
2025-07-09

Iterative Correctness

Recap

• Correctness: Precondition Postcondition

• For recursive algorithms, proof of correctness is done by induction on the
input size.

• Karatsuba’s Algorithm for multiplication.

• time!

⟹

nlog2(3) ≤ n1.59

Iterative Algorithms

• Convention: After the th iteration
means just before the loop
condition is evaluated for the

 time

• After the th iteration is the same
as before the th iteration

k

k + 1
k

k + 1

Example
More multiplication! Effi

By inductionThistime on
the

ofiterations
DefinePn

liaftertheathiterationEtitalif

IIWISW.pl
Basecase ttf

0

0Yretuntotal

Inductivestep let keN WIS

P k Pk 1

if thekilth iterationdidn'trun then PK 1
is vacuouslytrue

so suppose the411ᵗʰ iteration non

a WTStotalk Kei y
totally totalk y

Ky y IH P k a

Kelly

b WTS in Ktl

lets in I

Ktl IH Pk b

This completes the induction

The whilecondition is icsc

Thevalueof it K so the condition is trueforall

KLI
then after iteration x Ex Pla b

thus isx isnotte
so we theexit the loop after the xᵗʰ

iteration

andreturn total xy by Pbc a

Subscripts

• If is some variable in the function, use to denote the value of a variable
after iteration

•

x xi
i

General Strategy

Define a loop invariant - some property that is true at the end of every iteration. Call the
property . I.e., holds if the property is true after iteration . WTS

Prove the following:

• Initialization. Show that the loop invariant is true at the start of the loop if the

precondition holds.

• Maintenance. Show that if the loop invariant is true at the start of any iteration, it is

also true at the start of the next iteration.

• Termination. Show that the loop terminates and that when the loop terminates, the

loop invariant applied to the last iteration implies the postcondition.

P(i) P(i) i ∀i ∈ ℕ . P(i)

ii t tyPln
tn

Base case

I

inductivestep

Runtime lasttime multiplying Idigitnumberstake

99
timeo

99C thefastest

algfor
10 1 multiplication

10 is Ologin
discoveredin

M 2 n0 2019

For Loops While Loops⟺

Proving Termination

• Usually, a consequence of the loop invariant.

• The loop invariant implies the loop condition is true after iterations

• The loop invariant implies the loop condition is false after iteration , so the
loop exits after the th iteration.

0,1,...,N − 1
N

N

pn

Mystery Algorithm Pln Afteriteration in
a Chen

Basecase b valn ny

indu
Initialization Plo 6 0 Valo 0 0y
Maintenance P k Pkt1

9 Can Gatt

b Vala Valty kyty ktily
Termination Valux whenever

a 1211 n weexittheloop

E when wereturn cn n

0

ln Afteriteration in
a Chen
b My

whileval ex

r

1.7showalgterminates.it
By contradiction suppose

theloopcontinues indefinitely

inparticular thismeans that there is an
iteration

1000 Then P 1000x b implies Valooo 1000xy

but then 100Oxy so thiswasthelastiteration
contoration

2 thealg terminatesafter
iteration N forsomeN

all iterationsprior to N
satisfiedthe loopcondition

and after the Nth iteration the loop
condition

was false

Valo x Val ax valve x
Valy

22

02 x 4271 CN17422TT

NT g x Ny

M

N 547

Convention

Variations

• One loop after another

• Prove the correctness of each loop in sequence

• Nested loops

• “Inside out”. Decompose (or imagine) the inner loop as a separate function.
Prove the correctness of that function as a lemma and then prove the
correctness of the outer loop. We’ll see some examples in the tutorial.

While

1

Another way to prove termination
Descending Sequence

• Define a descending sequence of natural numbers indexed by the iteration
number. I.e.

• Then, must be a finite set; otherwise, it would be a set of
natural numbers with no minimal element, contradicting the Well-Ordering
Principle.

a1 > a2 > a3 > . . .
A = {a1, a2, . . . , }

Example.
450 An y Valn

Claim An is descending and

An is anaturalnumber

Proofbyinduction Pln if thenth
iterationran then In and

n 1Pln

Basecase

fy x a.ca

Inductivea f ValiyaYff.vn l

Proofs of Termination

• Most of the time, the LI will imply termination, saving you from having to do
another induction proof. I prefer this method.

• However, it is easier to define a descending sequence of natural numbers in
some cases - we’ll see some examples in the tutorial.2

 Merge

• Inputs: are lists of sortable elements.

• Precondition: are sorted lists

• Postcondition: returns a sorted list
consisting of all the elements in and

x, y

x, y

x y

12 62,3T d
11 1,23

Counters

• If , then is a mapping of elements of to the number
of times they appear.

• E.g.

• You can think of as a function from

l ∈ List[X] Counter(l) l

Counter([1,2,3,2,1,1,1,4]) = {1 : 4, 2 : 2, 3 : 1, 4 : 1}
Counter(l) X → ℕ

collectionsCounter

0
Counter 1 1 4

 Merge

• Inputs: are lists of sortable elements.

• Precondition: are sorted lists

• Postcondition:

x, y

x, y

concentration

return l st
sorted

Canter l counterTy

I

1 11
contentions

Pln afteriteration n
a lean
D lis sorted ret

xc
g

a linlaltlen.ly lenced lenko7lenly

GEEITIESl a

Takeaways

• It’s normal for the loop invariant to have many parts!

• If you’re trying to prove a loop invariant and you get stuck and wish some
other property holds, try adding what you need as part of the loop invariant.

• For example, it’s common for part 4 of a loop invariant to imply part 1 of the
loop invariant.

Summary: Correctness

• If the algorithm is recursive, prove correctness directly by induction on the
size of the input.

• For algorithms with loops, prove the correctness of the loop by defining a
Loop Invariant, proving the Loop Invariant, and showing that the Loop
Invariant holds at the end of the algorithm implies the postcondition.

