Verification of Quicksort

	
	Comparable partition(Comparable theArray[], int first, int last);

	
	// pre:  0 ( first ( last < theArray.length

	
	// post: returns split such that first ( split ( last 

	
	//
     and permutes theArray such that 

	
	//
     theArray[i] ( theArray[split] for first ( i < split

	
	//
     theArray[i] ( theArray[split] for split < i ( last

	
	

	
	void quickSortRec(Comparable theArray[], int first, int last) {

	
	// pre: (0 ( first ( last < theArray.length) or (last < first)

	
	// post: values in theArray[first..last] are permuted into ascending order

	1
	
int pivot;

	2
	
if (first < last) {

	3
	

pivot = partition(theArray, first, last);

	
	




	
	

// pivotOK: 0 < first < last < theArray.length AND

	
	

//          first < pivot < last AND

	
	

//          theArray[first..pivot] < theArray[pivot] AND

	
	

//          theArray[pivot+1..last] > theArray[pivot] AND

	
	

//          theArray[0..theArray.length-1] is a permutation of 

	
	

//          the original array

	
	

	4
	

quickSortRec(theArray, first, pivot-1);

	
	

	
	

// firstOK: pivotOK AND

	
	

//          theArray[first..pivot-1] are in ascending order

	
	

	5
	

quickSortRec(theArray, pivot+1, last);

	
	

	
	

// secondOK: firstOK AND

	
	

//           theArray[pivot+1..last] are in ascending order

	
	
}

	
	}


To prove that this is correct, we will first need to prove that partition works correctly, and then we will need to prove that quickSortRec is correct. Let us start by assuming that partition works correctly (the proof can always be done as an aside). In order to prove that quicksort is correct, we will need to prove by induction that quicksort is correct, since the code is recursive. Let n be the number of elements to sort, in other words, n = last-first+1.

Base Case: If n < 0, then there are no elements to sort and first > last. If the number of elements is 1, then the array is already sorted by definition. If we meet the precondition, and fail the if-statement, this renders the postcondition trivially true.

Inductive Hypothesis: Let n > 1 and assume that quickSortRec is correct whenever it is called with last-first < n. 

Inductive Step: We need to prove that the hypothesis is true for n = last-first+1, n > 0. This makes the if-condition true, and we proceed to the code. We must now prove the following:

1. precondition & (first < last) & code(1-3) ( precondition(partition)

0 < first < last < theArray.length and first < last therefore theArray.length > 1. When partition is called, 0 < first < last < theArray.length, which is the precondition for partition.


2. partition & postcondition(partition) (  pivotOK

Once partition has completed, assuming it is correct, it returns as pivot the value split such that first < split < last and permutes theArray such that theArray[i] < theArray[split] for first < i < split and theArray[i] > theArray[split] for split < i < last. Since theArray’s contents have only been permuted by partition, it is still true that  0 < first < last < theArray.length, and since theArray , first and last were passed in under the same names to partition, then the postcondition of partition can be translated to:

0 < first < pivot < last and theArray was permuted such that 
theArray[i] < theArray[pivot] for first < i < pivot and 
theArray[i] > theArray[pivot] for pivot < i < last.

 If pivot == first, then it is vacuously true that each element in the first-hand portion of the array is less than or equal to the pivotal value. If pivot == last, then it is vacuously true that each element in the last-hand portion of the array is greater than or equal to the pivotal value.

We wouldn’t have executed this code unless first < last, so 
0 < first < last < theArray.length. These facts yield the assertion pivotOK.


3. pivotOK ( precondition(quickSortRec[first..pivot-1])

Since 0 < first < pivot < last < theArray.length, theArray[first..pivot-1] either has pivot-1 < first, which translates into the last < first portion of the precondition for quickSortRec on the array from indices first to pivot-1, or first < pivot-1, implying 0 < first < last < theArray.length where last = pivot-1. This meets the precondition of quickSortRec since the size of the array hasn’t changed.


4. quickSortRec[first..pivot-1] & postcondition(quickSortRec[first..pivot-1]) 

( firstOK

Since the number of elements in theArray[first..pivot-1] < n, we can apply our inductive hypothesis that quickSortRec will perform correctly upon the array. This yields the postcondition that the values in theArray[first..pivot-1] are permuted in ascending order (assuming first < last, otherwise, nothing need be done since an array of length 0 or 1 is already sorted). Thanks to partition, we also know that these elements are all less than or equal to the pivotal value. quickSortRec did not change the values for first, last, or pivot, or permute theArray[pivot+1..last] so all of the previous relationships are intact. This yields the assertion firstOK.


5. firstOK ( precondition(quickSortRec[pivot+1..last])

We will pass pivot+1 into quickSortRec as the first’ value, and last as the last’ value if we call quickSortRec on theArray[pivot+1..last]. We know 
0 < first < pivot < last < theArray.length, so pivot+1 is either greater than last, making first’> last’, or pivot+1 < last, making first’< last’. Either situation meets the precondition of quickSortRec.


6. quickSortRec[pivot+1..last] & postcondition(quickSortRec[pivot+1..last])

( secondOK

Since the number of elements in theArray[pivot+1..last] < n, we can apply our inductive hypothesis that quickSortRec will perform correctly upon the array. This yields the postcondition that the values in theArray[pivot+1..last] are permuted in ascending order (assuming first < last, otherwise, nothing need be done since an array of length 0 or 1 is already sorted). Thanks to partition, we also know that these elements are all greater than or equal to the pivotal value. quickSortRec did not change the values for first, last, or pivot, or permute theArray[first..pivot-1] so all of the previous relationships are intact. This yields the assertion secondOK.


7. secondOk ( postcondition of quickSortRec

theArray[first..pivot-1] is sorted, and all its values are less than equal to theArray[pivot]. theArray[pivot+1..last] is sorted, and all its values are greater than or equal to theArray[pivot]. Combining these facts, and that
 0 < first < pivot < last < theArray.length, tells us that the entire array is sorted in ascending order. This yields the postconditon of quickSortRec.

Since we’ve proven that quickSortRec works correctly on an array of size n, we’ve proven our inductive hypothesis for all n > 0.

