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Abstract

Feature selection is a fundamental problem in machine learn-
ing and data mining. The majority of feature selection algo-
rithms are designed for running on a single machine (cen-
tralized setting) and they are less applicable to very large
datasets. Although there are some distributed methods to
tackle this problem, most of them are distributing the data
horizontally which are not suitable for datasets with a large
number of features and few number of instances. Thus, in this
paper, we introduce a novel vertically distributable feature se-
lection method in order to speed up this process and be able
to handle very large datasets in a scalable manner. In gen-
eral, feature selection methods aim at selecting relevant and
non-redundant features (Minimum Redundancy and Maxi-
mum Relevance). It is much harder to consider redundancy
in a vertically distributed setting than a centralized setting
since there is no global access to the whole data. To the best
of our knowledge, this is the first attempt toward solving the
feature selection problem with a vertically distributed filter
method which handles the redundancy with consistently com-
parable results with centralized methods. In this paper, we
formalize the feature selection problem as a diversity maxi-
mization problem by introducing a mutual-information-based
metric distance on the features. We show the effectiveness of
our method by performing an extensive empirical study. In
particular, we show that our distributed method outperforms
state-of-the-art centralized feature selection algorithms on a
variety of datasets. From a theoretical point of view, we have
proved that the used greedy algorithm in our method achieves
an approximation factor of 1/4 for the diversity maximization
problem in a distributed setting with high probability. Fur-
thermore, we improve this to 8/25 expected approximation
using multiplicity in our distribution.

Introduction
Feature selection is the task of choosing a small represen-
tative subset of features from a dataset. It is a crucial pre-
processing step in several data mining and machine learning
applications as it can significantly reduce the learning time
and the error rate (Guyon and Elisseeff 2003). This prob-
lem has received even more attention in the big data era
with ultrahigh-dimensional datasets in different fields such

∗Both authors contributed equally to this work
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as bioinformatics (Greene et al. 2014), neuroscience (Turk-
Browne 2013), finance, and document classification. Al-
though there are various methods that are fast enough to han-
dle several thousands of features, they become less applica-
ble in the presence of millions or billions of features. To deal
with such big datasets, we need more scalable and faster ap-
proaches such as distributed methods. Most of the developed
distributed methods distribute the data by instances among
machines—horizontally distributing—(Zhao et al. 2012;
Peralta et al. 2015) and there are a few recent works tackling
the problem by distributing the feature vectors—vertically
distributing (Moran-Fernandez, Bolón-Canedo, and Alonso-
Betanzos 2015). Intuitively, horizontal distribution is infea-
sible when the dataset has many features but a few instances,
e.g., bioinformatics datasets. As a matter of fact, it is harder
to deal with the redundancy of the features in a vertically dis-
tributed setting in comparison to horizontally distributed or
centralized settings (Bolón-Canedo, Sánchez-Maroño, and
Alonso-Betanzos 2015b). In the rest of the paper we use cen-
tralized setting in contrast to distributed setting.

Over the past decade, several information-theoretic meth-
ods have been developed for feature selection. In addition
to having a strong theoretical foundation, these techniques
have shown reasonable performance in practice. They con-
sider two intuitive criteria: minimizing redundancy of the
selected features by reducing mutual information between
them, and maximizing their relevance by increasing mu-
tual information between them and class labels. These cri-
teria are the foundations of a widely used and well-known
feature selection framework called mRMR (Ding and Peng
2005). In this paper, we note that a potential way of consid-
ering these criteria in a distributed setting is through diver-
sity maximization framework. Therefore, our method can be
viewed as a distributed version of mRMR that also guaran-
tees a theoretical bound for its objective function.

In the diversity maximization framework, the goal is to
find a fixed-sized set of points from a metric space which
maximizes a certain diversity function. This diversity func-
tion is defined based on a distance between elements of
the metric space (Abbassi, Mirrokni, and Thakur 2013;
Indyk et al. 2014; Abbasi Zadeh and Ghadiri 2015). As one
of our main contributions toward modeling feature selection
through diversity maximization, we introduce a metric dis-
tance between feature vectors which considers their redun-



dancy and relevance, simultaneously.
Recently, several techniques have been developed to

solve diversity maximization problems in a distributed man-
ner (Indyk et al. 2014; Aghamolaei, Farhadi, and Zarrabi-
Zadeh 2015). However, these algorithms can be improved in
terms of provable approximation factors and also in terms of
the computational complexity of the underlying algorithm.

Our Contributions
Our contributions in this paper are three-fold:

• We introduce a new model for filter-based feature selec-
tion by formalizing it as a diversity maximization prob-
lem defined on a metric distance function among features.
More specifically, the objective function is a linear com-
bination of the sum of pairwise distances of features and
their mutual information with class labels.

• We present an improved constant-factor approximate dis-
tributed algorithm for diversity maximization which is
also faster than the existing algorithms. This algorithm
is a distributed version of the well-studied greedy algo-
rithm for this problem. In order to achieve the approxima-
tion factor of 8

25 , which is a great improvement over the
latest existing approximation factor of 1

12 , we apply two
algorithmic techniques: 1) By random partitioning of the
features, we obtain an approximately optimal randomized
composable core-set for this problem (defined by (Mir-
rokni and Zadimoghaddam 2015)), and 2) To improve ap-
proximation factor from 1

4 to 8
25 − ε, instead of sending

each feature to a single machine, we send it to 1/ε ran-
domly chosen machines.

• We perform an extensive empirical study on a variety of
dataset types including biological, texts, and images cov-
ering a broad range of number of features from a few
thousands to millions, and show the effectiveness of our
filter-based distributed algorithm from three perspectives:
1) By simulating a distributed system on a single ma-
chine, we show that our distributed method outperforms
the existing centralized state-of-the-art methods in terms
of classification accuracy, while we also significantly im-
prove the running time. To do so, we compare with vari-
ous feature selection algorithms. 2) We show the advan-
tages of the greedy over the local search method for the
distributed diversity maximization. 3) Finally, we demon-
strate our objective function’s quality by considering all
the fixed-sized combinations of features on small-sized
datasets and show a high correlation between the diver-
sity objective value and the classification accuracy.

Related Work
Diversity Maximization. The diversity maximization prob-
lems generalize the maximum dispersion problem (Hassin,
Rubinstein, and Tamir 1997). This problem has been ex-
plored in the context of diversity maximization for recom-
mender systems, and commerce search. A number of 1

2 -
approximation algorithms have been developed for the cen-
tralized version of this problem and its generalizations (Has-
sin, Rubinstein, and Tamir 1997; Abbassi, Mirrokni, and

Thakur 2013; Borodin, Lee, and Ye 2014). More recently,
it has been independently shown by (Bhaskara et al. 2016)
and (Borodin, Lee, and Ye 2014) that under the planted
clique conjecture, improving this 1

2 -approximation for the
diversity maximization problem is not possible.

Composable Core-sets. Recently, a new concept has
emerged in distributed computing literature. An α-
approximate composable core-set for an optimization prob-
lem like P is a mapping from a set to a subset of it, so that
the union of the subsets for a collection of sets includes
a solution within α factor of the optimal solution of the
union of the sets. Several diversity maximization problems
in a metric space have been examined using composable
core-sets (Indyk et al. 2014). In that work, a constant-factor
approximation has been given for the distributed diversity
maximization problem examined in this paper, however, the
approximation factor of the algorithm is a large constant
(< 1

100 ). This factor has been improved to 1
12 in (Aghamo-

laei, Farhadi, and Zarrabi-Zadeh 2015). There is still a large
gap between the 1

12 approximation factor and the potential
1
2 approximation guarantee (Birnbaum and Goldman 2009).
Here, we present a much improved approximation algorithm
and tighten this gap. The idea of using random partition-
ing and multiplicity in distributed optimization have been
applied to submodular maximization (Mirrokni and Zadi-
moghaddam 2015). Note that the diversity function is not
submodular, and the proof techniques used for submodular
maximization may not be applied to the diversity maximiza-
tion.

Feature Selection. Feature selection methods are divided
into three general families: filters, wrappers and embedded
methods. Filter methods are independent from the learning
algorithm that will be used on the data. On the contrary,
wrapper methods apply a learning algorithm in order to eval-
uate the feature subsets according to their performance and
embedded methods select the features during the training
process. In general, filter methods are faster than the others
and more capable to prevent overfitting (Guyon and Elisseeff
2003). Mutual-information-based methods are a well-known
family of filter methods. They attempt to find non-redundant
features which are relevant to the class labels (Peng, Long,
and Ding 2005).

There have been a great amount of progression on the
centralized feature selection methods in the last decades, in
which all the data had to be stored and processed on a sin-
gle machine. Although the proposed centralized methods are
quite fast and efficient, in the context of big data, they can-
not perform well and the need for distributed methods are
crucial. The data can be partitioned in two ways among ma-
chines: horizontally and vertically. We refer to distributing
the data by instances as horizontal partitioning and distribut-
ing the data by features as vertical partitioning. Horizontal
partitioning cannot handle datasets with few number of in-
stances and large number of features. Although there were
some attempts for vertically distributed feature selection
methods, most of them do not consider the redundancy of
the features (Bolón-Canedo, Sánchez-Maroño, and Alonso-
Betanzos 2015b). In (Bolón-Canedo, Sánchez-Maroño, and
Alonso-Betanzos 2015a) and (Sharma, Imoto, and Miyano



2012), some wrapper methods were introduced in order to
overcome the redundancy issue by using the classification
accuracy. To the best of our knowledge, prior to our work,
there have been no vertically distributed filter feature selec-
tion method that can deal properly with the redundancy.

Modeling Feature Selection with Diversity
Maximization

Let U be a set of size d of labeled instances accompanied by
a large set of features N with cardinality n, represented in a
d×nmatrix. The instances are labeled with a d-dimensional
vector L known as the class label vector. In the feature se-
lection problem, we aim to find a compact subset of features
S that explains the labels with high accuracy. To do so, we
would like to select a diversified subset of features which are
relevant to the vector of class labels. Hence, if we define a
metric distance between features that considers redundancy
and relevance, the feature selection problem will reduce to
the diversity maximization problem.

Definition 1. For two feature vectors like p and q and the
class label vector L, we define the DIST(p, q) as follows:

DIST(p, q) ={
λVI(p, q) + (1− λ) (MI(p,L)+MI(q,L))

2
p 6= q

0 p = q

(1)

where MI is the normalized mutual information and VI
is the normalized variation of information. The first term
of this definition is for avoiding the redundancy. The sec-
ond term is for maximizing the relevance and λ is a regular-
ization factor which determines the importance of each cri-
terion. The normalized mutual information of two discrete
random variables X and Y is defined as follows:

MI(X,Y ) =
I(X;Y )√
H(X)H(Y )

=

∑
x∈X,y∈Y p(x, y) log

p(x,y)
p(x)p(y)√∑

x∈X(p(x) log p(x))
∑

y∈Y (p(y) log p(y))
,

(2)

where I(.; .) is the mutual information function, H(.) is the
entropy function and p(., .) is the joint probability. Also, the
normalized variation of information of two discrete random
variables X and Y is defined as follows:

VI(X,Y ) = 1− I(X;Y )

H(X,Y )

= 1−
∑

x∈X,y∈Y p(x, y) log
p(x,y)

p(x)p(y)

−
∑

x∈X,y∈Y p(x, y) log p(x, y)
,

(3)

where H(., .) is the joint entropy. To compute the presented
distance for feature vectors with continuous value, we dis-
cretize them. We elaborate more in the experiments section.

To prove that the DIST is metric, i.e., DIST(p, q) +
DIST(q, r) ≥ DIST(p, r), we point that VI is met-
ric (Nguyen, Epps, and Bailey 2010) and the mutual infor-
mation terms will unfold as follows: MI(p, L)+ MI(q, L)+
MI(q, L) + MI(r, L) ≥ MI(p, L) + MI(r, L) which holds
because of the non-negativity of MI(., L).

We want to maximize the following objective function (as
the objective of diversity maximization problem) for S ⊂ N
and |S| = k.

DIV(S) =
1

2

∑
p∈S

∑
q∈S

DIST(p, q)

= λ
1

2

∑
p∈S

∑
q∈S

VI(p, q) + (1− λ) (k − 1)

2

∑
p∈S

MI(p, L)

(4)

The first term of Equation 4 prevents the selection of re-
dundant features because the VI of two similar features is
near to zero and the second term makes sure that the se-
lected features be relevant to the class labels. At this point
we have modeled the feature selection problem through di-
versity maximization (Equation 4). Hence, in the next sec-
tion we focus on finding a set of k points S with maximum
diversity DIV(S) in a distributed setting. In our analysis, fea-
ture and point are being used interchangeably.

Algorithm DDISMI
In this section we describe the theoretical foundations of our
distributed method. Before that, it is worth mentioning that
our metric distance and objective function can be used in a
centralized algorithm similar to mRMR. Considering the re-
sult of (Birnbaum and Goldman 2009), in which it is shown
that the centralized greedy selection of the points in a metric
space using Algorithm 1 achieves a 1

2 approximation fac-
tor for diversity maximization problem, our method, in its
centralized setting, guarantees a 1

2 approximation factor for
its objective as well, whereas the mRMR method does not
provide such a theoretical guarantee. Hereafter, we propose
the distributed greedy-based algorithm DDISMI, and prove
that it achieves an approximation factor of 1

4 − ε for a small
sub-constant ε = o(1). To get further improvements, we
slightly change the distribution of points among machines,
and achieve an approximation factor of 8

25 − ε.

Algorithm 1: GREEDY

1 Input: Set of points T , k.
2 Output: Set S ⊂ T with |S| ≤ k.
3 S ← {an arbitrary point p ∈ T};
4 forall 2 ≤ i ≤ k do
5 p∗ ← argmaxp∈T\S

∑
q∈S DIST(p, q);

6 Add p∗ to S;
7 Return S;

Algorithm 2 (DDISMI) consists of two main phases. In
phase one, corresponding to lines 3 − 6, we partition all
points randomly into m parts {T`}m`=1, and give set T` to
a machine ` for each 1 ≤ ` ≤ m where m is the number
of machines. Machine ` runs Algorithm 1 (GREEDY) on T`,
and selects a set S` of k points. In the second and final phase,
we put all the selected sets together, and run the GREEDY al-
gorithm again on their union to achieve set S ⊂ ∪m`=1S` of k
points. Among this set S, and the m selected sets {S`}m`=1,
we output the set with the maximum diversity. In practice, it
suffices to output the set S and this extra comparison (lines



Figure 1: Illustration of the used distributed setting in the
DDISMI algorithm. First, feature vectors are distributed
randomly between m machines (Step 1), then each machine
selects k features using the GREEDY algorithm and sends
them to the master machine (Step 2). k is 1 in this exam-
ple. Finally, the master machine selects k features using the
GREEDY algorithm (Step 3).

8–9 of Algorithm 2) are for getting a better approximation
factor in theory. Figure 1 illustrates the vertical distribution
of data in Algorithm 2 using the randomized composable
core-set setting.

The next two theorems provide theoretical guarantees of
the DDISMI method. Because of space limitations, we in-
clude full proofs in the supplemental material.

Theorem 1. For any constant 0 < ε ≤ 1
4 , Algorithm 2 is

a 1−ε
4 -approximation algorithm for diversity maximization

problem with a high probability (e.g. probability 1−e−Ω(εk))
using m ≥ 6/ε machines.

Proof sketch. Let OPT be the optimum set of k points
with the maximum diversity. Define OPT` to be OPT ∩ T`,
the optimum solution points that are sent to machine `. We
prove that among the set of selected points in the first phase,
∪m`=1S`, there is a benchmark set A of k points associated
with and close to the k points of OPT, and consequently
with a DIV(A) comparable to DIV(OPT). Since we know
that GREEDY is a centralized 1

2 -approximation algorithm
for diversity maximization, in total we will have a constant
approximation guarantee for the DDISMI algorithm. We ex-
pect k/m optimum points in each machine, and with m ≥
6/ε, using concentration bounds we can prove that with a
high probability there are not more thanO(εk) items in each
OPT`. We can use the optimum points that are selected by
the machines (OPT∩(∪m`=1S`)) as part of the high diversity
benchmark setA. Suppose point p ∈ OPT is sent to machine
` and is not selected. Instead, points S` = {p1, p2, · · · , pk}
are selected in this machine. By definition of GREEDY, we
know that

∑i−1
j=1 DIST(p, pj) ≤

∑i−1
j=1 DIST(pi, pj). Sum-

ming all these inequalities for 2 ≤ i ≤ k implies that:

k−1∑
i=1

(k − i)DIST(p, pi) ≤
k−1∑
i=1

k∑
j=i+1

DIST(pi, pj) = DIV(S`)

(5)

On the left hand side, we have
(
k
2

)
distances (by considering

coefficients) from p to points in S`, and on the right hand
side, there are all the

(
k
2

)
pairwise distances in the set S`

that is the diversity of set S` as well. Let τ be the maxi-
mum average distance of pairs of points in selected sets. In
other words, τ is max1≤`≤m

DIV(S`)

(k2)
. One way to interpret

the above inequality is that some weighted average of dis-
tances from p to points in S` is upper bounded by τ . By
some algebraic computations, we imply that there should be
at least Ω(εk) points in S` with distance at most (1 + ε)τ
to p. We can use one of these points to represent p in A. So
every optimum point is either in A or represented by a close
point (distance at most (1 + ε)τ ) in it. By triangle inequal-
ity, we have DIV(A) ≥ DIV(OPT) − 2(1 + ε)τ

(
k
2

)
. Since

the final solution has a diversity at least half of DIV(A)

and at the same time at least
(
k
2

)
τ , we have DIV(S) ≥

max{DIV(OPT)
2 −

(
k
2

)
(1 + ε)τ,

(
k
2

)
τ} ≥ (1−ε)DIV(OPT)

4 .

Algorithm 2: DDISMI
1 Input: N, k, number of machines m.
2 Output: Set S ⊂ N with |S| ≤ k.
3 S ← ∅;
4 Randomly partition N into {T`}m`=1;
5 forall 1 ≤ ` ≤ m do
6 S` ← output of GREEDY(T`, k);
7 S ← output of GREEDY(∪m

`=1S`, k);
8 if ∃` : DIV(S`) > DIV(S) then
9 S ← argmaxS`

DIV(S`);
10 Return S;

We are ready to slightly change the algorithm, and im-
prove the approximation guarantee from 1

4 to 8
25 . We note

that although the analysis becomes more complex, the al-
gorithm remains simple, and highly efficient. With a slight
change in line 4 of Algorithm 2, instead of sending each
point to a random machine, we pick C random machines
(for a large enough C), and send the point to all of them.
We call C the multiplicity factor since each item is sent to C
multiple machines, and the rest of the algorithm remains the
same. We prove that the approximation guarantee improves
to 8

25 − ε where ε is sub-constant in terms of m, k, and C.
Theorem 2. For every ε > 0, Algorithm 2 with multiplicity
C = ln(1/ε)

ε is a ( 8
25−ε)-approximation algorithm in expec-

tation (over the random partitioning of points) for diversity
maximization problem.

Empirical Study and Results
We have so far focused on formalizing the feature selection
problem as a diversity maximization problem, and proving
the theoretical foundations of our approach. We now turn to
show that this method performs well in practice.

First, we compare the proposed method with the state-of-
the-art centralized feature selection algorithms and demon-
strate that, although it is a distributed method, it achieves
consistently comparable results to the widely used central-
ized methods and even outperforms some of them. Next, we



Table 1: Comparison of different single-machine methods with GREEDY and DDISMI using the SVM classifier.

MIQ JMI mRMR SpecCMI QPFS CMI Fisher
Score reliefF GREEDY DDISMI

Colon 78.1±5.3 83.1±2.5 79.8±2.3 72.2±4.1 78.0±2.8 69.7±5.4 81.3±3.2 71.7±5.1 84.4±3.2 83.1±3.2
Leukemia 92.7±4.8 88.7±3.9 99.8±0.8 89.5±3.8 82.0±4.0 82.0±4.0 99.7±0.6 98.9±1.1 96.0±2.0 96.1±2.3

Lung-discrete 82.1±4.2 90.9±2.3 90.7±1.7 84.1±8.7 91.4±2.6 83.8±6.7 88.7±5.5 80.8±6.6 92.1±1.0 91.5±1.7
Lung 86.8±2.5 90.4±2.9 96.7±0.6 95.2±0.8 96.6±0.7 96.3±0.8 89.8±4.2 92.2±1.9 96.4±1.0 95.9±1.4

Lymphoma 79.6±5.0 95.8±1.2 96.7±0.6 90.9±2.9 95.6±3.0 91.9±4.2 88.9±4.7 90.6±5.5 97.8±1.1 97.8±1.1
NCI9 30.2±4.5 74.0±3.5 74.4±2.9 51.2±5.4 25.0±5.4 52.2±7.3 64.8±4.6 50.7±5.0 83.0±5.6 82.2±6.3

Promoter 71.4±10.3 85.6±2.9 85.9±3.0 81.9±1.7 85.9±2.5 77.5±6.6 85.5±3.4 86.7±3.7 85.7±3.3 85.7±2.8
Srbct 82.7±8.5 80.8±5.5 99.6±0.6 98.6±1.9 99.7±0.6 99.3±0.8 98.7±1.6 94.2±5.1 99.2±1.2 98.7±1.0

TOX 171 61.4±5.2 57.4±7.9 83.8±5.8 77.4±7.0 72.5±5.7 88.4±7.5 75.1±5.2 79.5±18.3 88.3±3.5 88.8±4.2
Multi-features 85.5±9.1 83.8±10.5 96.0±2.2 95.6±3.0 96.1±0.8 95.5±2.5 95.6±2.2 96.7±1.8 96.5±0.7 96.3±0.8

Optdigits 81.1±22.3 96.7±2.0 96.3±2.2 96.3±2.3 95.9±2.8 85.4±15.1 96.5±2.0 95.4±4.7 96.7±1.7 96.6±1.8
USPS 92.6±3.8 90.9±3.7 90.0±2.6 86.9±2.6 92.5±4.1 93.3±3.2 88.5±8.0 89.7±5.1 93.8±2.4 93.8±2.4

PCMAC 70.3±0.9 88.0±1.7 88.5±1.3 87.9±1.4 87.8±1.3 89.2±1.7 88.5±2.3 71.5±1.3 89.8±2.0 89.8±1.9
RELATHE 67.1±2.2 79.8±3.1 82.5±2.8 79.9±3.1 79.2±3.0 85.6±3.5 76.2±6.6 63.0±3.5 85.0±4.3 84.7±4.6

Musk2 90.2±0.1 90.4±0.1 90.3±0.1 90.3±0.1 90.6±0.2 90.5±0.1 90.4±0.1 90.4±0.6 90.2±0.1 90.3±0.1
WarpAR10P 83.4±8.4 85.6±6.2 93.0±2.8 88.2±4.8 94.9±2.8 94.9±2.2 85.1±9.6 55.9±10.8 92.7±4.5 93.8±4.0
Pixraw10P 94.1±2.6 97.2±1.0 98.0±0.5 90.0±2.5 95.9±4.1 98.5±0.7 94.8±5.5 65.9±13.3 97.8±2.6 97.9±2.5

WarpPIE10P 96.9±4.4 97.3±1.5 96.4±0.9 95.0±1.1 96.9±1.1 98.4±1.3 96.2±1.9 94.9±3.5 98.7±1.0 98.8±0.8
Yale 52.4±6.5 66.3±5.9 72.2±3.0 63.0±7.3 73.8±5.5 72.6±4.5 70.8±3.3 55.4±9.2 71.3±4.7 70.8±5.3

W/T/L 19/0/0 14/4/1 11/4/4 17/1/1 12/2/5 11/1/7 14/3/2 15/1/3 2/11/6 –

present an empirical evaluation to show that the distributed
version of our method (DDISMI) is tens of times faster than
its centralized variant (GREEDY). Note that GREEDY itself
is as fast as state-of-the-art centralized methods due to its ef-
ficient greedy strategy. Then we demonstrate the advantages
of the greedy approach over the existing local search method
for diversity maximization in terms of performance and run-
ning time. After that, we investigate the defined objective
function by studying the effect of λ value on the results. Fi-
nally, to validate the quality of the objective function, we
show a high correlation between the objective value and the
classification accuracy on two small-sized datasets. Before
elaborating on the empirical results, it should be mentioned
that unlike the GREEDY algorithm which arbitrarily selects
the first feature, in the implementation, we select the one that
has the maximum MI with the class labels vector.

Comparison to the state-of-the-art feature selection
methods. In this section, we compare the quality of vari-
ous centralized feature selection methods with the proposed
distributed (DDISMI) and centralized (GREEDY) methods.
In order to test the sensitivity of our method to the structure
of the dataset, we have used several datasets from a variety
of domains with various number of features and instances
in addition to the classic datasets in the literature of feature
selection. We have described these datasets in detail in the
supplemental material.

We considered a variety of MI-based filter meth-
ods, namely Mutual Information Quotient (MIQ) (Ding
and Peng 2005), Minimum Redundancy Maximum Rel-
evance (mRMR) (Ding and Peng 2005), Joint Mu-
tual Information (JMI) (Yang and Moody 1999), Spec-
tral Conditional Mutual Information (SpecCMI) (Nguyen
et al. 2014), Quadratic Programming Feature Selection
(QPFS) (Rodriguez-Lujan et al. 2010), and Conditional Mu-
tual Information (CMI)(Cheng et al. 2008) as baselines as
well as non MI-based methods, fisher score (Duda, Hart, and

Stork 2001) and reliefF (Robnik-Šikonja and Kononenko
2003). Note that prior papers have performed extensive stud-
ies (Brown et al. 2012) comparing these methods and we
have chosen methods that achieve the best results in various
domains. To test the quality of the selected features of each
method, we feed them into a classifier method M and com-
pare their classification accuracy. All of the experiments are
performed with both SVM and 3-NN as the classifiers (M ).
Note that all of the methods are filter-based and hence are
independent from the selection of M . The LIBSVM pack-
age (Chang and Lin 2011) is the underlying implementation
of the linear SVM with its regularization factor set to 1. We
change |S| from 10 to min{100, n}, where n is the num-
ber of the features in each dataset. Finally, we report the av-
erage cross validation (CV) classification accuracy of each
method on all of the experiments with different values of |S|.
A 10-fold CV is being used for the datasets with more than
100 instances and for the others, we employ the leave-one-
out CV. In order to compute the probabilities used in MIs
and VIs we have discretized the continuous variables using
the Minimum Description Length (MDL) method (Irani and
Fayyad 1993) with 5 bins. The regularization factor of our
algorithm (λ) is set to be 0.8 in all of our experiments. We
elaborate on choosing the λ in the experiment about effect
of λ value. In order to run DDISMI, we simulate the dis-
tributed setting on a single machine and each (simulated)
machine only has access to its own feature vectors. Each
machine is responsible for processing

√
nk features when

we have n features and want to select k of them. Thus we
employ

√
n/k machines for the first stage. Then, we merge

the results of all of the machines together and then pro-
cess them again, i.e., we select k features from all of these
k
√
n/k =

√
nk features. For the sake of reproducibility,

we have provided all the codes in the supplemental mate-
rial. Table 1 compares the SVM classification accuracy of



Table 2: Comparison of different single-machine methods with GREEDY and DDISMI using the 3-NN classifier.

MIQ JMI mRMR SpecCMI QPFS CMI Fisher
Score reliefF GREEDY DDISMI

Colon 70.6±5.9 86.8±1.3 85.9±1.6 66.8±6.8 82.4±2.0 70.5±5.8 86.0±1.7 83.2±1.5 87.5±3.1 87.0±2.5
Leukemia 88.3±2.7 88.5±1.5 98.7±1.5 81.0±2.9 82.4±2.1 82.4±2.1 98.4±1.3 97.4±1.1 91.7±1.6 91.6±1.8

Lung-discrete 83.5±4.0 92.1±1.9 91.3±1.5 83.9±5.1 90.8±1.5 84.8±2.4 88.6±3.9 82.3±4.9 91.0±1.9 90.7±1.7
Lung 84.0±3.0 88.4±4.0 97.0±0.9 94.8±1.1 96.9±0.9 95.7±0.8 88.7±3.3 92.6±2.2 95.9±1.2 95.9±1.6

Lymphoma 78.5±5.1 95.8±0.9 95.9±1.0 87.6±2.3 96.6±1.8 91.8±3.7 87.2±3.6 93.1±3.7 97.3±1.2 97.7±1.4
NCI9 34.9±2.9 76.1±3.0 75.9±2.9 53.4±4.4 37.3±4.0 59.5±5.9 75.9±5.7 60.1±4.3 81.5±3.9 80.1±5.0

Promoter 67.3±7.3 78.3±5.1 78.6±4.0 72.8±4.2 78.6±3.9 72.9±3.1 77.6±4.3 75.7±3.1 76.0±3.4 76.3±4.2
Srbct 77.9±7.5 70.6±3.0 99.5±0.7 97.9±2.4 99.5±0.8 99.0±1.0 98.8±1.4 92.0±5.3 97.3±1.8 98.2±1.6

TOX 171 61.0±4.9 47.3±8.5 76.0±3.4 70.6±2.7 68.7±3.3 72.2±3.8 66.5±3.7 66.4±6.2 84.1±5.0 83.4±5.3
Multi-features 48.9±1.8 62.2±18.7 90.8±3.3 91.0±2.9 87.8±4.7 91.8±2.0 89.8±3.4 93.4±1.9 89.6±5.2 89.1±6.8

Optdigits 80.5±24.9 98.0±1.3 97.8±1.6 97.7±1.8 97.3±2.5 85.8±16.1 97.8±1.6 96.7±4.0 97.8±1.4 97.7±1.5
USPS 94.0±3.7 91.8±3.1 89.6±2.7 86.6±6.4 93.3±4.6 94.3±3.7 88.8±7.8 91.2±5.0 95.3±2.7 95.3±2.6

PCMAC 55.3±1.1 79.5±1.0 82.7±1.6 81.8±1.1 82.0±1.1 82.7±1.4 83.9±1.9 64.7±4.3 87.4±3.6 86.9±3.6
RELATHE 59.8±2.4 72.5±4.5 74.5±4.0 70.7±5.0 68.6±5.6 75.5±4.4 69.8±5.4 61.9±3.3 79.5±5.5 79.9±5.1

Musk2 95.5±0.9 96.2±0.5 95.5±0.9 95.4±0.6 96.0±0.9 95.9±0.7 96.1±0.5 95.1±0.8 95.5±0.8 95.6±0.8
WarpAR10P 57.2±3.9 64.6±4.7 78.6±3.1 77.6±4.2 87.0±2.7 74.1±3.1 80.1±5.3 37.7±5.2 84.4±4.9 85.0±5.4
Pixraw10P 91.8±3.1 93.0±1.3 98.1±0.6 86.4±3.8 89.4±3.3 97.6±0.8 94.2±4.0 69.0±8.3 97.2±1.9 97.0±2.6

WarpPIE10P 86.2±10.5 89.9±4.3 95.1±1.3 93.9±1.6 95.6±1.1 96.9±1.5 95.4±2.2 90.6±6.8 96.3±1.5 96.4±1.4
Yale 47.9±4.9 56.5±4.8 66.3±1.7 54.7±2.4 62.7±4.7 57.3±2.2 65.9±2.5 55.3±4.4 62.3±5.0 61.3±4.9

W/T/L 18/1/0 14/1/4 10/1/8 16/2/1 12/1/6 13/1/5 12/3/4 16/1/2 3/12/4 –

the selected features. For each dataset (row), the results with
higher accuracy and lower standard deviation are indicated
with bold fonts. We examine the significance of the differ-
ence in the performance between two methods by two-tailed
paired t-test at 5% significance level to decide if two feature
selection methods have tied on a dataset. In the last row of
Table 1, the performance of each method is compared with
DDISMI in the number of datasets that DDISMI has won,
tied or lost, respectively. From this table it can be inferred
that, although DDISMI does not have access to global in-
formation like centralized methods, it outperforms them in
many datasets and in some cases with slightly lower accu-
racy guarantees acceptable results. Also, Table 2 reports the
results of the same experiment using the 3-NN classifier.

DDISMI speed-up in comparison with GREEDY. In
this experiment, like before, we choose the number of the
machines to be

√
n/k in DDISMI. In order to test its speed-

up in comparison with GREEDY, we employed some higher
dimensional datasets from the order of tens of thousands
to one million features. Since there is not any overhead of
information-sharing between the machines, the speed-up is
almost linear in terms of the number of the used machines.
Our method selects 10 features from a dataset with 1.3 mil-
lion feautres in 10 minutes using 368 machines. This is 164
times faster than running on a single machine which takes
more than 27 hours. The results of this empirical study are
summarized in Table 3.

Greedy vs. local search. In this experiment, we com-
pare the greedy and the local search (Indyk et al. 2014) ap-
proaches for maximizing diversity in a distributed setting,
to show that the greedy method not only achieves a higher
objective value, but also performs better regarding classi-
fication accuracy and running time. The greedy method is
much faster because it is linear in terms of the number of
selected features and unlike the local search method, it does

not need to converge. The results of this experiment for the
NCI9 dataset are illustrated in Figure 2. Another dataset is
also investigated in the supplemental material.

Effect of λ value. Another important issue that should be
investigated is the relation of the two criteria in the defined
objective function. We run the experiments of this part on
the TOX 171 dataset to observe how changing the λ affects
the classification results. Figure 3 (a) illustrates that the per-
formance of each MI term (λ = 0) or VI term (λ = 1) in
equation 4, individually, are not comparable with the perfor-
mance of their linear combination. However, finding the op-
timal value of the λ is another challenge. Figure 3 (b) shows
that regardless of the number of the selected features, we

(a) Time (b) Objective value

(c) SVM accuracy (d) 3-NN accuracy

Figure 2: Greedy vs. Local Search on the NCI9 dataset.



Table 3: Speed-up of the DDISMI method in comparison with GREEDY. “d”, “h” and “m” stand for day, hour and minute,
respectively.

name # features (n) # instances (d) # classes # selected
features # machines GREEDY

time
DDISMI

time speed-up

Brain cell
types (2015) 45771 1772 23

10 68 6.0m 0.2m 29.6
20 48 12.4m 0.6m 22.3
50 30 31.3m 2.3m 13.9

100 21 1h 2.6m 6.2m 10.1
200 15 2h 3.1m 20.9m 5.9

Dorothea (train part)
(Guyon et al. 2004; Bache and Lichman 2013) 100,000 800 2

10 100 6.6m 0.1m 47.6
20 71 12.6m 0.4m 31.6
50 45 29.8m 1.4m 21.8

100 32 1h 1.4m 4.2m 14.8
200 22 2h 7.1m 11.3m 11.3

Binary news20
(Keerthi and DeCoste 2005; Chang and Lin 2011) 1,355,191 19996 2

10 368 1d 3h 36.4m 10.1m 164.1
20 260 2d 7h 45.1m 28.0m 119.6
50 165 6d 0h 20.9m 1h 52.4m 77.1

100 116 12d 15h 36.2m 5h 29.9m 55.2
200 82 23d 13h 48.6m 14h 13.6m 39.8

have a global maxima around the optimal λ, which suggests
that it should be obtained from the intrinsic structure of the
dataset. In this experiment, we have tested different λ values
(from 0 to 1 with 0.1 steps) and it can be seen that 0.8 is
a proper choice for λ. According to this result, we have set
λ = 0.8 in all of the experiments but it should be mentioned
that DDISMI performs much better when the λ parameter is
adjusted for each dataset separately, e.g, it achieves 99.9 %
accuracy when the λ is 0.4 on the Leukemia dataset.

(a) (b)

Figure 3: Effect of λ value on the classification accuracy
in the TOX 171 dataset. (a) Accuracy of each criterion in-
dividually. (b) Finding optimal value of λ while selecting
different number of features (10, 20, 30, 40).

Validating the objective function. One of the major
questions regarding a new objective function is its relation
with the classification accuracy. To test this issue, we se-
lect two small-sized datasets (small in the number of the
features) so that we can evaluate all the possible combina-
tions of the features. In this experiment, we compare the
classification accuracy for all the 3-combinations and 4-
combinations of features against their corresponding objec-
tive value with the λ parameter equal to 0.5. In Figure 4,
each small grey dot represents the classification accuracy on
a 4-combination of the features from the Heart (Bache and
Lichman 2013) dataset, which has 13 features. The large
black point is the solution of GREEDY and the line is the
regression line. We observed that the objective value and the

classification accuracy are highly correlated. Also, the solu-
tion of GREEDY has a high objective value as well as a high
classification accuracy. The remaining results of this experi-
ment can be found in the supplementaries.

(a) SVM accuracy (b) 3-NN accuracy

Figure 4: Relation of classification accuracy and objective
function value for 4-combinations of the Heart dataset.

We have done our experiments with two main goals in
our mind. The first goal was to show that our distributed
method can be compared with centralized methods. The sec-
ond goal was to show why our method works. In order to
satisfy the second goal, we have shown that both the objec-
tive function and the used greedy algorithm for maximizing
it have a direct impact on the quality of the selected fea-
tures. The impact of the greedy algorithm can directly be
inferred from the results of the Greedy vs. local search ex-
periment, however, the objective function’s effects has been
shown implicitly via comparing it with the state-of-the-art
methods, mainly because there are greedy-based algorithms
such as mRMR in this comparison which were beaten by
our method in various datasets due to their different objec-
tive function (but the same maximization procedure).

Conclusions
In this paper, we presented a new approach for vertically
distributed feature selection based on diversity maximiza-
tion and introduced a new objective function for this purpose
based on a metric distance function. We showed that our



distributed method is consistently comparable to the state-
of-the-art centralized methods and it can handle ultrahigh-
dimensional datasets very fast and efficient. Also, it han-
dles the redundancy of the features very well, which is
harder in a distributed setting and more crucial for ultrahigh-
dimensional datasets. Moreover, we prove that our algorithm
achieves a small constant factor approximation solution. For
future work, achieving a distributed 1

2 -approximation algo-
rithm is very appealing. For empirical studies, trying other
metric objective functions to achieve better performance
seems like a promising direction.
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Appendix
Omitted proofs
Proof of Theorem 1 We start by associating each point
p ∈ OPT with some point in the set of selected points
∪m`=1S`. Since there are m machines, and each point is sent
to a random machine independently, we expect k

m points
in each set OPT`. The size of OPT` is a sum of k ran-
dom variables |OPT`| =

∑
p∈OPT Xp where Xp is 1 if

p ∈ OPT` and zero otherwise. Since there are indepen-
dent binary random variables, we can apply concentration
bounds like Upper Tail bound in Theorem 4 of (Goemans
2015) and limit |OPT`| with high probability. We imply that

Pr[|OPT`| > (1 + δ)µ] < e−
δ2

2+δµ where µ is k
m , and δ

is set to mε/3 − 1 so we have (1 + δ)µ = εk/3. Since m
is at least 6/ε, we know δ is at least 1, and consequently
the exponent δ2

2+δ is at least (1 + δ)/6. We conclude that

Pr[|OPT`| > εk/3] < e−
1+δ
6 µ = e−kε/18 which con-

verges to zero exponentially as k grows. By taking the union
bound for all values of `, we can say with probability at least
1−e−Ω(εk) that there are at most L points in OPT` for every
1 ≤ ` ≤ m.

We construct set A ⊂ ∪m`=1S` of k points that represent
points of OPT as follows. We add each point p ∈ OPT ∩
(∪m`=1S`) to set A (such point p represents itself in A). For
every point p ∈ OPT that is not selected (p /∈ ∪m`=1S`),
we find a selected point close to it. Suppose p is sent to ma-
chine `, and is not selected. Let S` = {p1, . . . , pk} be the
points that machine ` selected with the same order (p1 is se-
lected first, and pk is selected last). According to our greedy
selection, we have the following inequalities for any point
p ∈ (OPT` ∩ T`) \ S`.

DIST(p, p1) ≤ DIST(p2, p1)

DIST(p, p1) + DIST(p, p2) ≤ DIST(p3, p1) + DIST(p3, p2)

· · ·
k−1∑
i=1

DIST(p, pi) ≤
k−1∑
i=1

DIST(pk, pi)

(6)

Summing above inequalities implies that:

k−1∑
i=1

(k − i)DIST(p, pi) ≤
k−1∑
i=1

k∑
j=i+1

DIST(pi, pj)

= DIV(S`)

(7)

On the left hand side, we have
(
k
2

)
distances (by considering

coefficients) from p to points in S`, and on the right hand
side, there are all the

(
k
2

)
pairwise distances in set S` that is

the diversity of set S` as well. Let τ be the maximum average
distance of pairs of points in selected sets. In other words, τ
is max1≤`≤m

DIV(S`)

(k2)
. One way to interpret the above in-

equality is that some weighted average of distances from p
to points in S` is upper bounded by τ . Following, we show
that the distance of p to at least ε|S`|/3 points in S` is upper

bounded by (1 + ε)τ . Otherwise, there are a > (1 − ε/3)k
points in S` with distance more than (1 + ε)τ from p. In the
left hand side of Equation 7, at least

(
a
2

)
of the

(
k
2

)
distances

are greater (1 + ε)τ . So we have the following lower bound
on left side of Equation 7:

(
a

2

)
(1 + ε)τ ≥ ((1− ε/3)k)((1− ε/3)k − 1)

2
× (1 + ε)τ

=

(
k

2

)
τ × (1− ε/3)k

k
× (1− ε/3)k − 1

k − 1
× (1 + ε)

=

(
k

2

)
τ × (1− ε/3)× (1− ε/3− ε/3

k − 1
)× (1 + ε)

≥
(
k

2

)
τ × (1− ε/3)× (1− ε/3− ε/3

2
)× (1 + ε)

>

(
k

2

)
τ ≥ DIV(S`)

(8)

where the first inequality holds by the lower bound on a,
and the second to the last inequality holds since ε ≤ 0.25.
The rest of the equations are simple algebraic manipula-
tions. Combining the above lower bound on

∑k−1
i=1 (k −

i)DIST(p, pi) with Equation 7 implies a contradiction. So
there should be at least εk/3 points in S` with distance at
most (1 + ε)τ from p. Since there are at most εk/3 points in
OPT` with high probability, we can find one distinct repre-
sentative point p′ ∈ S` for each point p ∈ OPT` \ S` to add
to A.

We conclude that there exists a set A of k points
among the selected points ∪m`=1S` that represent the
k points of OPT, and the distance of each op-
timum point and its representative in A is upper
bounded by (1 + ε)τ . Using the triangle inequality,
we know that DIV(A) =

∑
p′,q′∈A DIST(p′, q′) ≥∑

p,q∈OPT DIST(p, q) − DIST(p, p′) − DIST(q, q′) ≥
DIV(OPT) − 2

(
k
2

)
(1 + ε)τ where p′ and q′ are the repre-

sentatives of p and q.
We know that the GREEDY algorithm is a centralized 1

2 -
approximation for diversity maximization (Birnbaum and
Goldman 2009). In line 7 of Algorithm 2, we find a set S
with diversity at least half of diversity of A, 1

2 DIV(A) ≥
1
2 (DIV(OPT) − 2

(
k
2

)
(1 + ε)τ). Since in lines 8 and 9, we

take the maximum diversity of this selected set and allm se-
lected sets {S`}m`=1, the diversity of the final output set will
be at least max{

(
k
2

)
τ, DIV(OPT)

2 − (1 + ε)
(
k
2

)
τ} which is at

least DIV(OPT)
4(1+ε) ≥

1−ε
4 DIV(OPT). �

Proof of Theorem 2 The proof is similar to the proof of
Theorem 1, and we just focus on the new ideas that help us
improve the approximation guarantee. We still want to show
that there exists a set of k points A ⊂ ∪m`=1S` with a high
diversity. We focus on machine 1, and look how it filters the
optimum points. We define OPTS1 to be the set of points that
if they are sent to machine 1 they will be selected. Formally,
OPTS1 is {x|x ∈ OPT & x ∈ Greedy(T` ∪ {x})} where



Greedy(B) is the result of running Algorithm 1 on set B.
We define OPTNS1 to be OPT \OPTS1 . We note that the two
sets OPTS1 and OPTNS1 form a partitioning of optimum set
OPT, and one can similarly define OPTS` and OPTNS` for

any `. Let τ be the average distance of points in S1, i.e. τ
def
=

DIV(S1)/
(
k
2

)
. First of all, we show that the distance between

any pair of points p, q ∈ OPTNS1 is upper bounded by 2τ .
Using Equation 7, we know that

∑k−1
i=1 (k− i)DIST(p, pi) ≤

DIV(S`) where pi is the ith point selected in S1. We also
have a similar inequality for q:

∑k−1
i=1 (k − i)DIST(q, pi) ≤

DIV(S`). Summing up these two lower bounds and using
triangle inequality implies that:

(
k

2

)
DIST(p, q) ≤

k−1∑
i=1

(k − i)DIST(p, pi) + DIST(q, pi)

≤ 2DIV(S`)
(9)

By definition of τ , we conclude that DIST(p, q) is at most
2τ . Intuitively, this means that the optimum points omit-
ted by each machine are not too far from each other (com-
pared to the solution set of the machine). The next step is
to show that the points that are selected from the viewpoint
of machine 1, OPTS1 , will be selected with high probabil-
ity. Based on Lemma 3.2 of (Mirrokni and Zadimoghaddam
2015), each point p in OPT is either in OPTS1 with prob-
ability at most ln(C)

C ≤ ε or it will be among the selected
points with high probability 1 − 1

C ≥ 1 − ε. This holds
mainly because at least one of the C machines that contain
p will select it if it has a minimum probability (ε) of being
selected in a random one (machine 1) of them. Let OPTS

be the set of selected optimum points OPT ∩ (∪m`=1S`). De-
fine set B to be the intersection OPTS ∩ OPTS1 . Since the
probability of each point being in OPTS1 \ B is at most ε,
the probability that two of optimum points belong to this set
is upper bounded by 2ε. Therefore the expected diversity of
set E[DIV(OPTNS1 ∪B)] is at least (1− 2ε)DIV(OPT). We
use set OPTNS1 ∪ B as a benchmark to show that there ex-
ists a set A of at most k points among the selected points
with high diversity. Set B is among the selected points, so
we put points of B into A as well. Let k′ be |OPTNS1 |. We
select k′ random points from S1 and put them inA. We show
that these random points are close to the points in OPTNS1

and consequently can represent OPTNS1 well. Formally, we
show that for any point p ∈ OPTNS1 , a random point in S1

has distance at most 3τ/2 from p. Since p would not be cho-
sen by machine 1, if it were sent to that machine, we have
that:

X =

k∑
i=1

(k − i)DIST(p, pi) ≤
(
k

2

)
τ = DIV(S)

We denote the above sum by X to simplify the analysis.

We can upper bound another similar summation denoted by
Y with triangle inequality:

Y =

k∑
i=1

(i− 1)DIST(p, pi)

≤
k∑
i=2

i−1∑
j=1

DIST(p, pj) + DIST(pj , pi)

=

k−1∑
j=1

(k − j)DIST(p, pj) +

k∑
i=2

i−1∑
j=1

+DIST(pj , pi)

= X + DIV(S1)
(10)

We also know that X + Y is k − 1 times the sum of
distances from p to points in S1, i.e. X + Y = (k −
1)
∑k
i=1 DIST(p, pi). We conclude that

∑k
i=1 DIST(p, pi) is

at most (X+Y )/(k−1) ≤ (X+X+ DIV(S1))/(k−1) ≤
3DIV(S1)/(k−1). Therefore the expected distance of p to a
random point in S1 is upper bounded by 3DIV(S1)/(k(k −
1)) ≤ 3τ/2.

We are ready to lower bound the expected diversity of A.
For each pair of points p and q in OPT, the probability that
both of them belong to set OPTNS1 ∪B is at least 1− 2ε. If
both of them are in B, the same distance DIST(p, q) will be
counted in DIV(A) without any reduction. If both of them
belong to OPTNS1 , the distance DIST(p, q) is at most 2τ ,
and they are replaced with two random points of S1 in set
A. Since the expected distance between two random points
of S1 is equal to τ (by definition of τ , we have a reduc-
tion (loss) of at most 2τ − τ = τ in the distance. In the
last case, we can assume that p ∈ B and q ∈ OPTNS1 .
Point p is present in A, and point q is replaced with a ran-
dom point q′ in S1. We proved that the expected distance
DIST(q, q′) is upper bounded by 3τ/2. Using triangle in-
equality we have DIST(p, q′) ≥ DIST(p, q)−DIST(q, q′) ≥
DIST(p, q) − 3τ/2. We conclude that E[DIV(A)] is at least
(1 − 2ε)DIV(OPT) −

(
k′

2

)
τ − 3k′(k − k′)τ/2) because

there are
(
k′

2

)
pairs of distances between points of OPTNS1 ,

and we incur a distance reduction of at most τ for them.
There are also k′(k − k′) pairs of distances between points
of OPTS1 and B with a loss of at most 3τ/2. The term(
k′

2

)
τ−3k′(k−k′)τ/2 is maximized at k′ = (3k−1)/4, and

its maximum value is ((3k−1)/4)2τ . Therefore, E[DIV(A)]
is at least (1 − 2ε)DIV(OPT) − ((3k − 1)/4)2τ . Since
GREEDY in the second phase provides a set S with at least
half of the value of A, and then we take the set with higher
diversity among S and the m selected sets in lines 8 and
9, we conclude that the expected diversity of the final solu-
tion is at least max{ (1−2ε)DIV(OPT)−((3k−1)/4)2τ

2 ,
(
k
2

)
τ}. To

find the approximation guarantee that this lower bound im-
plies, we denote

(
k
2

)
τ by α. Since k ≥ 2, we have ((3k −

1)/4)2τ ≤ 9
8α. So the expected value of the diversity of the

output set is at least max{ (1−2ε)DIV(OPT)−9α/8
2 , α} which is

at least 8
25 (1− 2ε)DIV(OPT) ≥ ( 8

25 − ε)DIV(OPT). �



Figures and tables of experiments
We have summarized the information of the datasets of our
experiments in Table 4.

Greedy vs. Local search. Here, we compare the solu-
tion of these two methods empirically in the same setting
on the Lymphoma dataset. The results of this experiment
for the NCI9 dataset were illustrated in the main text. Fig-
ure 5 (b) shows that the greedy method outperforms the other
competitor in getting higher values of the objective func-
tion with different number of selected features. As we ex-
pected from previous experiments, this higher value results
in higher classification accuracy (Figure 5 (c & d)). In ad-
dition, it can be observed from Figure 5 (a) that the greedy
method is much faster as it does not need to converge, and it
is linear in terms of the the number of features to be selected.

(a) Time (b) Objective value

(c) SVM accuracy (d) 3-NN accuracy

Figure 5: Greedy vs. Local Search on the Lymphoma
dataset.

(a) SVM accuracy (b) 3-NN accuracy

Figure 6: Relation of classification accuracy and objective
function value for 3-combinations of the Heart dataset.

Validating the objective function. In this experiment, we
compare the accuracy of SVM and 3-NN classifiers with
10-fold cross validation (CV) for all the 3-combinations

and 4-combinations of features against their correspond-
ing objective value on Diabetes (Chang and Lin 2011) and
Heart (Bache and Lichman 2013) datasets. The Diabetes and
Heart datasets have 8 and 13 features, respectively. In Fig-
ure 6, each small grey dot represents the classification ac-
curacy on a 3-combination of the features from the Heart
dataset. The large black point is the solution of GREEDY and
the line is the regression line. Figure 7 illustrates the result
of the same experiment for the Diabates dataset. It can be
seen in Figures 6 and 7 that the objective value and the clas-
sification accuracy are highly correlated. Also, the solution
of GREEDY which is shown by large black point has a high
objective value as well as a high classification accuracy.

(a) SVM accuracy for 3-
combinations

(b) 3-NN accuracy for 3-
combinations

(c) SVM accuracy for 4-
combinations

(d) 3-NN accuracy for 4-
combinations

Figure 7: Relation of classification accuracy and objective
function value for 3-combinations and 4-combinations of the
Diabetes dataset.



Table 4: Summary of the datasets. All features accuracy indicates the accuracy of the SVM and 3-NN classifiers on all of the
features.

name # features (n) # instances (d) # classes
all features

accuracy using
SVM (%)

all features
accuracy using

3-NN (%)

dataset
type

Colon (Ding and Peng 2005) 2000 62 2 80.6 75.8 biological
Leukemia (Ding and Peng 2005) 7129 72 2 97.2 84.7 biological

Lung-discrete (Ding and Peng 2005) 325 73 7 87.7 87.7 biological
Lung (Li et al. 2016) 3312 203 5 87.7 96.6 biological

Lymphoma (Ding and Peng 2005) 4026 96 9 95.8 95.8 biological
NCI9 (Ding and Peng 2005) 9712 60 9 61.7 60.0 biological

Promoter (Bache and Lichman 2013) 57 106 2 84.0 71.7 biological
Srbct (Ding and Peng 2005) 2308 83 4 98.8 97.6 biological

TOX-171 (Li et al. 2016) 5748 171 4 97.1 72.5 biological
Multi-features (Bache and Lichman 2013) 649 2000 10 98.9 95.1 handwritten digits

Optdigits (Bache and Lichman 2013) 64 3823 10 96.9 98.6 handwritten digits
USPS (Chang and Lin 2011) 256 9298 10 94.8 97.2 handwritten text

PCMAC (Li et al. 2016) 3289 1943 2 89.5 77.6 text data
RELATHE (Li et al. 2016) 4322 1427 2 84.8 80.8 text data

Musk2 (Bache and Lichman 2013) 166 6598 2 96.7 96.7 chemical
WarpAR10P (Li et al. 2016) 2400 130 10 95.4 51.5 face image
Pixraw10P (Li et al. 2016) 10000 100 10 100.0 97.0 face image

WarpPIE10P (Li et al. 2016) 2420 210 10 99.5 96.2 face image
Yale (Li et al. 2016) 1024 165 15 76.4 66.1 face image


