The NFA accepts the
string if ANY sequence of choices leads to an accept
state.



Language of a NFA

Let N be a NFA, the language of a NFA, denoted L(N), is the set
of strings w ∈ Σ∗ such that N accepts w .



What is the language of...

y
I I

{w ∈ Σ∗ : w ends in 01}



Common Pattern

I

Common pattern eat up input and
guess where a certain

substring starts



NFA for third last character is a 1
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Regular Languages

A language A is regular if and only if there is a DFA M such that
L(M) = A.



Closure

Suppose A and B are regular languages, then

• A,

• AB,

• A ∪ B,

• A ∩ B,

• An, and

• A∗

are also regular.



Let’s prove this!



A

Suppose A is regular. Let M be a DFA for A. Let M ′ be the DFA
with all the states of M flipped. Then L(M ′) = A.



A ∪ B

Let M and N be DFAs for A and B respectively. We need to find a
DFA D for A ∪ B.

Idea 1: Here’s what we’d like to do. Let w be the input. D runs M
on w to check if w ∈ A and then D runs N on w to check if
w ∈ B. Accept if either was accept and reject if both were
rejected. What’s the problem with this approach? we only get to
read the input once!



A ∪ B

Let M and N be DFAs for A and B respectively. We need to find a
DFA D for A ∪ B.

Idea 1: Here’s what we’d like to do. Let w be the input. D runs M
on w to check if w ∈ A and then D runs N on w to check if
w ∈ B. Accept if either was accept and reject if both were
rejected.

What’s the problem with this approach? we only get to
read the input once!



A ∪ B

Let M and N be DFAs for A and B respectively. We need to find a
DFA D for A ∪ B.

Idea 1: Here’s what we’d like to do. Let w be the input. D runs M
on w to check if w ∈ A and then D runs N on w to check if
w ∈ B. Accept if either was accept and reject if both were
rejected. What’s the problem with this approach?

we only get to
read the input once!



A ∪ B

Let M and N be DFAs for A and B respectively. We need to find a
DFA D for A ∪ B.

Idea 1: Here’s what we’d like to do. Let w be the input. D runs M
on w to check if w ∈ A and then D runs N on w to check if
w ∈ B. Accept if either was accept and reject if both were
rejected. What’s the problem with this approach? we only get to
read the input once!



A ∪ B

Idea 2: Instead, we need to run the two machines in parallel.
Thus, each state in D corresponds to a 2-tuple where the first
element is the ‘M’ state and the second element is the ‘N’ state.

If we’re at state (x , y) and we read a character σ. Then we
transition to (x ′, y ′) where x ′ is the state that x goes to (in M)
when reading σ and y ′ is the state that y goes to (in N) when
reading σ.

What should the accepting states be? (x , y) should be accepting if
either x was an accept state in M or y was an accept state in N
(or both).
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Idea 2: Instead, we need to run the two machines in parallel.
Thus, each state in D corresponds to a 2-tuple where the first
element is the ‘M’ state and the second element is the ‘N’ state.

If we’re at state (x , y) and we read a character σ. Then we
transition to (x ′, y ′) where x ′ is the state that x goes to (in M)
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Example: Starts with 1 or has an even number of 1s
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a DotSII t Even of 1

Do
a

Abe Abe Asb DO

Note some states are never reached here (and can be removed)
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A ∩ B

Homework.
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Review

• DFAs

• A language A is regular iff there is a DFA M such that
L(M) = A



Closure

Suppose A and B are regular languages, then

• A ,

• A ∪ B ,

• A ∩ B ,

• AB ,

• An, and

• A∗,

are also regular.



Closure

Suppose A and B are regular languages, then

• A (by flipping states),

• A ∪ B (by running two DFAs in parallel),

• A ∩ B (hw),

• AB (today!),

• An(today!), and

• A∗(today!),

are also regular.



AB

The same trick of running the DFAs in parallel doesn’t work.

How would you write code to solve this?

On input w :
• For i = 0, 1, ..., n :

▶ inA = M(w [: i ])
▶ inB = M(w [i :])
▶ if inA and inB: accept

• reject

The idea is to try all the different ways to split up the string, if
there is a way to split the string up such that the first half is in A
and the second half is in B, then accept. If no way to split up the
string works, reject.
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AB

The same trick of running the DFAs in parallel doesn’t work.
How would you write code to solve this?

On input w :
• For i = 0, 1, ..., n :

▶ inA = M(w [: i ])
▶ inB = M(w [i :])
▶ if inA and inB: accept

• reject

The idea is to try all the different ways to split up the string, if
there is a way to split the string up such that the first half is in A
and the second half is in B, then accept. If no way to split up the
string works, reject.



Review: Nondeterminism

“If any sequence of choices leads to an accept state, accept”

“Reject only if every sequence of choices leads to reject”



Choices

• If there are multiple arrows marked with the read character,
choose which arrow to take.

• If there is an ϵ-transition, choose whether or not to take it!
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Equivalence of DFAs and NFAs

Theorem
Let A be any language. There is a DFA M such that A = L(M) if
and only if there exists a NFA N such that A = L(N).

The forward direction is true since every DFA is already a NFA (it
just doesn’t use the extra features). The backwards direction
might be surprising to you!

Essentially it says all the extra features we give NFAs don’t in fact
give them more “power”. If I can solve it with an NFA, I can also
solve it with a DFA.
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Equivalence of DFAs and NFAs

Theorem
Let A be any language. There is a DFA M such that A = L(M) if
and only if there exists a NFA N such that A = L(N).

The forward direction is true since every DFA is already a NFA (it
just doesn’t use the extra features). The backwards direction
might be surprising to you!

Essentially it says all the extra features we give NFAs don’t in fact
give them more “power”. If I can solve it with an NFA, I can also
solve it with a DFA.



NFA =⇒ DFA

We need to simulate a NFA N with a DFA M
High level idea:

• Have a state in M for every subset of states in N.

• Let S , T be two states in M. Then S transitions to T reading
σ if some choice allows me to go from a state in S to a state
in T . The choice includes an unlimited number of ϵ
transitions.

• The accepts states are the subsets that contain accept states.

• The start state is the subset containing the start state in N
and all states reachable from the start state using an ϵ
transition

Intuitively, if I’m at state S after having read w . S should contain
all the possible states I could have been in N.



Example



Example
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Takeaway

For every NFA N, there exists a (potentially huge) DFA M such
that L(N) = L(M).



Regular Languages (again)

The following are equivalent

• A is regular

• There is a DFA M such that L(M) = A

• There is a NFA N such that L(N) = A



Equivalent models of computation

The more complex a model of computation, the easier it is to use.
I.e. NFAs are more complex so finding NFAs for a language is
easier than finding DFAs for language.

The more limited a model of computation, the easier it is to prove
things about. Since DFAs are so restrictive, we can prove a lot of
nice properties about them!

Since these two models of computation are equivalent, we can pick
the right model for the right situation!



AB is regular
Let M and N be DFAs for A and B respectively. We’ll show that
AB is regular by finding an NFA H for AB.



AB

This NFA guesses when the string in B should start. It starts in
M and can only move to N from accepts states in M since we
need the first part of the string to be part of A.



An

Suppose A was regular, how would you show that ∀n ∈ N.An is
regular?

By induction :)



A∗

i
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Regular Expressions

Regular expressions are all about matching patterns in strings.

Examples:

• Working with the terminal (live)

• valid email checking

https://regexr.com/3e48o


Regular Expressions - Formally

Let Σ be an alphabet. Define the set of regular expressions RΣ

recursively as follows.

RΣ is the smallest set such that

• ∅ ∈ RΣ

• ϵ ∈ RΣ

• a ∈ RΣ for each a ∈ Σ

• R ∈ RΣ =⇒ (R)∗ ∈ RΣ

• R1,R2 ∈ RΣ =⇒ (R1R2) ∈ RΣ

• R1,R2 ∈ RΣ =⇒ (R1|R2) ∈ RΣ

Note that RΣ is defined inductively.



Operator Precedence

* comes before concatenation which comes before |.

For example, a∗b|bc means ((a∗)b)|(bc).



Operator Precedence

* comes before concatenation which comes before |.

For example, a∗b|bc means ((a∗)b)|(bc).



Language of a Regular Expression

The language if a regular expression R, denoted L(R) is the set of
strings that R matches. Formally,

• L(∅) = ∅
• L(ϵ) = {ϵ}
• L(a) = {a}, for a ∈ Σ

• L(R∗) = L(R)∗ for R ∈ R∗
Σ

• L(R1R2) = L(R1)L(R2) for R1,R2 ∈ RΣ

• L(R1|R2) = L(R1) ∪ L(R2) for R1,R2 ∈ RΣ



Examples

What are the languages of the following regular expressions?
(Assume the alphabet is {0, 1})

• ((0|1)(0|1)(0|1))∗

• (1∗01∗0)∗

• (0|1)∗1(0|1)(0|1)
• (0|1)∗010(0|1)∗

• (0|ϵ)1∗
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Examples

What are the languages of the following regular expressions?
(Assume the alphabet is {0, 1})

• ((0|1)(0|1)(0|1))∗

• (1∗01∗0)∗

• (0|1)∗1(0|1)(0|1)
• (0|1)∗010(0|1)∗

• (0|ϵ)1∗



Examples

What are the languages of the following regular expressions?
(Assume the alphabet is {0, 1})

• L(((0|1)(0|1)(0|1))∗) = {w : |w | = 0 mod 3}.
• L((1∗01∗0)∗) = {w :

w ends with 0 contains an even number of 0s}.
• L((0|1)∗1(0|1)(0|1)) = {w : third last character of w is 1}.
• L((0|1)∗010(0|1)∗) = {w : w contains 010}.
• L((0|ϵ)1∗) = {w :

w is zero or more 1s or 0 followed by zero or more 1s}.



Shorthand

If R is a regex, and m ∈ N, then
• Rm means m copies of R.

• R+ = RR∗, i.e. at least one copy of R.

• Rm+ = RmR∗ means at least m copies of R.

If S = {s1, s2, ..., sn} is a finite set of strings, then S is shorthand
for s1|s2|...|sn. A common one is to use the alphabet, Σ.



Examples

Write regular expressions for the following languages

• Starts with 010.

• The second and the second last letter of w are the same.

• Contains 110.

• 1s always occur in pairs.

• Doesn’t contain more than four 1s in a row.
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Examples

Write regular expressions for the following languages

• Starts with 010.

• The second and the second last letter of w are the same.

• Contains 110.

• 1s always occur in pairs.

• Doesn’t contain more than four 1s in a row.



Examples

Write regular expressions for the following languages

• Starts with 010. 010Σ∗

• The second and the second last letter are the same.
Σ0Σ∗0Σ|Σ1Σ∗1Σ

• Contains 110. Σ∗110Σ∗

• 1s always occur in pairs. {0, 11}∗

• Doesn’t contain more than four 1s in a row.
{0, 01, 011, 0111}∗
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Equivalence of NFAs and Regex

For every regular expression R, there exists a NFA N such that
L(R) = L(N).



Regex → NFA

We want to show ∀R ∈ RΣ, there is an equivalent NFA. How do
we do this?

By structural induction!



Regex → NFA

We want to show ∀R ∈ RΣ, there is an equivalent NFA. How do
we do this? By structural induction!



Regex → NFA

Base cases.

• ∅ has an equivalent NFA - one without an accept state!

• ϵ has an equivalent NFA - one with just an accept state!

• For each a ∈ Σ, a has an equivalent NFA - the following:



Regex → NFA

Inductive step. Suppose R,S ∈ RΣ, and have equivalent NFAs M,
and N. We need to show that R|S ,RS ,R∗ all have equivalent
NFAs.

• R|S . L(R|S) = L(R)∪ L(S). By the inductive hypothesis, this
is then equal to L(M) ∪ L(N). Since L(M) and L(N) are the
languages of NFAs, they are regular. Since regular languages
are closed under ∪ (from last lecture), L(M) ∪ L(N) is regular
and hence has some NFA N ′.

• RS . This follows from an identical argument as above, using
the observation that regular languages are closed under
concatenation.

• R∗. This follows from an identical argument as above, using
the observation that regular languages are closed under ∗.



NFA → Regex

We will show this direction next time!



Regular Languages

The following are equivalent

• A is regular

• There is a DFA M such that L(M) = A

• There is a NFA N such that L(N) = A

• There is a regular expression R such that L(R) = A



Consequences

If I ask you to show me a language A is regular, you can choose to
give me either a DFA, NFA or a regular expression!



How to choose

• I typically use regular expressions for languages that seem to
require some form of ‘matching’. For example contains 121
as a substring, or ends with 11. Regular expressions are
typically faster to find and write out in an exam setting.

• I’ll use NFAs when I can’t easily figure out a regular expression
for something. These are usually languages for which memory
seems to be useful like the Dogwalk example from hw.

• Stuff involving negations also seems easier to do with NFAs
than with regular expressions. For example, contains the
substring 011 is easy with regular expression, but doesn’t
contain the substring 011 is a bit more complicated.
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Regular Languages

The following are equivalent

• A is regular

• There is a DFA M such that L(M) = A

• There is a NFA N such that L(N) = A

• There is a regular expression R such that L(R) = A



Closure

If A, B are regular, so are

• A

• A ∪ B

• A ∩ B

• AB

• An

• A∗
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Example 8

8Reference: CSC236 2022 Fall
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8Reference: CSC236 2022 Fall



Example 8

Final regular expression:

(00|(1|01)(01)∗(1|00))(0|1)∗

8Reference: CSC236 2022 Fall



Example 2



Example 2



Example 2



Example 2



Example 2

Final regular
expression: 1+0|0(ϵ|1)



Sketch

• Alter the NFA so there’s just one accepting state (using ϵ
transitions).

• Iteratively rip out states, replacing transitions with regular
expressions until you have something that looks like

R is the equivalent regular expression.



“Ripping” out states

For two states q1, q2 with a transition between them, let f (q1, q2)
be the regular expression labelling the transition.

Here are the steps to rip out a state q.

1. Remove the loop: If there is a self loop on state q, for each
state s with a transition into q, update the transition
f (s, q) = f (s, q)f (q, q)∗. For each state s ′ with a transition
out of q, update the transition f (q, s ′) = f (q, q)∗f (q, s ′)

2. Bypass q: for each path (s, q, t) of length 2 through q,
update f (s, t) = f (s, t)|f (s, q)f (q, t). Note that it is possible
that s = t, in which case this step adds a loop.

3. Remove q.
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We showed a bunch of languages were regular...

However, from lecture 1, we know that there are some problems
that computers can’t solve...

... so what do non-regular languages look like?



What are some limitations for DFAs and NFAs?



Regular languages KEY intuition

DFAs has a finite number of states.

States correspond to memory.

Thus, DFAs can compute languages that only need a finite amount
of memory (and read the input once left to right).

In particular, a DFA has a fixed amount of memory, no matter how
large the input is.



Regular languages KEY intuition

DFAs has a finite number of states.

States correspond to memory.

Thus, DFAs can compute languages that only need a finite amount
of memory (and read the input once left to right).

In particular, a DFA has a fixed amount of memory, no matter how
large the input is.



Example

Even is regular because no matter how large the input is, I only
need to store one bit corresponding to whether or not the input
has an even number of 1s so far.



Infinite Memory Required

What are some things you can’t do with a fixed amount of
memory?
Even simple things like storing the length of the input or the
number of 1s - we don’t know in advance how long our input
string can be!



Example

Here’s an example of a language that can’t be computed using
finite memory.

{anbn : n ∈ N}

Why?

I don’t know ahead of time how many as there are, and I need to
keep track of them to see how many bs I should expect.
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Proving not regular

Intuitively,
X = {anbn : n ∈ N}

requires infinite memory so is not regular. However, this doesn’t
prove that it is not regular.

To show X is not regular, we need to show that there does not
exist a DFA M such that L(M) = X .



Proving not regular

Intuitively,
X = {anbn : n ∈ N}

requires infinite memory so is not regular. However, this doesn’t
prove that it is not regular.

To show X is not regular, we need to show that there does not
exist a DFA M such that L(M) = X .



X = {anbn : n ∈ N} is not regular

By contradiction, suppose there was a DFA M such that
L(M) = X .

Claim: Suppose m, n ∈ N such that m ̸= n, then M run on am

and an end up in different states.

Proof of claim. Let qm, qn be the states reached after reading am

and an respectively. By contradiction, suppose qm = qn. Suppose
from this state, we then read bm, let q′ be the final state. Since
ambm ∈ X , q′ should be accepting. However, since anbm /∈ X , q′

should be rejecting, we have reached a contradiction since q′

cannot be both.



X = {anbn : n ∈ N} is not regular

By the claim, the DFA must reach a unique state for each
a, aa, aaa, .... Thus, M must have infinitely many states, which is a
contradiction since M is supposed to be a DFA.



Key Insights

• Same state =⇒ same fate. If two strings x , y led the DFA to
the same state. No matter what string w was read after,
either xw and yw both get accepted or yw both get rejected.

• The language {anbn : n ∈ N} had infinitely many strings that
do NOT share the same fate (and hence must have distinct
states).



Key Insights

• Same state =⇒ same fate. If two strings x , y led the DFA to
the same state. No matter what string w was read after,
either xw and yw both get accepted or yw both get rejected.

• The language {anbn : n ∈ N} had infinitely many strings that
do NOT share the same fate (and hence must have distinct
states).



“Same state same fate” but more formal

Let A be any language and x , y ∈ Σ∗. Call x and y distinguishable
relative to A if there exists w such that one of xw and yw are in A
and the other is not. If x and y are not distinguishable, call them
indistinguishable relative to A9.

Lemma (Same state same fate)

Suppose M is a DFA such that L(M) = A, and let qx and qy be
the states reached after reading x and y, respectively. If qx = qy ,
then x and y are indistinguishable relative to A.

9If the language A is evident from the context, you can omit the “relative to
A” part.
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Proof (informal)

Essentially, the DFA is deterministic, depending only on the current
state and the character read.
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Myhill-Nerode Theorem (corollary)

Theorem
Let A be a language over Σ. Suppose there exists a set S ⊆ Σ∗

with the following properties

• (Infinite). S is infinite

• (Pairwise distinguishable). ∀x , y ∈ S, with x ̸= y. x, and y
are distinguishable relative to A.

Then A is not regular.



Proof

Let A be language, and suppose S ⊆ Σ∗ is infinite and pairwise
distinguishable relative to A. WTS A is not regular.

By contradiction, suppose A was regular, then there exists some
DFA M such that L(M) = A. Since M is a DFA, it has some finite
set of states Q.

Let g : S → Q, be a function mapping strings x ∈ S to the state
the DFA reaches after reading x from the start state.

Since S is infinite, and Q is finite, g is not injective. Therefore,
there exist two strings x , y ∈ S such that g(x) = g(y). That is x
and y reach the same state. Since x and y are in S , they are
distinguishable; however, by the lemma, they are indistinguishable,
which is a contradiction.



Using The Myhill Nerode Theorem

By The Myhill-Nerode Theorem, it suffices to find a set of strings,
S , such that S is infinite and pairwise distinguishable relative to A.



Proof: X = {anbn : n ∈ N} is not regular

Consider the set S = {an : n ∈ N} and note that S is infinite since
it has one element for every natural number.

Let x , y ∈ S with x ̸= y . Then x = ai , y = aj for some i ̸= j .
We’ll show that x ̸∼ y , in particular, w = bi is such that
xw = aibi ∈ X , but yw = ajbi /∈ X . Thus, S is an infinite set of
pairwise distinguishable strings relative to X , so X is not regular.
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We’ll show that x ̸∼ y , in particular, w = bi is such that
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An alternate proof

By contradiction, suppose there was a DFA M such that
L(M) = X .

Let k be the number of states of M. Let (q0, q1, q2, ..., qk) be the
sequence of states reached when running ak on M. Since the
sequence has length k + 1, and there are only k states, by The
Pigeonhole Principle, some state appears twice in the sequence.
I.e. there exists i , j ∈ N with i ̸= j , and 0 ≤ i , j ≤ k such that
qi = qj . WLOG suppose i < j . Now here’s what happens when we
read akbk .

1. After reading ai we get to qi .

2. Continuing, reading aj−i , we get to qi = qj again.

3. Continuing, reading ak−j takes us to qk .

4. We then read bk and end up in some accept state since
akbk ∈ X .

X = {anbn : n ∈ N}



An alternate proof

Note that step 2 takes us in a loop! In particular, we started at qi ,
read aj−i , and then ended up back where we started!
What happens if we read aj−iaj−i at qi? We STILL end up at qi .
Continuing to step three, we reach qk again, this time after
reading aiaj−iaj−iak−j = ak+j−i . Reading bk , we still reach the
same accepting state as before. However, this is a contradiction
since ak+j−ibk /∈ X since k + j − i ̸= k!

X = {anbn : n ∈ N}



The Pumping Lemma

Suppose A is a regular language. Then there exists k ∈ N such
that for all w ∈ A with |w | ≥ k , we can write w as xyz such that

1. |xy | ≤ k

2. |y | > 0

3. For i ∈ N, xy iz ∈ A.



The Pumping Lemma explained

• Think of k as the number of states in the DFA.

• w = xyz . x is the part of the string that takes us to the start
of the loop. y is the string that takes us in a loop. z is the
remainder of the string.

• The three conditions mean the following.

1. The loop occurs within the first k steps.
2. The length of the looping string is non-zero. I.e., it’s actually a

loop.
3. You can take the loop as many times as you like.

Suppose A is a regular language. Then
there exists k ∈ N such that for all
w ∈ A with |w | ≥ k, we can write w as
xyz such that

1. |xy | ≤ k

2. |y | > 0

3. For i ∈ N, xy iz ∈ A.



Using The Pumping Lemma to prove a language is not
regular

Template:

By contradiction, suppose A is regular. Then, by the pump-
ing lemma, there exists a pumping length k ∈ N.

[find a string w ∈ A with |w | ≥ k .]
Thus, we can write w = xyz satisfying the conditions of the
pumping lemma.

[use conditions 1, 2 to argue something about what y looks
like]

[use condition 3 to find another string in A of the form xy iz
for some i ∈ N which should actually NOT be in A.]



Example

By contradiction, suppose X is regular. Then there is some
pumping length k .

Note that w = akbk ∈ X , and |w | = 2k ≥ k . Thus, we can write
w = xyz satisfying the conditions of The Pumping Lemma.

Since |xy | ≤ k , and the first k letters in w are all k , we know that
y = ai for some i ∈ N. By condition 2, i > 0.

Then by the third condition of The Pumping Lemma, we have
xy0z = xz ∈ X , which is a contradiction since xz = ak−ibk , which
should not be in X .

X = {anbn : n ∈ N}



Pumping Lemma vs. Myhill Nerode for showing a language
is not regular.

I prefer The Myhill Nerode Theorem - I find the arguments easier
and harder to mess up.

The Pumping Lemma is an excellent backup to know.

You should try all the problems that require you to show a
language is not regular using both methods and see if you develop
a preference!



What do you think this is a graph of?
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Question Types

Similar to stuff you have seen in homework, lecture and tutorial.
Here are the main question types that we have seen in the course
and my recommendations for how to approach them in an exam
and how to study for them.



Proofs about Functions

Write out the formal first order logic definitions for what you’re
trying to prove. Let that guide your solution.

Study tips

• Remember the intuition for injective/surjective/bijective. This
might help you come up with a solution.

• Remember the formal definitions for
injective/surjective/bijective. This will help you write the
proof.



Modeling with Graphs

Writing it up

• Explicitly define your graph G = (V ,E ).

• Tell me exactly what the vertex set V is.

• Tell me exactly what the edge set E is.

• State the corresponding graph problem.

• Explain why a solution to the graph problem is a solution to
the problem in question and vice versa.

Study tips

• Review the graph problem we have studied, and all the
practice problems.



Proofs by induction

Recognizing when to do something by induction.

• When the problem is something like ∀n ∈ N.P(n).
• When I give you an inductively/recursively defined set - that’s
almost always structural induction.

Writing it up

• When proving a statement, translate it into ∀n ∈ N.P(n) (or
for structural induction ∀x ∈ X .P(x), were X is an inductively
defined set. This step will clarify your proof process.

• Clearly label the base case and inductive step.
• For the inductive step:

▶ Clearly state your inductive hypothesis.
▶ State what you’re trying to prove, i.e. P(k + 1).
▶ Clearly state where you are applying the inductive hypothesis.

Study tips

• Lots of practice.



Solving Recurrences

Deciding on a method

• Can it be done using the Master Method? If so, use it!

• Otherwise, draw the recursion tree to form a guess, and then
use the substitution method.



Master Theorem

• State clearly that the master theorem applies in this case.
“This is a standard form recurrence with parameters a = ...,
b = ..., f (n) = ...”

• Calculate the leaf work, nlogb(a), and determine the case split.

• Find an explicit ϵ like 0.0000001 in the leaf/root heavy case.

• In the root heavy case don’t forget the regularity condition!

Study tips

• Come up with some of your own recurrences and solve them
(or test each other).



Substitution Method

• Draw recursion tree for guess.

• Write out your guess f (n).

• Write out the recurrence T (n) = T (...) + ...

• Substitute all the T (...)s on the RHS with c · f (...)s, and
replace the = with ≤ for Big O or ≥ for Big Ω

• You want the RHS to then be ≤ cf (n).

• Rearrange to find an appropriate value of c .



Recursive Algorithm Correctness

Correctness is precondition implies postcondition.

• Do complete induction on the size of the input.

• The IH is that precondition implies postcondition for smaller
instances.

• To apply the IH, you need to prove the precondition holds for
the recursive step, AND that the recursive step is indeed a
smaller instance (and thus captured in the IH)



Iterative Algorithm Correctness
• Do NOT try to do induction on the size of the input.
• Define a loop invariant.

▶ Trace the algorithm on some example inputs to get an idea of
what each variable corresponds to.

▶ Use that intuition to come up with a loop invariant.
▶ It’s almost always useful to include: after the kth iteration

ik = ... where i is the iteration variable.

• Sketch initialization, maintenance, and termination BEFORE
writing it up. If everything seems to work out ok, you can
start writing it up. Otherwise, you found something that
didn’t work, so you need to update your LI.

• Explicitly state your loop invariant: “P(n) : After the nth
iteration ...”

• Prove initialization/maintenance/termination

• Termination: Either use the loop invariant or the descending
sequence strategy, and prove that the LI after the last
iteration implies the postcondition.



Determining if a Language is Regular

• Intuition: regular ⇐⇒ can be computed using fixed, finite
memory.



Showing a langauge is regular

Pros Cons

Regex Fast, great for matching sub-
strings/beginnings/endings

Easy to match too many
things

NFA Powerful, great for counting #
of occurrences mod N

Slower than regex and
can harder to check than
DFAs

DFA Safe. Once you write a DFA it
is easier to check (don’t need
to follow different sequence of
choices)

Takes longer to write.



Showing a langauge is regular

Study tips

• For all the language I have given you in lectures, tutorials, and
homeworks, come up with DFAs/NFAs and regular expressions
for them.

• Get a lot of practice. This is particularly important for these
kinds of problems since it increases the likelihood of you being
able to relate a language on the exam to something you’ve
seen before.



Closure

Questions of the form, suppose A, B are regular, then so is (some
transformation of A,B)

• Assume you have DFAs for A, and B.

• Define a NFA based on the DFAs for A and B.10

10Why start with DFAs and then define an NFA?

▶ DFAs are simpler so easier to control (don’t have to worry about the
non-determinism with the machines for A and B)

▶ NFAs give you more power to show the new language is regular.



Showing a langauge is not regular

To show A is not regular,

• Find S ⊆ Σ∗ such that S is infinite and pairwise
distinguishable relative to A. Remember to cite that this is
enough b/c of the Myhill-Nerode Theorem.11

• OR use the Pumping Lemma

As I have said previously, I think the Myhill-Nerode Theorem is
easier to use.

11Note S can be any set of strings, a common misconception is that S must
be a subset of A.



Exam Tips

Recap - a look back

More in theory - a look ahead
Error Correcting Codes
Cryptography
Complexity Theory



Takeaways

• A set of mathematical tools to analyze and model the world.

• Correctness and runtime of algorithms.

• A formal model of computation.



What was that graph from the first slide?



What was that graph from the first slide?

• G236 = (V ,E )

• V is the set of things we studied.

• {u, v} ∈ E if and only if u and v are “directly related”.



That was a LOT of stuff - congratulations



Exam Tips

Recap - a look back

More in theory - a look ahead
Error Correcting Codes
Cryptography
Complexity Theory
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Error Correcting Codes
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What do we want from error correcting codes?

• We want to be able to decode from many errors.

• There should be minimal overhead. I.e. c shouldn’t be much
longer than m itself.

• Enc,Dec should be fast.



Other applications

• QR Codes

• Covid Testing

• Hard drives

https://www.youtube.com/watch?v=D4wFd3iARWA


An Example

m = hello

c = Enc(m) = hellohellohello

c̃ = jellohillahelgo



An Example

m = hello

c = Enc(m) = hellohellohello

c̃ = jellohillahelgo

How do you correct the errors?



An Example

m = hello

c = Enc(m) = hellohellohello

c̃ = jellohillahelgo

When will this strategy work/fail? It works for any single
corruption. If there are two corruptions that occur at the same
index in multiple copies (e.g. two of the three hs are corrupted to
a), the decoded message will be wrong!



An Example

m = hello

c = Enc(m) = hellohellohello

c̃ = jellohillahelgo

How many errors can I guarantee to work on if I sent 5 copies
instead of just 3? How about 2a+ 1 in general for a ∈ N?



An Example

m = hello

c = Enc(m) = hellohellohello

c̃ = jellohillahelgo

Performance summary

• Size blow up: 3 (2a+ 1)

• Errors decodable from: 1 (a)

A size blow up of 3 to correct just a single error doesn’t seem that
worth it! Can we do better?



A Slightly Better Example

m ∈ {0, 1}4

c = m1m2m3m4(m2⊕m3⊕m4)(m1⊕m3⊕m4)(m1⊕m2⊕m4)



A Slightly Better Example

m ∈ {0, 1}4

c = m1m2m3m4(m2⊕m3⊕m4)(m1⊕m3⊕m4)(m1⊕m2⊕m4)

E.g.
m = 1001
c = 1001100

Claim: We can correct from one error!



A Slightly Better Example

m ∈ {0, 1}4

c = m1m2m3m4(m2⊕m3⊕m4)(m1⊕m3⊕m4)(m1⊕m2⊕m4)

What is the message if this was the received codeword (with one
error)

c̃ = 1110011



A Slightly Better Example

m ∈ {0, 1}4

c = m1m2m3m4(m2⊕m3⊕m4)(m1⊕m3⊕m4)(m1⊕m2⊕m4)

Performance summary

• Size blow up: 7/4

• Errors decodable from: 1

We get the same error correction performance, but the blow up in
the size of the message is only 7/4 instead of 3!



A Mathematical Model
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Interesting Facts and Questions

• What is the optimal tradeoff between the size blow up and the
number of errors you can correct from?

• How can we construct codes that get a good tradeoff that
also have good encoding and decoding algorithms?

• A “random” code is pretty good. You can get a blow up
factor 1/ϵ2 and correct 1/4− ϵ/2 errors. For example,
ϵ = 0.1, then we can blow up the message by a factor of 100
to correct a message that is corrupted in 1/5 of all of its bits!



Secure Messaging
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Shift Cipher

m = hello, k = 3

c = jhoor



Shift Cipher is not great

Suppose some eavesdropper who doesn’t know the key saw the
ciphertext jhoor. What can they learn about the message?

They actually get to learn a lot about the message! For example,
they know that the third and fourth character must have been the
same in the message and can rule out messages like peach. In fact,
of all the 265 possible sequences of letters that could have been
the message, they can narrow it down to just 26 possible messages.

For security, we want the eavesdropper to learn nothing about the
real message!
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Shift Cipher is not great

Suppose some eavesdropper who doesn’t know the key saw the
ciphertext jhoor. What can they learn about the message?

They actually get to learn a lot about the message! For example,
they know that the third and fourth character must have been the
same in the message and can rule out messages like peach. In fact,
of all the 265 possible sequences of letters that could have been
the message, they can narrow it down to just 26 possible messages.

For security, we want the eavesdropper to learn nothing about the
real message!



Security

Here’s how we can mathematically define “learns nothing”.

Mo Ma are any messages
AdversaryA

K Keys
Mo MI

b 0,1
Enclkm

Laguess frb

Security Noeft adversary wins the game w any
significant advantage



The assumptions - some problems are hard

Since we don’t have a way of checking all algorithms, we need to
make some assumptions of the form: “There is no efficient
algorithm to solve X” i.e. X is a hard problem.

We then use problem X to design an encryption scheme. To prove
the security of that scheme, we prove that if there is an adversary
that can distinguish b/w the encryption of two messages, then
they can solve problem X efficiently, which is impossible under our
assumption.



The assumptions - some problems are hard

What are some hard problems you know that can be used?



The assumptions - some problems are hard

What are some hard problems you know that can be used?

Factoring large number is a common one. Finding the discrete
logarithm is another.

Interestingly, these problems are not hard if there are good enough
quantum computers :)

https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Discrete_logarithm


Cool things you can theoretically do

• Zero Knowledge Proofs

• Secret Sharing

• Private Information Retrieval

• Homomorphic Encryption



Complexity Theory



Resources

We looked at time as a valuable resource for computation. What
are some other resources you can think of?

• Space

• Randomness/Nondeterminism

• Number of processors

How much do we need to solve problem X?



Resources

We looked at time as a valuable resource for computation. What
are some other resources you can think of?

• Space

• Randomness/Nondeterminism

• Number of processors

How much do we need to solve problem X?



Exchange rates?

How much extra time do I need to simulate random or
nondeterministic computation?

How much time can I buy with extra space?



The Power of Nondeterminism

For DFAs, we saw that adding nondeterminism gave us no
additional power.

We can simulate a NFA using a DFA!

An analogous fact is not known for more general computation.



P and NP

P is the set of formal languages that can be solved
deterministically in polynomial time.

NP is the set of formal languages that can be solved
nondeterministically in polynomial time.



NP

NP is equivalent to the set of formal langauge for which we can
verify a solution to a problem deterministically in polynomial time.

For example,

Sudoku = {S : S is a sudoku puzzle with a solution}

Given a sudoku puzzle S , and proposed solution S ′, I can quickly
check whether or not S ′ is indeed a solution for S and hence
S ∈ Sudoku

NP represents the class of problems we can reasonably hope to
solve. If we can’t check whether a proposed solution is correct,
how can I be confident about any answer?



NP

NP is equivalent to the set of formal langauge for which we can
verify a solution to a problem deterministically in polynomial time.

For example,

Sudoku = {S : S is a sudoku puzzle with a solution}

Given a sudoku puzzle S , and proposed solution S ′, I can quickly
check whether or not S ′ is indeed a solution for S and hence
S ∈ Sudoku

NP represents the class of problems we can reasonably hope to
solve. If we can’t check whether a proposed solution is correct,
how can I be confident about any answer?



Sudoku

Does this sudoku have a solution?



Sudoku

Is this a valid solution to the sudoku puzzle?



Examples
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Huge open problem

Is P = NP?

I.e. If I can check a solution to a problem deterministically in
polynomial time, can I solve the problem deterministically in
polynomial time?

Intuition: No! It’s much easier to check a solution than to solve
the problem!

This is one of 7 Millennium Prize Problems. There is a 1000000
USD prize for each problem. So far, just one out of 7 of the
problems have been solved.
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the problem!
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Huge open problem

Is P = NP?

I.e. If I can check a solution to a problem deterministically in
polynomial time, can I solve the problem deterministically in
polynomial time?

Intuition: No! It’s much easier to check a solution than to solve
the problem!

This is one of 7 Millennium Prize Problems. There is a 1000000
USD prize for each problem. So far, just one out of 7 of the
problems have been solved.



Next steps

Depending what you liked here are some topics to explore next! If
you liked...

• Mathematical foundations...
▶ MAT377 - Mathematical Probability
▶ MAT344 - Introduction to Combinatorics
▶ MAT332 - Introduction to Graph Theory
▶ MAT221/223/224 - Linear Algebra

• Algorithms...
▶ CSC263 - Data Structures and Analysis
▶ CSC373 - Algorithm Design, Analysis & Complexity
▶ CSC473 - Advanced Algorithm Design
▶ CSC324 - Principles of Programming Languages

• Formal Languages...
▶ CSC448 - Formal Languages and Automata
▶ CSC463 - Computational Complexity and Computability
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