
Shape-Free Statistical Information in Optical
Character Recognition

Scott Leishman Sam Roweis

Machine Learning Group Talk
University of Toronto

April 2nd, 2007

1



Optical Character Recognition

Definition
Optical Character Recognition (OCR) is the process by which digital
images of textual symbols are translated into a machine-readable
representation.

2



The Early Years - “Optical” Recognition Systems

System Proposed in Handel’s 1933 Patent Filing

Classic pattern
recognition problem
Idea dates back at
least to patent filings
in the early 1930’s
Initial uses included
telegraph processing
and as an aid to the
blind

3



The “Middle” Ages - Constrained Template Matching

The OCR-A Font

First commercial OCR
systems appear in the mid
1950’s
System designs heavily
influenced by computer logic
circuitry and electronics
Input documents extremely
constrained
Most systems used template
matching (limited to a few
fonts and sizes)

4



Current Systems - Visual Classification

Neural network or other
shape-based classifiers trained on a
large variety of fonts.
Incoroporation of some contextual
information after initial recognition
phase
Many commercial offerings, some
claiming accuracy rates > 99%

Problem solved??

5



Ideal Input

Product Character Accuracy
Acrobat 99.66

Any2DjVu 99.74
Tesseract 98.48

6



Some Problem Cases - Noisy Curled Characters

Acrobat

Any2DjVu

Tesseract

7



Some Problem Cases - Textured Background

Acrobat

Any2DjVu

Tesseract

8



Some Problem Cases - Unknown Font

Acrobat
Any2DjVu
Tesseract

Clearly these systems have not been trained on a font in this
style/size!

9



Improving on the Untrained Font Problem

Ideally want a system that adapts to each document to be
recognized
Exploit language consistency within a document (true unless
dealing with dictionaries, machine translation papers, etc.)
Exploit glyph shape and font consistency within a document
(relatively true for most cases except things like ransom notes and
font manuals)

10



Our Approach

Estimate frequency
distributions of character
co-occurrences from a large
text corpus
Locate and cluster together
similar looking glyph images
from a document to be
recognized
Estimate frequency
distributions over the clusters
Determine the mapping
between these two

11



Preprocessing - Denoising

Input document images can contain noise from a number of
sources

Fax line-noise
Scanning Sensor noise
Other unwanted marks (ex. staples, large book gutters)

Find components and use aspect ratio to throw out very large or
very small objects thus removing additive noise (must be careful
not to throw out small punctuation symbols)
Convolve image to smooth over dropout pixels (must be careful
not to join non-touching symbols, fill small holes)

12



Preprocessing - Binarization

Input document images often given in full colour or grayscale
Reducing them to two intensities improves processing speed and
certain algorithms require binary images (e.g. Hausdorff distance)
Methods fall under one of two categories: global or local methods
No magic bullet!

13



Preprocessing - Page Deskewing

Manually placed scanned pages typically vary up to ±15◦

Some algorithms for line finding and other processing tasks will
not work correctly on skewed documents
Many early approaches based on the generalized Hough
transform[Duda1972]

14



Preprocessing - Page Segmentation

Top-down and bottom-up
approaches exist (XY-cuts,
run-length smoothing, area
Voronoi technique)
Textual region identification is
non-trivial; for mostly textual
documents, can look for
regular valleys in projection
profile taken perpendicular to
reading order direction
Region sequence
determination also difficult,
particularly for multi-column
documents, or documents with
figure captions

15



Isolating Individual Symbols - Connected Components

Simple 2-pass sweep used to group pixels into connected
components[Rosenfeld1966]
Bounding box co-ordinates calculated and stored

16



Isolating Individual Symbols - Neighbour / Line Finding

Nearest neighbouring component (and distance) calculated for
each component in 4 principal directions (requires 2 sweeps over
component label image)
Lines found by following chains of neighbouring components, then
baseline and x-height offsets estimated from profile sums
Attempts made to merge diacritical and other small vertical
components belonging to the same symbol like i, é, :, =, ?

17



Clustering Connected Components

Bottom-up, agglomerative clustering used
Component pixel intensities compared to determine clustering
Distance metrics considered include Euclidean, Hausdorff
For nearly noiseless documents, initial sweep using small
threshold performed to rapidly reduce number of clusters

18



Hausdorff Distance Metric

Would prefer to weight mis-matched
pixel intensities so that “on” pixels
lying further away from the nearest
“on” pixel in the comparison image
are charged a larger cost
Hausdorff
distance[Huttenlocher1992] does
this, measuring the distance
between two images A, B as follows:

DH = max(h(A, B), h(B, A) (1)

where
h(X , Y ) = max

i∈X ′
(min
j∈Y ′

(d(X(i), Y (j)))) (2)

and d(x , y) is replaced by a distance metric like Euclidean distance, X ′ denotes the set of

foreground pixels of X

19



Merging Fragmented Symbols

After one round of match based processing, cluster information
used to piece together fragmented glyphs
Clusters containing components who share nearest neighbours
belonging to the same cluster are marked for merger
Provided they lie only a small distance apart, belong to the same
line, and the neighbours in turn list components in the original
cluster as their neighbour, then a merger is performed between
these components
Symbol segmentation often carried out as part of the recognition
process

20



Splitting Apart Touching Symbols

Clustering information also used to try and split components
containing multiple symbols
Candidate horizontal split points found based on component width
and vertical projection sum
Halves are recursively searched for matches against other cluster
centroids (using Hausdorff distance for example)

21



Refining the Clusters

Matching, merging, and
splitting process is repeated
over affected clusters, until no
further changes are seen
Conservative thresholds used
to prevent cluster impurities (at
the expense of leaving multiple
clusters per character)
No real attempts made at
rescaling cluster averages

22



Determining Word Boundaries

Determining word boundaries
is critical for accurate
contextual estimation since
our approach makes use of
within word positional
frequency

For most textual documents,
the distribution over
neighbouring horizontal
component distances is
bimodal with the smaller
representing intercharacter
spacing, and the second
interword

We attempt to determine
cut-off point by fitting a
mixture model to these
frequency counts

23



Symbol Decoding Using Positional Frequency

Neighbours in reading order give cluster id sequence
Common words like the, of, and, it dominate documents
that are written in grammatically correct English prose (Zipf’s
“law”)
Certain character n-grams are much more common in English
words than others (contrast ing with zzz)
Given word breaks, certain characters often occur in particular
word positions; uppercase letters tend to be seen in the first
position of a word, letters like s and punctuation symbols like .
are common choices for the last position of a word.

24



Positional Frequency (Cont’d)

We exploit these regularities by estimating the word positional
frequencies for each symbol
Estimated first for each symbol in a large labelled text corpus,
then on each cluster using component and estimated word
boundary information
Counts normalized to create distributions over each word length
(unless no counts seen of that symbol at a particular word length)

25



Matching Observed Cluster Vectors to Reference
Vectors

Counts define a point in an x(x+1)
2 dimensional “positional” feature

space (where x is max word length considered)
Mapping from observed counts to reference counts can be carried
out via likelihood or cross entropy minimization
Our current approach

Normalize counts within each word length
Feature vectors re-weighted based on word-length to minimize
affect of wild positional differences on seldom seen long words
Euclidean distance measured between each cluster feature vector
and symbol vectors to find closest map

26



Improving the Mappings via Dictionary Lookup

Positional mapping alone often provides good match for frequently
seen symbols like lower case vowels and some consonants,
however other symbols regularly exhibit high variance between
cluster and corresponding reference vector
Causes for this include the short length of most input documents
coupled with document type and subject matter
Use dictionary lookup to improve matchings

the αuick

α = ?

27



Dictionary Lookup Procedure

Greedily assign clusters to symbols based on occurence
frequency
Try candidates in order based on positional feature distance

28



Dictionary Lookup Procedure

Lookup each partially assigned word cluster sequence in which
this cluster appears, and check for it in the dictionary (use
wildcards for unmapped clusters)
If at least some threshold of these words match, permanently map
this symbol to each component in this cluster
If multiple symbols produce the same word lookup score, ties are
first broken based on line offset information (each symbol belongs
to one of 4 classes: ascenders, descenders, normal, and short
x-height)
If ties still remain, or no symbol achieves the threshold score,
closest positional match taken as final symbol

29



Experimental Setup

Symbol alphabet contains 92 different
symbols including upper and lower case
letters, digits, punctuation, brackets, simple
arithmetic operators

Reference positional symbol counts and the
word lookup dictionary were constructed
from a 17,601 word chunk of the
Reuters-21578 News corpus[Lewis2004]
(744,522 symbols). All symbols left intact,
but trailing “Reuter” byline removed

Initial input tests performed against 10 15
page Legal documents from the UNLV ISRI
OCR dataset[Nartker2005] (fine fax mode
dpi)

30



Results

% Correct
word 92.49

character 90.72
low letters 97.79

upper letters 4.02
digits 7.51

other sym. 31.44

Text aligned to ground truth as best
as possible, then string edit
operations used to determine
accuracy by class
Results for lowercase letters found
to be roughly on par with shape
based approaches, but other
symbols and overall performance
worse
Lowercase letters dominate this
dataset (84.2% of all symbols)

31



Impact of Segmentation and Clustering on
Performance

Regular Perfect
word 92.49 95.30

character 90.72 96.07
low letters 97.79 100

upper letters 4.02 65.66
digits 7.51 23.64

other sym. 31.44 61.72

To determine impact of
segmentation and clustering
on the performance, the ASCII
codes of each symbol were
used to group symbols
together
This represents a perfect
clustering (no split or merged
symbols, only a single cluster
for each distinct symbol)

32



Impact of Document Length on Performance

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

number of characters in document

%
 o

f 
ch

ar
ac

te
rs

 c
or

re
ct

ly
 id

en
tif

ie
d

 

 

Combined

Low

Upper

Digits

Other

33



Short Document Results

159 short 1-2 page business letters sampled from the UNLV ISRI
OCR dataset[Nartker2005] (fine fax mode dpi)
2010 symbols per document on average

Bus. Bus (Perfect) Legal Legal (Perfect)
word 50.50 79.91 92.49 95.30

character 67.84 88.24 90.72 96.07
low letters 73.17 95.71 97.79 100

upper letters 9.21 50.65 4.02 65.66
digits 6.84 20.52 7.51 23.64

other sym. 24.55 52.36 31.44 61.72

34



Conclusions and Future Work

Can’t build a complete system using context alone
Works well when characters appear enough times that they start
to somewhat approximate their reference counts
Positional counts and word lookup scores provide a fairly useful
source of information to the recognition process, something that
isn’t being exploited much by current approaches
Biggest improvements can be had by improving segmentation
performance (rather than improving contextual collection
techniques). Majority of errors due to merged symbols not being
separated during clustering phase
Future work involves exploring more detailed models for statistical
information comparison

35



Advantages Of Our Approach

Big gain is that our approach is font and resolution independent
(though we have tested using baseline and x-height offset to
improve tie-breaking)
Can also be re-targetted to other phonetic languages by plugging
in appropriate lookup dictionary
Works (faster) on symbolically compressed documents (see next
slide)

36



Symbolically Compressed Documents

JBIG2 image compression standard for binary images, specially
suited for images that are composed of repeated subimages (like
textual document images)
Lossless compression scheme stores a single template image, as
well as co-ordinate offsets on each page, and image differences at
those offsets
Lossy versions also store templates and offsets, but don’t store
the residual image differences
Used in PDF (1.4 and higher), DjVu, xpdf, and others
Our OCR approach can work directly with these compressed
documents without having to perform clustering (though split and
merge refinements may be required)

37



Related Work

Cryptogram decoding[Nagy1984]
Ho and Nagy Symbol Class identification
Huang Entropy based approach[Huang2006]

38



Automatic Script and Language Determination

Recognizing glyphs via statistical language features is only
possible if we know the underlying language of the input region
Possible to distinguish Han scripts from Latin-based scripts by
measuring frequency and height of upward concaving runs of
pixels[Spitz1997]
Able to distinguish amongst 23 Latin-based languages using
character codes from frequently occuring word images

39


	Introduction
	Historical Overview
	Current Problem Cases

	Segmenting and Clustering Symbol Images
	Preprocessing
	Finding Symbols
	Clustering Symbols

	Top-Down Recognition via Statistical Information
	Positional Frequency
	Dictionary Lookup


