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Abstract—Linux containers are key enablers for building 
microservices. The application’s microservices fall broadly 
under two categories, the core-microservices implementing the 
business logic and the utility-microservices implementing 
middleware functionalities. Such functionalities include 
vulnerability scanning, monitoring, telemetry, etc.  Segregating 
the utility-microservices in separate containers from the core-
microservice containers may prevent them from achieving their 
functionality. This is due to the strong isolation between 
containers. By diffusing the boundaries between containers we 
can fuse them together and enable close collaboration. 
However, this raises several security concerns, especially that 
the utility-microservices may include vulnerabilities that 
threaten the entire application. In this paper, we analyze the 
different techniques to enhance the security of container fusion 
and present an automated solution based on Kubernetes to 
configure utility-microservices containers to fuse with core-
microservices containers. 

Keywords⎯⎯Linux containers, security, orchestration, 
Kubernetes, microservices 

I. INTRODUCTION 
The last few years have witnessed a widespread adoption of the 

microservices paradigm for architecting cloud-native software [1]. A 
common design pattern in microservices is the separation of concerns 
wherein each microservice is developed and packaged individually. 
Linux containers are the predominant model of deployment for 
microservices where each microservice is packaged as a container 
image that is later instantiated as a container instance. The inter-
communication between microservices is commonly achieved 
through well-defined interfaces, mainly using a RESTfull API 
(Application Programming Interface) [2]. However, not all 
microservices can achieve their functionalities through high-level 
APIs. As an example, we consider a vulnerability scanning 
microservice, which we refer to as a utility-microservice. The utility-
microservice performs vulnerability analysis against other 
microservices that are delivering business logic functionalities. We 
refer to these microservices as the core-microservices. In this 
example, the utility-microservice scans the filesystem of a core-
microservice container looking for vulnerable packages installed, and 
thereafter checks the running processes within the core-microservice 
container to make sure no vulnerable package is executing. The core-
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microservices are typically not aware of the existence of the utility-
microservices. The utility-microservices may originate from a third 
party vendor/provider. In fact, the utility-microservice pattern is 
frequently used as a means to add functionality to a legacy 
application that cannot be modified. For instance, a utility-
microservice can intercept and encrypt the traffic emitted by a legacy 
application that does not support encryption. For example, when 
using Istio [3] to manage the communication between our 
containerized microservice, a utility-microservice, mediates inbound 
and outbound communication to the core-microservice. In order to 
achieve their functionality, utility-microservices often need intrusive 
access and capabilities in the core-microservice container. Such 
access can be granted via injecting the utility-microservice into the 
same container as the core-microservice [4]. However, this is a risky 
approach, since the utility-microservice may contain malicious code 
or bugs that can jeopardize our core-microservice and potentially our 
entire system. In reality, the official CVE (common vulnerability 
exploit) entries reveal several vulnerabilities in sidecars with utility-
microservice functionalities leaking sensitive information (such as 
application login credentials) [5], enabling arbitrary command 
execution [6], causing Denial of Service (DoS) [7], amongst other 
security concerns. An alternative approach is to have the utility-
microservice execute in its own container in order to isolate it from 
our core-microservice. However, this restrictive approach will 
deprive the utility-microservice of vital information it needs to carry 
out its functionality. For instance, our vulnerability scanning utility-
microservice requires access to the memory, processes, disk, and 
network state of the core-microservice container, all of which are 
isolated by default among two separate containers. 

In this paper, we propose a different approach. Our approach 
leverages the isolation benefits of having the two microservices 
executing in different containers. By diffusing certain boundaries 
between the two containers,  we grant the utility-microservice the 
capabilities and permission it needs to perform its functionality. All 
while protecting our core-microservice by limiting the visibility and 
accessibility of our utility-microservice. We refer to this approach as 
container fusion. 

The novelty of our work stems from the unique combination of 
permissions, capabilities, and constraints that we apply to our 
sidecars without modifying the kernel while maneuvering within the 
boundaries of abilities of the available kernel constructs. We couple 
our design with an implementation that makes the fusion transparent 
to the user who can apply it without having to understand its 
underlying complexity. 

The paper is organized as follows, in Section II we present the 
background to our work. In section III we discuss the container fusion 
design. In Section IV we evaluate our design from a security 
standpoint. In  Section V we present our implementation that 
automatically configures the sidecar containers, and finally, we 
discuss the related work in Section VI and conclude in Section VII. 

II. BACKGROUND 
In our approach for securing our core-microservice we follow the 

principle of least privilege [8] for our sidecar, starting with running 
the sidecars as unprivileged entities, then giving them access rights 
via namespaces and capabilities, and finally restricting their impact 
abilities via seccomp [9] and netfilter [10]. In addition to these five 
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constructs for access controls, we also leverage cgroups to enforce 
resource constraints on the sidecar sandbox. In this section, we give a 
brief overview of the above-mentioned constructs. 

A. Privileges and Capabilities 
Unlike privileged processes, unprivileged processes are subject to 

full permission checking based on the process's credentials. The 
privileges traditionally associated with superuser are known as 
capabilities, and such capabilities can be independently enabled and 
disabled for unprivileged processes. Such capabilities include 
changing files ownership or overriding disk quota limits among 
others [11]. 

B. Namespaces and Cgoups 
The Linux operating system provides global system resources 

that are shared among the processes it manages. Such resources 
include the Network devices, TCP/IP stacks, Posix message queues, 
etc. A namespace wraps a global system resource in an abstraction. 
Processes within a namespace execute in an isolated instance of the 
global resource. As such, changes to the global resource are visible to 
processes that are members of the same namespace but are invisible 
to other processes. Namespaces are the backbone of Linux containers 
[12]. Isolating processes in namespaces does not limit them from 
consuming more than their fair share of system resources such as 
CPU and memory. This is where cgroups come into play. Cgroups are 
the mechanism by which processes resource utilization is constrained. 

C. Seccomp and Netfilter 
Seccomp (short for secure computing mode) is a mechanism to 

constrain processes from making unauthorized system calls. Should a 
process attempt to make a forbidden system call for that process (e.g. 
exec or fork), it will get terminated. Netfilter provides the 
functionality required for directing packets through a network 
and prohibiting packets from reaching sensitive endpoints within a 
network. 

III. CONTAINER FUSION DESIGN 
The sidecar container requires certain capabilities and privileges 

in the core-container. Yet, it cannot be fully trusted. Hence the 
containers boundaries need to partially be relaxed but with certain 
constraints enforced. 

A. Threat Model 
Our goal is to restrict the sidecar’s operational environment 

enough so that it can not do anything malicious. This includes direct 
impact such as process corruption, as well as indirect interference 
such as botnet or fork-bomb behavior. For the purpose of data 
collection, we are okay with giving the sidecar full read-only (R/O) 
visibility into a core container’s state, including possibly any secret 
keys in there. Multiple instances of the same sidecar may exist at the 
same time. The adversary can author multiple sidecars that can 
operate against the same core container. The adversary can also run 
their sidecar container (as a regular unprivileged cloud tenant) on the 
same host as the target core container. 

B. Container Fusion Design 
The challenge in securely running untrusted sidecars that perform 

system-state-extraction lies in balancing the levels of accessibility and 
constraints afforded to them. We basically need to prevent the 
sidecars from:  

1. impacting the core container execution: this includes direct 
impact such as process subversion, as well as indirect 
interference such as DoS via resource-hogging,  

2. communicating with the outside world: leaking sensitive 
information or acting as a botnet, and  

3. leaking information to host-local accomplices (e.g. other 
malicious containers).  

To address these demands, the sidecars are isolated away in 
separate containers, however, the default strong boudaries between 
containers prohibit them from being able to look inside the target 
core-container. Thus, we need to provide these sidecars secure access 
to privileged resources outside the walls of a typical container, 
specifically–the target core-container’s memory, disk, and network 
state as shown in Fig 1. However, what adds to the complexity of the 
problem is that some capabilites that we give to the sidecar container 
can be too powerful, and may be dangerous to the core-container, 
therefore in many cases, as we will see, we have to cirlce back and 
block certain aspects of a capability to mitigate its powers. The steps 
involved in achieving secure container fusion are as follows. 

(1) Namespace Isolation  

By default, the sidecar has access into its own set of namespaces, 
separate from the core-container. It can thus only view its private set 
of processes, mount-points, network devices, user/group IDs, and 
inter-process communication objects. This isolates the sidecar away 
and prevents it from having any communication with entities outside 
its container. This includes communication via the filesystem, the 
network, or through inter-process communication mechanisms such 
as shared memory or message queues. We start with full isolation and 
then share a subset of the namespaces in the next steps. 

(2) De-privileging  

Next, following the principle of least privilege [8], the sidecar is 
made an unprivileged entity, by mapping its user ID inside its 
container to a non-root user ID on the host. This takes away a 
substantial amount of power from the sidecar to alter any host system 
state. 

(3) Resource Isolation  

The sidecar has its own cgroup for resource isolation. Limits can 
thus be enforced on the sidecar’s process count, CPU, memory, and 
disk usage, preventing it from indirectly impacting the core-container 
and the host.  

(4) Access to disk state  

Isolated in its own mount namespace, the sidecar cannot see the 
core-container’s disk-level system state such as configuration files, 
logs, package databases, etc. Thus, to be able to access this state, the 
core-container’s root filesystem (rootfs) is mounted read-only inside 
the sandbox. But, since the sidecar’s and the core-container’s user IDs 
are different, the sidecar may be unable to read the core-container’s 
files in the mounted rootfs, because of discretionary-access-control 
(DAC) permission checks. We, therefore, grant the sidecar container 
CAP_DAC_READ_SEARCH capability to see core-container’s files 
(only reads, no writes).  

The sidecar expects to find the relevant files at paths relative to 
the root directory (‘/’), as in the case of as sidecar that does package 
analysis, it will look for packages in predefined directories (e.g. /bin). 
However, the mounted rootfs will have a different path depending on 
the mounting point. Thus, we leverage the chroot mechanism so that 
the sidecar and any imported libraries can work as-is, believing they 
are operating on the core-container’s root directory: ‘/’. Nevertheless, 
as an unprivileged user, the sidecar can not call the chroot syscall, 
therefore, we also grant the CAP_ SYS_CHROOT capability to the 
sidecar to enable this view change during data collection.  

(5) Access to memory state 

Similar to the mount namespace restriction, since the sidecar has 
its separate PID namespace, it cannot see the core-container’s process 
state. We, therefore, share the core-container’s PID namespace with 
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the sidecar, giving it access to the core-container’s memory state via 
procfs.  

However, despite the read-permission-check exception granted in 
Step 4, the sidecar can still not see the files or sockets opened by the 
core-container processes. Basically, reading a process open files or 
sockets, by dereferencing /proc/<pid>/ fd/* symlinks, requires that the 
read-only ptrace access mode PTRACE_MODE_READ be set, 
amongst other flags. The lack of a mechanism to grant only this 
limited credential to a userspace entity made us resort to granting the 
more powerful Linux capability CAP_SYS_PTRACE capability to 
the unprivileged sidecar. Section C describes this issue in more detail.  

Since the ptrace capability is too powerful (giving the sidecar the 
ability to kill/hang/corrupt core-container processes), we use seccomp 
to block the ‘harmful’ system calls which this capability enables–
ptrace() and process_vm_writev(). Thus, by blending the ptrace 
capability with seccomp, we achieve our goal of giving the sidecar 
just enough power to only read, and not impact, the core-container’s 
memory state.  

(6) Access to network state 

Being in its own network namespace prevents the sidecar from 
seeing the core-container’s network connections. To enable reading 
such a state, the core-container’s network namespace is shared with 
the sidecar.  

Although access to the core-container’s network namespace does 
not allow packet manipulation, it does open up two avenues of 
nefarious actions by the sidecar. First, although the unprivileged 
sidecar cannot disrupt the core-container’s network connections, it 
can use it to communicate with the outside world– create backdoors, 
steal secrets, act as botnet, etc. To avoid this, netfilter based packet 
filtering is employed to block a sidecar’s access to the outside world, 
except for “white-listed” secure communication channel to ship out 
collected data to the monitoring backend.  

The second concern is a potential DoS attack by the sidecar, 
where the sidecar can hoard all of the unprivileged network ports the 
core-container has access to. This can then prevent a core-container 
application to communicate via the network, if it hasn’t already 
bound to its desired port. To resolve this, we resort to using SElinux 
[13] to allow only a few ports for the sidecar to bind to. 

(7) Access to resource stats 

Since the sidecar is run in a separate cgroup for resource 
isolation, in order to gather the core-container’s resource usage stats, 
the sidecar is also granted access to the core-container’s cgroup 
filesystem. DAC settings ensure read-only behavior by default.  

 
Fig. 1. Design Overview 

C. Discussion 
 Certain reads from a sidecar to the target core-container’s 
memory state, need a less-powerful read-only access mode set- 
PTRACE_MODE_READ. However, there is no direct mechanism to 
grant just these credentials to a userspace entity. Thus, as the nearest 
alternative, we had to grant the more-powerful CAP_SYS_PTRACE 
capability to the unprivileged sidecar. This is indeed an overkill and 
an artifact of coarse-grained capabilities in the Linux kernel vs. 
Capsicum’s [14] fine-grain capabilities. This leads to bigger problems 
since CAP_SYS_PTRACE enables PTRACE_MODE_ATTACH 
thereby allowing ‘write’ operations, enabling the ability to kill and 
corrupt core-container processes. Also, the Commoncap Linux 
Security Module (which is always invoked in the kernel) does not 
distinguish between PTRACE_MODE_READ and 
PTRACE_MODE_ATTACH.  

To counteract this power, we use seccomp to block the ‘harmful’ 
system calls which this capability enables–ptrace() and 
process_vm_writev(). Read-only syscalls- kcmp(), pro 
cess_vm_readv() and get_robust_list() do not need to be blocked. 
Another dangerous syscall enabled by CAP_ SYS_PTRACE is 
move_pages(), but for that syscall to go through CAP_SYS_NICE is 
needed, which we don’t provide.  

Beyond access via syscalls, the capability in question also grants 
power to the sidecar to access the core-container’s memory directly 
via /proc/<pid>/mem. However, DAC controls come to the core-
container’s rescue in this case, preventing the sidecar from being able 
to write to the core-container. Writes in this fashion would 
additionally require CAP_DAC_OVERRRIDE to be granted to the 
sidecar, while we only confer the read-only capability 
CAP_DAC_READ_SEARCH in Step 4 of Section III.B.  

IV. IMPLEMENTATION 

 
Fig. 2.  Implementation Overview 

For our implementation, we chose Kubernetes [22] as our 
container orchestration framework, coupled with Docker [23] as our 
container engine (leveraging ContainerD and RunC). Our fusion 
approach, being based upon fundamental kernel-level constructs, is 
applicable to the other container engines as well and can also be 
enforced through other container orchestration frameworks such as 
Docker Swarm. We did not need (or want) to modify the Linux kernel 
or Docker; we built our fusion solution with already-exported kernel 
functionality. We leveraged the Kubernetes shareProcessNamespace 
and capabilities features to configure our container, we also use the 
resource limits/requirements to bound our sidecar. We also leverage 
network-policies and pod-security-context to configure our 
containers. In order to keep our approach transparent to the user, we 
define a Kubernetes mutation admission controller that can (1) 
intercept a request to create a Kubernetes Pod*. (2) Modify the 

                                                             
* In Kuberentes, a Pod is a grouping of one or many containers that 

share the same network namespace, and lifecycle. 
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specification of the pod by adding our configuration options that fuse 
our core-container with the sidecar. (3) Resubmit the modified pod 
request to Kubernetes to be created. The admission controller only 
modifies pods that have special labels specifying the container to be 
fused: <fuse-container-source=…>, <fuse-container-target=…>. All 
other pods missing those labels will be ignored by our admission 
controller. Due to the lack of space, we leave out certain 
implementation details and modifications that were needed to 
Kubernetes’ Kubelet− the agent running on each cluster node and 
invoking the container engine. Figure 2 illustrates our solution. 

V. EVALUATION 
In this section, we evaluate the security posture of our container 

fusion and the performance overhead. The assumption here is that the 
sidecar may contain malicious code that an adversary can leverage to 
compromise our core-container. We consider the alternatives to our 
approach (i.e. using fused containers) is to (1) run the utility-
microservice in the same container as our core-microservice or (2) 
directly on the host with enough privileges to access the core-
container state.  

A. Security Analysis  
Selection of Exploits. In order to test the efficacy of our 

approach, we considered a comprehensive set of attack categories and 
verified the inability of the exploits to impact the core-container. We 
focused on the categories from the Exploit Database – a public 
archive of exploits used by penetration testers [15]. These include: 
local & privilege escalation, denial of service (DoS), remote exploits, 
as well as web application exploits. We also considered all of the 
attack categories from the popular Hansman and Hunt’s attack 
taxonomy [16], namely: virus, worms, trojans, buffer overflows, DoS, 
network attacks, password attacks, information gathering, information 
corruption, information disclosure, service theft and subversion 
attacks, combined across all of the attack classification dimensions of 
the taxonomy.  

The first three columns of Table 1 shows how the attack vectors 
we consider (column 1), to portray possible avenues of attack specific 
to a cloud monitoring setting and covering each of the above 
categories, map to them (column 2,3). An attack may map to several 
categories; only the closest matches are indicated in the Table, 
restricted by space. Actual reported vulnerabilities in data collecting 
sidecars do indeed fall under the attack vectors coverage, such as 
arbitrary command execution [6] and DoS [17], as do attacks against 
the software core such as privilege escalation [18].  

While we test our fusion approach against specific instance(s) of 
each type of exploit, we believe it to be generally applicable against 
other implementations of the exploits as well, since the approach 
targets the fundamental avenues of attack, rather than any instance-
specific vulnerability. 

Execution of Exploits. The last column of Table 1 presents 
examples and sources of the particular exploit instances we tested in 
our approach. In some cases, we ran the exploits using the Metasploit 
penetration testing framework [19] running inside the sidecar 
container, while the core-container runs a highly vulnerable 
Metasploitable image [20]. The corresponding metasploit module 
(containing the exploit code) then acts as an untrusted sidecar, trying 
to subvert the target core-container it runs against. While in other 
cases, we got the exploit code from github, or implemented our own.  

In another experiment, we run this directly inside the core-
container, as malicious actions of a hypothetical code.  

Direct vs. Indirect Impact. Some of the exploits inherently 
cannot directly hurt the core-container, although they can cause an 
indirect impact. For example, a code injection attack has a direct 
process-corruption impact, but not  an output falsification attack, 

where the sidecar falsely states that the core-container is out of 
memory, potentially triggering a policy-driven core-container re-
instantiation. This is indicated as a ‘Y’ or an ‘N’ in columns 4 and 5, 
referring to the ability, or lack thereof, of an exploit to directly infect 
the core-container, when the malicious code runs inside the core-
container or the host (column 4), versus running in a fused sidecar 
container (column 5).  

Impact of Out-of-Scope Exploits. The first 7 attacks are out-of-
scope of our threat model (Section III.A) and are highlighted as 
‘OOS’ in Column 1 of Table 1. The first 4 of these are indirect-
impact causing, like the aforementioned output falsification attack. 
Another indirect-impact case is that of a compromised monitoring 
backend, where, for example, the adversary gains access to core-
container’s credentials shipped by the sidecar, enabling remote access 
to the core-container. Similar is the case of a compromised host, 
where the sidecar is able to leak sensitive core-container information 
to a host-local accomplice via host-level side channels. A fourth 
indirect-impact attack vector is output format exploitation, where a 
malicious sidecar writes badly formatted data to its output file, in the 
hope of exploiting programming errors in the software code (e.g. 
buffer overflow). A successful subsequent subversion or privilege 
escalation can then potentially impact the core-container negatively. 
Output volume-based exploits, on the other hand, are in-scope and 
isolated using the blkio (block IO) cgroup controller.  

The rest of the out-of-scope exploits are powerful enough to 
cause a direct core-container impact. This includes attacks against a 
weakly configured core-container, e.g. having insecure setuid binaries 
[21] lying around. The sidecar can execute such a binary to 
potentially escalate is privileges to that of the core-container user. A 
buggy kernel is also out-of-scope. 

Impact of In-Scope Exploits. The different constraints added to 
the fused sidecar enable it to contain all of the in-scope exploits (row 
number 8 onwards), which would have otherwise directly impacted a 
core-container, assuming they were shipped inside third-party utility-
microservice. This is indicated as an ‘N’ in Column 5, referring to the 
inability of an exploit to infect the core-container, when the former is 
run inside the fused sidecar. Compare this to the scenario when the 
exploit (masquerading as a legitimate code) is run inside the core-
container or the host–a ‘Y’ in Column 4, indication successful core-
container infection.  

B. Performance Analysis  
We evaluated the overhead of our solution on Ubuntu 16.04 

KVM VM, with 4 vCPUs and 8G RAM, running Docker 1.12.1. The 
VM runs on quad-core / 16G RAM / Intel Core-i7 2.80GHz host 
machine, running Ubuntu 16.04 and QEMU 2.5.0. We observed an 
average overhead of 71ms reflected in the setup time of  344ms to run 
with fusion as opposed 273ms to running without fusion. 

VI. RELATED WORK 
Privilege separation: Compartmentalization is one of the first 

building blocks towards application security, and can be done 
manually via application restructuring [24], but with significant 
programmer effort, or automatically via program analysis. We 
employ privilege separation in our approach, by running the utility-
microservice code as unprivileged entities, with access to the 
privileged guest state being mediated by other kernel constructs.  

OS isolation: The kernel constructs to manage access rights and 
restrictions, by themselves, are insufficient for comprehensive 
isolation. As pointed out in [14], DAC/MAC are inadequate for 
application privilege separation. Fine-grained Type Enforcement 
policies (as in SElinux) are inflexible, difficult to write and maintain, 
and thus, in practice, broad rights are conferred. Chroot limits only 
file system access, and switching credentials via setuid offers poor 
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protection against weak DAC protections on namespaces. 
Namespaces- based view separation itself precludes cross-domain 
(e.g., a container) visibility. Linux capabilities, in their current form, 
still confer too much power than required for fine-grained access 
control. Capsicum [14] enables finer granularity capabilities via file-

descriptor-level access control. However, since it combines security 
policy with code in the application, this makes it harder to cleanly 
specify and analyze a security policy. It also requires kernel 
modifications, and (minor) application modifications to make use of 
the proposed kernel construct.  

TABLE I.  EVALUATION TABLE

VII. CONCLUSION 
In this paper, we proposed an approach and implementation to 

diffuse boundaries between containers. We evaluated our approach by 
verifying the successful containment of several exploits in the sidecar 
across multiple dimensions. We analyzed different attack vectors and 
exploits and demonstrated that our approach achieves the fusion 
without compromising the security of the target container. As future 

work, we will examine automatically figuring out the needed 
capabilities/privileges needed by the sidecar by running it 
independently in a sandboxed environment, observing its behavior and 
requirements, and extract the desired configuration based on this 
analysis before fusing it with our core-container. 
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