Lecture 11

Regular Expressions and Non-regular Languages

07-30



Recap

Regular Languages

The following are equivalent
e Aisregular
e ThereisaDFA M suchthat L(M) = A

e ThereisaNFA N suchthat L(N) = A



Closure

If A, B are regular, so are

e A

e AUB
e ANB
e AB
e AN

o A*



Regular Expressions

Let X2 be an alphabet. Define the set of regular expressions R s recursively as follows.

R is the smallest set such that

0 e Ryx

e € Ry

a € Ry foreacha € X

ReRy — (R)" € Ry
Ri,R; € Ry = (R1R>) € Ry

Ri,R; € Ry — (R1i|R2) € Ry



Regular Expressions

The language if a regular expression R, denoted L(R) is the set of strings that R matches.

Formally,
o L(D)=10
+ L(e) = {¢}

e L(a) ={a},forae X
e L(R*) = L(R)*forR € R,
o L(R1R2) - L(R1)L(R2) for Rl, Ry € Rz

o L(RliRz) — L(Rl) U L(Rz) for R1, Ry € Ry



Today

« NFA < Regular Expressions (!!!!)

* Non-regular languages (!!!!)



Equivalence of NFAs and Regular Expressions
Regex -> NFA



Equivalence of NFAs and Regular Expressions
NFA -> Regular Expression




Equivalence of NFAs and Regular Expressions
NFA -> Regular Expression




Sketch of Formal Proof

e Alter the NFA so there’s just one accepting state (using € transitions).

e [teratively rip out states, replacing transitions with regular expressions until you have
something that looks like

(=0

R is the equivalent regular expression.




For two states g1, g2 with a transition between them, let f(q1, g2) be the regular
expression labelling the transition.

Here are the steps to rip out a state g.

1. Remove the loop: If there is a self loop on state g, for each state s with a transition

into g, update the transition f(s,q) = f(s, q)f(q, q)*. For each state s’ with a
transition out of g, update the transition f(q, s’) = f(q,q)* f(q, s’)

2. Bypass g: for each path (s, g, t) of length 2 through ¢, update
f(s,t) = f(s,t)|f(s,q)f(qg,t). Note thatitis possible that s = ¢, in which case this

step adds a loop.

3. Remove q.



Regular Languages

The following are equivalent
o Aisregular
e ThereisaDFA M suchthat L(M) = A

e ThereisaNFA N suchthat L(N) = A

* There is a regular expression R such that LL(R)

A



Showing a language is regular

 Find either a DFA, NFA, or Regular Expression for the language!



How to choose

e |typically use regular expressions for languages that seem to require some form of
‘matching’. For example contains 121 as a substring, or ends with 11. Regular
expressions are typically faster to find and write out in an exam setting.

e I'll use NFAs when | can’t easily figure out a regular expression for something. These

are usually languages for which memory seems to be useful like the Dogwalk
example from hw.

e Stuff involving negations also seems easier to do with NFAs than with regular
expressions. For example, contains the substring 011 is easy with regular expression,
but doesn’t contain the substring(011 is a bit more complicated.






Non-Regular Languages

* Are all languages regular?



Key Intuition

 Regular &< Computable with “finite memory”



Example

e Let X = {a"b" : n € N}. Claim: X is not regular

 Why is this the case, using the intuition from the previous slide”






Same State, Same Fate

* |f two strings x and y reached the same state, then no matter what string w
comes after, xw and yw will end up in the same state and hence will both be
accepted or both be rejected

o Equivalently, different fates — different states

« X has infinitely many strings that have different fates, hence, there must be
infinitely many states!



Distinguishable



Myhill-Nerode Theorem

Let A be a language over Y. Suppose there exists aset S C X* with the following
properties

e (Infinite). S isinfinite

e (Pairwise distinguishable). Vx,y € S, with x # y. x, and y are distinguishable
relative to A.

Then A is not regular.



Using the Myhill-Nerode Theorem

« By the Myhill-Nerode Theorem, to show a language A is not regular, it suffices
to find a set § C 2* such that S is infinite, and pairwise distinguishable
relative to A.



Example

Showing X is not regular using the Myhill-Nerode Theorem.




