Lecture 11

Regular Expressions and Non-regular Languages
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Recap

Regular Languages

The following are equivalent
e Aisregular
e ThereisaDFA M suchthat L(M) = A

e ThereisaNFA N suchthat L(N) = A



Closure

If A, B are regular, so are
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Regular Expressions

Let 3 be an alphabet. Define the set of regular expressions R x; recursively as follows.

R s, is the smallest set such that

(0} %
.@ Ry

0@ Ry foreacha € 2

e ReRy — @G'Rg

e Ri,R € Ry — (Rle) € Ry
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. R1,R2 €ERy — (Rl‘Rz) € Ry
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Regular Expressions

The language if a regular expression R, denoted L(R) is the set of strings that R matches.

Formally,
« L(0) =10
3
e L(e) = {€} Yase ogso

e L(a) ={a},forac X
2

e L(R*) = L(R)*forR € R? .
’ MU\C(-W 5‘%{3

. L(R1R2) = L(R1)L(R2) for Rl,Rz € Ry

\

o L(R1|R2) = L(Rl) U L(Rz) for R1, Ry € Ry
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Today

« NFA < Regular Expressions (!!!!)

* Non-regular languages (!!!!)



Equivalence of NFAs and Regular Expressions

Regex -> NFA /
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Equivalence of NFAs and Regular Expressions
NFA -> Regular Expressmn 7
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Equivalence of NFAs and Regular Expressions
NFA -> Regular Expression




Sketch of Formal Proof

o Alter the NFA so there’s just one accepting state (using € transitions).

e |teratively rip out states, replacing transitions with regular expressions until you have

something that looks like

l
R is the equivalent regular expression.



For two states g1, g2 with a transition between them, let f(q1, g2) be the regular

expression labelling the transition.

Here are the steps to rip out a state q.

Tles
1. Remove the loop: If there is a self loop on state g, for eac M

into g, update the transition f(s,q) = f(s, q) f(g,q)*. For each state s’ with a

transition out of g, update the transition f(q, s’) = f(q,q9)* f(q, )

N\~
2. Bypass q: for each path (s, g, t) of length 2 through ¢, update

f(s,t) = f(s,t)|f(s,q)f(q,t). Note thatitis possible that s = ¢, in which case this
step adds a loop.

3. Removegq. S £> a, SDQT
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Regular Languages

The following are equivalent

o @s regular

e ThereisaDFA M suchthat L(M) = A

e ThereisaNFA N suchthat L(N) = A

e There is a regular expression Rsuchthat L(R) = A




Showing a language is regular

» Find either a DFA, NFA, or Regular Expression for the language!
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How to choose

e | typically use regular expressions for languages that seem to require some form of

‘matching’. For examplé contains 121 3s a substring, or ends with 11. Regular

P ——

expressions are typically faster to find and write out in an exam setting.
SR SER

e |’ll use NFAs when | can’t easily figure out a regular expression for something. These

are usually languages for which memory seems to be useful like the Dogwalk
example from hw.

&

e Stuff involving negations also seems easier to do with NFAs than with regular
expressions. For example, contains the substring@s easy with regular expression,

but doesn’t contain the substri a bit more complicated.
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Non-Regular Langu is

 Are all languages regular?
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Key Intuition
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Example o~ A5
e =

7¢€afb; = 5

e Let X = {a"b" : n € N}. Claim: X is not regular

« Why is this the case, using the intuition from the previous slide?
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‘Same State, Same Fate ﬁfi\ﬂ@(\’q@
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« If two strings x and y reached the same state, then no matter what string w

comes after(xw and ill end up in the same state and hence will both be
accepted or both be rejected

« Equivalently, different fates — different states

« X has infinitely many strings that have different fates, hence, there must be
infinitely many states!



Distinguishable
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Myhill-Nerode Theorem

Let A be a language over ¥. Suppose there exists a s¢

properties

. (Infinite)

* (Pairwise distinguishable). ¥z, y & S, withx # y. z, and y are distinguishable
relative to A.

Then A is not regular.
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Using the Myhill-Nerode Theorem

« By the Myhill-Nerode Theorem, to show a language A is not regular, it suffices
tofindaset$ C 2% such that § is infinite, and pairwise distinguishable
relative to A.




Example

Showing X is not regular using the Myhill-Nerode Theorem.
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