
Can Container Fusion Be Securely Achieved?
Sahil Suneja, Ali Kanso and Canturk Isci

IBM Research
NY, USA

{suneja, akanso, canturk}@us.ibm.com

Abstract—Linux containers are key enablers for building
microservices. The application’s microservices fall broadly
under two categories, the core-microservices implementing the
business logic and the utility-microservices implementing
middleware functionalities. Such functionalities include
vulnerability scanning, monitoring, telemetry, etc. Segregating
the utility-microservices in separate containers from the core-
microservice containers may prevent them from achieving their
functionality. This is due to the strong isolation between
containers. By diffusing the boundaries between containers we
can fuse them together and enable close collaboration.
However, this raises several security concerns, especially that
the utility-microservices may include vulnerabilities that
threaten the entire application. In this paper, we analyze the
different techniques to enhance the security of container fusion
and present an automated solution based on Kubernetes to
configure utility-microservices containers to fuse with core-
microservices containers.

Keywords⎯⎯Linux containers, security, orchestration,
Kubernetes, microservices

I. INTRODUCTION
The last few years have witnessed a widespread adoption of the

microservices paradigm for architecting cloud-native software [1]. A
common design pattern in microservices is the separation of concerns
wherein each microservice is developed and packaged individually.
Linux containers are the predominant model of deployment for
microservices where each microservice is packaged as a container
image that is later instantiated as a container instance. The inter-
communication between microservices is commonly achieved
through well-defined interfaces, mainly using a RESTfull API
(Application Programming Interface) [2]. However, not all
microservices can achieve their functionalities through high-level
APIs. As an example, we consider a vulnerability scanning
microservice, which we refer to as a utility-microservice. The utility-
microservice performs vulnerability analysis against other
microservices that are delivering business logic functionalities. We
refer to these microservices as the core-microservices. In this
example, the utility-microservice scans the filesystem of a core-
microservice container looking for vulnerable packages installed, and
thereafter checks the running processes within the core-microservice
container to make sure no vulnerable package is executing. The core-

Permission to make digital or copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
WOC '19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7033-2/19/12…$15.00
https://doi.org/10.1145/3366615.3368356

microservices are typically not aware of the existence of the utility-
microservices. The utility-microservices may originate from a third
party vendor/provider. In fact, the utility-microservice pattern is
frequently used as a means to add functionality to a legacy
application that cannot be modified. For instance, a utility-
microservice can intercept and encrypt the traffic emitted by a legacy
application that does not support encryption. For example, when
using Istio [3] to manage the communication between our
containerized microservice, a utility-microservice, mediates inbound
and outbound communication to the core-microservice. In order to
achieve their functionality, utility-microservices often need intrusive
access and capabilities in the core-microservice container. Such
access can be granted via injecting the utility-microservice into the
same container as the core-microservice [4]. However, this is a risky
approach, since the utility-microservice may contain malicious code
or bugs that can jeopardize our core-microservice and potentially our
entire system. In reality, the official CVE (common vulnerability
exploit) entries reveal several vulnerabilities in sidecars with utility-
microservice functionalities leaking sensitive information (such as
application login credentials) [5], enabling arbitrary command
execution [6], causing Denial of Service (DoS) [7], amongst other
security concerns. An alternative approach is to have the utility-
microservice execute in its own container in order to isolate it from
our core-microservice. However, this restrictive approach will
deprive the utility-microservice of vital information it needs to carry
out its functionality. For instance, our vulnerability scanning utility-
microservice requires access to the memory, processes, disk, and
network state of the core-microservice container, all of which are
isolated by default among two separate containers.

In this paper, we propose a different approach. Our approach
leverages the isolation benefits of having the two microservices
executing in different containers. By diffusing certain boundaries
between the two containers, we grant the utility-microservice the
capabilities and permission it needs to perform its functionality. All
while protecting our core-microservice by limiting the visibility and
accessibility of our utility-microservice. We refer to this approach as
container fusion.

The novelty of our work stems from the unique combination of
permissions, capabilities, and constraints that we apply to our
sidecars without modifying the kernel while maneuvering within the
boundaries of abilities of the available kernel constructs. We couple
our design with an implementation that makes the fusion transparent
to the user who can apply it without having to understand its
underlying complexity.

The paper is organized as follows, in Section II we present the
background to our work. In section III we discuss the container fusion
design. In Section IV we evaluate our design from a security
standpoint. In Section V we present our implementation that
automatically configures the sidecar containers, and finally, we
discuss the related work in Section VI and conclude in Section VII.

II. BACKGROUND
In our approach for securing our core-microservice we follow the

principle of least privilege [8] for our sidecar, starting with running
the sidecars as unprivileged entities, then giving them access rights
via namespaces and capabilities, and finally restricting their impact
abilities via seccomp [9] and netfilter [10]. In addition to these five

31

constructs for access controls, we also leverage cgroups to enforce
resource constraints on the sidecar sandbox. In this section, we give a
brief overview of the above-mentioned constructs.

A. Privileges and Capabilities
Unlike privileged processes, unprivileged processes are subject to

full permission checking based on the process's credentials. The
privileges traditionally associated with superuser are known as
capabilities, and such capabilities can be independently enabled and
disabled for unprivileged processes. Such capabilities include
changing files ownership or overriding disk quota limits among
others [11].

B. Namespaces and Cgoups
The Linux operating system provides global system resources

that are shared among the processes it manages. Such resources
include the Network devices, TCP/IP stacks, Posix message queues,
etc. A namespace wraps a global system resource in an abstraction.
Processes within a namespace execute in an isolated instance of the
global resource. As such, changes to the global resource are visible to
processes that are members of the same namespace but are invisible
to other processes. Namespaces are the backbone of Linux containers
[12]. Isolating processes in namespaces does not limit them from
consuming more than their fair share of system resources such as
CPU and memory. This is where cgroups come into play. Cgroups are
the mechanism by which processes resource utilization is constrained.

C. Seccomp and Netfilter
Seccomp (short for secure computing mode) is a mechanism to

constrain processes from making unauthorized system calls. Should a
process attempt to make a forbidden system call for that process (e.g.
exec or fork), it will get terminated. Netfilter provides the
functionality required for directing packets through a network
and prohibiting packets from reaching sensitive endpoints within a
network.

III. CONTAINER FUSION DESIGN
The sidecar container requires certain capabilities and privileges

in the core-container. Yet, it cannot be fully trusted. Hence the
containers boundaries need to partially be relaxed but with certain
constraints enforced.

A. Threat Model
Our goal is to restrict the sidecar’s operational environment

enough so that it can not do anything malicious. This includes direct
impact such as process corruption, as well as indirect interference
such as botnet or fork-bomb behavior. For the purpose of data
collection, we are okay with giving the sidecar full read-only (R/O)
visibility into a core container’s state, including possibly any secret
keys in there. Multiple instances of the same sidecar may exist at the
same time. The adversary can author multiple sidecars that can
operate against the same core container. The adversary can also run
their sidecar container (as a regular unprivileged cloud tenant) on the
same host as the target core container.

B. Container Fusion Design
The challenge in securely running untrusted sidecars that perform

system-state-extraction lies in balancing the levels of accessibility and
constraints afforded to them. We basically need to prevent the
sidecars from:

1. impacting the core container execution: this includes direct
impact such as process subversion, as well as indirect
interference such as DoS via resource-hogging,

2. communicating with the outside world: leaking sensitive
information or acting as a botnet, and

3. leaking information to host-local accomplices (e.g. other
malicious containers).

To address these demands, the sidecars are isolated away in
separate containers, however, the default strong boudaries between
containers prohibit them from being able to look inside the target
core-container. Thus, we need to provide these sidecars secure access
to privileged resources outside the walls of a typical container,
specifically–the target core-container’s memory, disk, and network
state as shown in Fig 1. However, what adds to the complexity of the
problem is that some capabilites that we give to the sidecar container
can be too powerful, and may be dangerous to the core-container,
therefore in many cases, as we will see, we have to cirlce back and
block certain aspects of a capability to mitigate its powers. The steps
involved in achieving secure container fusion are as follows.

(1) Namespace Isolation

By default, the sidecar has access into its own set of namespaces,
separate from the core-container. It can thus only view its private set
of processes, mount-points, network devices, user/group IDs, and
inter-process communication objects. This isolates the sidecar away
and prevents it from having any communication with entities outside
its container. This includes communication via the filesystem, the
network, or through inter-process communication mechanisms such
as shared memory or message queues. We start with full isolation and
then share a subset of the namespaces in the next steps.

(2) De-privileging

Next, following the principle of least privilege [8], the sidecar is
made an unprivileged entity, by mapping its user ID inside its
container to a non-root user ID on the host. This takes away a
substantial amount of power from the sidecar to alter any host system
state.

(3) Resource Isolation

The sidecar has its own cgroup for resource isolation. Limits can
thus be enforced on the sidecar’s process count, CPU, memory, and
disk usage, preventing it from indirectly impacting the core-container
and the host.

(4) Access to disk state

Isolated in its own mount namespace, the sidecar cannot see the
core-container’s disk-level system state such as configuration files,
logs, package databases, etc. Thus, to be able to access this state, the
core-container’s root filesystem (rootfs) is mounted read-only inside
the sandbox. But, since the sidecar’s and the core-container’s user IDs
are different, the sidecar may be unable to read the core-container’s
files in the mounted rootfs, because of discretionary-access-control
(DAC) permission checks. We, therefore, grant the sidecar container
CAP_DAC_READ_SEARCH capability to see core-container’s files
(only reads, no writes).

The sidecar expects to find the relevant files at paths relative to
the root directory (‘/’), as in the case of as sidecar that does package
analysis, it will look for packages in predefined directories (e.g. /bin).
However, the mounted rootfs will have a different path depending on
the mounting point. Thus, we leverage the chroot mechanism so that
the sidecar and any imported libraries can work as-is, believing they
are operating on the core-container’s root directory: ‘/’. Nevertheless,
as an unprivileged user, the sidecar can not call the chroot syscall,
therefore, we also grant the CAP_ SYS_CHROOT capability to the
sidecar to enable this view change during data collection.

(5) Access to memory state

Similar to the mount namespace restriction, since the sidecar has
its separate PID namespace, it cannot see the core-container’s process
state. We, therefore, share the core-container’s PID namespace with

32

the sidecar, giving it access to the core-container’s memory state via
procfs.

However, despite the read-permission-check exception granted in
Step 4, the sidecar can still not see the files or sockets opened by the
core-container processes. Basically, reading a process open files or
sockets, by dereferencing /proc/<pid>/ fd/* symlinks, requires that the
read-only ptrace access mode PTRACE_MODE_READ be set,
amongst other flags. The lack of a mechanism to grant only this
limited credential to a userspace entity made us resort to granting the
more powerful Linux capability CAP_SYS_PTRACE capability to
the unprivileged sidecar. Section C describes this issue in more detail.

Since the ptrace capability is too powerful (giving the sidecar the
ability to kill/hang/corrupt core-container processes), we use seccomp
to block the ‘harmful’ system calls which this capability enables–
ptrace() and process_vm_writev(). Thus, by blending the ptrace
capability with seccomp, we achieve our goal of giving the sidecar
just enough power to only read, and not impact, the core-container’s
memory state.

(6) Access to network state

Being in its own network namespace prevents the sidecar from
seeing the core-container’s network connections. To enable reading
such a state, the core-container’s network namespace is shared with
the sidecar.

Although access to the core-container’s network namespace does
not allow packet manipulation, it does open up two avenues of
nefarious actions by the sidecar. First, although the unprivileged
sidecar cannot disrupt the core-container’s network connections, it
can use it to communicate with the outside world– create backdoors,
steal secrets, act as botnet, etc. To avoid this, netfilter based packet
filtering is employed to block a sidecar’s access to the outside world,
except for “white-listed” secure communication channel to ship out
collected data to the monitoring backend.

The second concern is a potential DoS attack by the sidecar,
where the sidecar can hoard all of the unprivileged network ports the
core-container has access to. This can then prevent a core-container
application to communicate via the network, if it hasn’t already
bound to its desired port. To resolve this, we resort to using SElinux
[13] to allow only a few ports for the sidecar to bind to.

(7) Access to resource stats

Since the sidecar is run in a separate cgroup for resource
isolation, in order to gather the core-container’s resource usage stats,
the sidecar is also granted access to the core-container’s cgroup
filesystem. DAC settings ensure read-only behavior by default.

Fig. 1. Design Overview

C. Discussion
 Certain reads from a sidecar to the target core-container’s
memory state, need a less-powerful read-only access mode set-
PTRACE_MODE_READ. However, there is no direct mechanism to
grant just these credentials to a userspace entity. Thus, as the nearest
alternative, we had to grant the more-powerful CAP_SYS_PTRACE
capability to the unprivileged sidecar. This is indeed an overkill and
an artifact of coarse-grained capabilities in the Linux kernel vs.
Capsicum’s [14] fine-grain capabilities. This leads to bigger problems
since CAP_SYS_PTRACE enables PTRACE_MODE_ATTACH
thereby allowing ‘write’ operations, enabling the ability to kill and
corrupt core-container processes. Also, the Commoncap Linux
Security Module (which is always invoked in the kernel) does not
distinguish between PTRACE_MODE_READ and
PTRACE_MODE_ATTACH.

To counteract this power, we use seccomp to block the ‘harmful’
system calls which this capability enables–ptrace() and
process_vm_writev(). Read-only syscalls- kcmp(), pro
cess_vm_readv() and get_robust_list() do not need to be blocked.
Another dangerous syscall enabled by CAP_ SYS_PTRACE is
move_pages(), but for that syscall to go through CAP_SYS_NICE is
needed, which we don’t provide.

Beyond access via syscalls, the capability in question also grants
power to the sidecar to access the core-container’s memory directly
via /proc/<pid>/mem. However, DAC controls come to the core-
container’s rescue in this case, preventing the sidecar from being able
to write to the core-container. Writes in this fashion would
additionally require CAP_DAC_OVERRRIDE to be granted to the
sidecar, while we only confer the read-only capability
CAP_DAC_READ_SEARCH in Step 4 of Section III.B.

IV. IMPLEMENTATION

Fig. 2. Implementation Overview

For our implementation, we chose Kubernetes [22] as our
container orchestration framework, coupled with Docker [23] as our
container engine (leveraging ContainerD and RunC). Our fusion
approach, being based upon fundamental kernel-level constructs, is
applicable to the other container engines as well and can also be
enforced through other container orchestration frameworks such as
Docker Swarm. We did not need (or want) to modify the Linux kernel
or Docker; we built our fusion solution with already-exported kernel
functionality. We leveraged the Kubernetes shareProcessNamespace
and capabilities features to configure our container, we also use the
resource limits/requirements to bound our sidecar. We also leverage
network-policies and pod-security-context to configure our
containers. In order to keep our approach transparent to the user, we
define a Kubernetes mutation admission controller that can (1)
intercept a request to create a Kubernetes Pod*. (2) Modify the

* In Kuberentes, a Pod is a grouping of one or many containers that

share the same network namespace, and lifecycle.

33

specification of the pod by adding our configuration options that fuse
our core-container with the sidecar. (3) Resubmit the modified pod
request to Kubernetes to be created. The admission controller only
modifies pods that have special labels specifying the container to be
fused: <fuse-container-source=…>, <fuse-container-target=…>. All
other pods missing those labels will be ignored by our admission
controller. Due to the lack of space, we leave out certain
implementation details and modifications that were needed to
Kubernetes’ Kubelet− the agent running on each cluster node and
invoking the container engine. Figure 2 illustrates our solution.

V. EVALUATION
In this section, we evaluate the security posture of our container

fusion and the performance overhead. The assumption here is that the
sidecar may contain malicious code that an adversary can leverage to
compromise our core-container. We consider the alternatives to our
approach (i.e. using fused containers) is to (1) run the utility-
microservice in the same container as our core-microservice or (2)
directly on the host with enough privileges to access the core-
container state.

A. Security Analysis
Selection of Exploits. In order to test the efficacy of our

approach, we considered a comprehensive set of attack categories and
verified the inability of the exploits to impact the core-container. We
focused on the categories from the Exploit Database – a public
archive of exploits used by penetration testers [15]. These include:
local & privilege escalation, denial of service (DoS), remote exploits,
as well as web application exploits. We also considered all of the
attack categories from the popular Hansman and Hunt’s attack
taxonomy [16], namely: virus, worms, trojans, buffer overflows, DoS,
network attacks, password attacks, information gathering, information
corruption, information disclosure, service theft and subversion
attacks, combined across all of the attack classification dimensions of
the taxonomy.

The first three columns of Table 1 shows how the attack vectors
we consider (column 1), to portray possible avenues of attack specific
to a cloud monitoring setting and covering each of the above
categories, map to them (column 2,3). An attack may map to several
categories; only the closest matches are indicated in the Table,
restricted by space. Actual reported vulnerabilities in data collecting
sidecars do indeed fall under the attack vectors coverage, such as
arbitrary command execution [6] and DoS [17], as do attacks against
the software core such as privilege escalation [18].

While we test our fusion approach against specific instance(s) of
each type of exploit, we believe it to be generally applicable against
other implementations of the exploits as well, since the approach
targets the fundamental avenues of attack, rather than any instance-
specific vulnerability.

Execution of Exploits. The last column of Table 1 presents
examples and sources of the particular exploit instances we tested in
our approach. In some cases, we ran the exploits using the Metasploit
penetration testing framework [19] running inside the sidecar
container, while the core-container runs a highly vulnerable
Metasploitable image [20]. The corresponding metasploit module
(containing the exploit code) then acts as an untrusted sidecar, trying
to subvert the target core-container it runs against. While in other
cases, we got the exploit code from github, or implemented our own.

In another experiment, we run this directly inside the core-
container, as malicious actions of a hypothetical code.

Direct vs. Indirect Impact. Some of the exploits inherently
cannot directly hurt the core-container, although they can cause an
indirect impact. For example, a code injection attack has a direct
process-corruption impact, but not an output falsification attack,

where the sidecar falsely states that the core-container is out of
memory, potentially triggering a policy-driven core-container re-
instantiation. This is indicated as a ‘Y’ or an ‘N’ in columns 4 and 5,
referring to the ability, or lack thereof, of an exploit to directly infect
the core-container, when the malicious code runs inside the core-
container or the host (column 4), versus running in a fused sidecar
container (column 5).

Impact of Out-of-Scope Exploits. The first 7 attacks are out-of-
scope of our threat model (Section III.A) and are highlighted as
‘OOS’ in Column 1 of Table 1. The first 4 of these are indirect-
impact causing, like the aforementioned output falsification attack.
Another indirect-impact case is that of a compromised monitoring
backend, where, for example, the adversary gains access to core-
container’s credentials shipped by the sidecar, enabling remote access
to the core-container. Similar is the case of a compromised host,
where the sidecar is able to leak sensitive core-container information
to a host-local accomplice via host-level side channels. A fourth
indirect-impact attack vector is output format exploitation, where a
malicious sidecar writes badly formatted data to its output file, in the
hope of exploiting programming errors in the software code (e.g.
buffer overflow). A successful subsequent subversion or privilege
escalation can then potentially impact the core-container negatively.
Output volume-based exploits, on the other hand, are in-scope and
isolated using the blkio (block IO) cgroup controller.

The rest of the out-of-scope exploits are powerful enough to
cause a direct core-container impact. This includes attacks against a
weakly configured core-container, e.g. having insecure setuid binaries
[21] lying around. The sidecar can execute such a binary to
potentially escalate is privileges to that of the core-container user. A
buggy kernel is also out-of-scope.

Impact of In-Scope Exploits. The different constraints added to
the fused sidecar enable it to contain all of the in-scope exploits (row
number 8 onwards), which would have otherwise directly impacted a
core-container, assuming they were shipped inside third-party utility-
microservice. This is indicated as an ‘N’ in Column 5, referring to the
inability of an exploit to infect the core-container, when the former is
run inside the fused sidecar. Compare this to the scenario when the
exploit (masquerading as a legitimate code) is run inside the core-
container or the host–a ‘Y’ in Column 4, indication successful core-
container infection.

B. Performance Analysis
We evaluated the overhead of our solution on Ubuntu 16.04

KVM VM, with 4 vCPUs and 8G RAM, running Docker 1.12.1. The
VM runs on quad-core / 16G RAM / Intel Core-i7 2.80GHz host
machine, running Ubuntu 16.04 and QEMU 2.5.0. We observed an
average overhead of 71ms reflected in the setup time of 344ms to run
with fusion as opposed 273ms to running without fusion.

VI. RELATED WORK
Privilege separation: Compartmentalization is one of the first

building blocks towards application security, and can be done
manually via application restructuring [24], but with significant
programmer effort, or automatically via program analysis. We
employ privilege separation in our approach, by running the utility-
microservice code as unprivileged entities, with access to the
privileged guest state being mediated by other kernel constructs.

OS isolation: The kernel constructs to manage access rights and
restrictions, by themselves, are insufficient for comprehensive
isolation. As pointed out in [14], DAC/MAC are inadequate for
application privilege separation. Fine-grained Type Enforcement
policies (as in SElinux) are inflexible, difficult to write and maintain,
and thus, in practice, broad rights are conferred. Chroot limits only
file system access, and switching credentials via setuid offers poor

34

protection against weak DAC protections on namespaces.
Namespaces- based view separation itself precludes cross-domain
(e.g., a container) visibility. Linux capabilities, in their current form,
still confer too much power than required for fine-grained access
control. Capsicum [14] enables finer granularity capabilities via file-

descriptor-level access control. However, since it combines security
policy with code in the application, this makes it harder to cleanly
specify and analyze a security policy. It also requires kernel
modifications, and (minor) application modifications to make use of
the proposed kernel construct.

TABLE I. EVALUATION TABLE

VII. CONCLUSION
In this paper, we proposed an approach and implementation to

diffuse boundaries between containers. We evaluated our approach by
verifying the successful containment of several exploits in the sidecar
across multiple dimensions. We analyzed different attack vectors and
exploits and demonstrated that our approach achieves the fusion
without compromising the security of the target container. As future

work, we will examine automatically figuring out the needed
capabilities/privileges needed by the sidecar by running it
independently in a sandboxed environment, observing its behavior and
requirements, and extract the desired configuration based on this
analysis before fusing it with our core-container.

REFERENCES

35

[1] Sam Newman Building Microservices: Designing Fine-Grained
Systems. O'reilly Media, Inc, USA – 2018

[2] Erik Wilde, Rest: from research to practice. Springer 2014
[3] Istio Service Mesh, available at: https://istio.io, accessed on

September 2019.
[4] Shripad Nadgowda, Sahil Suneja and Canturk Isci, “RECap:

Run-Escape Capsule for On-demand Managed Service Delivery
in the Cloud”, in the proceedings of the 10th Workshop on Hot
Topics in Cloud Computing. Boston, USA. 2018

[5] CVE-2014-4701: nagios-plugins: check_dhcp Arbitrary Option
File Read. https://access.redhat.com/security/cve/cve-2014-
4701.

[6] CVE-2013-4215: nagios plugins: IPXPING_COMMAND uses
fixed location in /tmp.
https://bugzilla.redhat.com/show_bug.cgi?id=957482.

[7] CVE-2018-18245: Advisory: Nagios Core Stored XSS via
Plugin Out- put. https://herolab.usd.de/wp-
content/uploads/sites/4/2018/12/ usd20180026.txt.

[8] The New Stack. TOOLS AND PROCESSES FOR MON-
ITORING CONTAINERS. https://thenewstack.io/ identifying-
collecting-container-data/.

[9] seccomp - operate on Secure Computing state of the process.
http://man7. org/linux/man-pages/man2/seccomp.2.html.

[10] netfilter / iptables. https://www.netfilter.org/.
[11] Overview of Linux capabilities. http://man7.org/linux/man-

pages/ man7/capabilities.7.html.
[12] Overview of Linux namespaces. http://man7.org/linux/man-

pages/ man7/namespaces.7.html.
[13] Linux Man Pages. collectd_selinux: Security Enhanced Linux

Policy for the collectd processes.
https://www.systutorials.com/docs/linux/man/ 8-
collectd_selinux/.

[14] R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway.
Capsicum: Practical capabilities for unix. In USENIX Security
Symposium, volume 46, page 2, 2010.

[15] Offensive Security. Exploit Database. https://www.exploit-
db.com/.

[16] P. Hunt and S. Hansman. A taxonomy of network and computer
attack method- ologies. Computers and Security, 24(1):31–43,
2003.

[17] CVE-2007-5623 nagios-plugins check_snmp possible buffer
overflow. https:
//bugzilla.redhat.com/show_bug.cgi?id=348731.

[18] Dawid Golunski. Nagios-Exploit-Root-PrivEsc-CVE- 2016-
9566. https://legalhackers.com/advisories/ Nagios-Exploit-Root-
PrivEsc-CVE-2016-9566.html.

[19] Metasploit | Penetration Testing Software.
https://www.metasploit.com/.

[20] Metasploitable 2 Exploitability Guide.
https://metasploit.help.rapid7.com/docs/metasploitable-2-
exploitability-guide.

[21] Michael C. Long. Attack and Defend: Linux Privilege
Escalation Techniques of 2016. https://www.sans.org/reading-
room/whitepapers/linux/ attack-defend-linux-privilege-
escalation-techniques-2016-37562.

[22] Kubernetes: Production-Grade Container Orchestration,
http://kubernetes.io

[23] Docker - Build, Ship, and Run Any App, Anywhere.
https://www.docker. com/.

[24] D. G. Murray and S. Hand. Privilege separation made easy:
trusting small libraries not big processes. In Proceedings of the
1st European Workshop on System Security, pages 40–46.
ACM, 2008.

36

