
Usable Declarative Configuration Specification and Validation
for Applications, Systems, and Cloud

Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer, Canturk Isci
IBM T.J. Watson Research Center

Abstract
Diagnosing misconfiguration across modern software stacks
is increasingly difficult. These stacks comprise multiple micro-
services which are deployed across a combination of containers
and hosts (VMs, physical machines) in a cloud or a data
center. The existing approaches for detecting misconfiguration,
whether rule-based or inference, are highly specialized (e.g.,
security only), cumbersome to write and maintain, geared
towards a host (instead of container images), and can result
into false-positives or false-negatives.

This paper introduces configuration validation language
(CVL), a declarative language for writing rules to detect mis-
configurations that can, for instance, impact security, perfor-
mance, functionality. We have built a system, ConfigValidator,
which applies the CVL rules across a multitude of environ-
ments such as Docker images, running containers, host, and
cloud. The system is running in production and has scanned
thousands of Docker images and running containers for iden-
tifying misconfigurations.

CCS Concepts • Software and its engineering → Specifi-
cation languages; Software configuration management and
version control systems; Operational analysis; Cloud comput-
ing; Application specific development environments; Main-
taining software; System administration; • Security and pri-
vacy→ Software and application security; • Information systems
→ Information extraction; Document filtering;

1 Introduction
Misconfiguration has been a major source of functional and
security problems in software, cloud-based systems, and cloud
providers [17, 30]. Examples of misconfiguration include an
incorrect value for an item in a configuration file, open permis-
sions for a file, incorrectly configured security groups in an
infrastructure-as-a-service cloud, or expired TLS certificates.
As software stacks become more complex with interdepen-
dent components, diagnosing misconfigurations that impact
functionality and security is increasingly difficult.

Part of this problem is due to use of software components
in the software stack which are third-party (open source or
commercial). It is unreasonable to expect the teams (DevOps)
deploying the software stack to master all the configurations

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Middleware Industry ’17, Las Vegas, NV, USA
© 2017 ACM. 978-1-4503-5200-0/17/12. . . $15.00
DOI: 10.1145/3154448.3154453

of third party components. Yet another problem is the use of
automation for deploying software stacks. DevOps personnel
often use existing automation tools or scripts for deploying
these third-party software (of which they have limited under-
standing) and integrate these automation scripts with their
own automated deployment framework. It is unrealistic to
assume that DevOps personnel can master configurations
spread across all automation. The problem is further exacer-
bated by the fact that software components do not ship with a
set of recommended configurations for production that can be
programmatically evaluated to validate misconfigurations.

Traditionally, the approaches for detecting misconfigu-
ration can be categorized into two broad categories: rule-
based [17, 19] and inference-based [31]. In rule-based ap-
proaches, rules are typically defined using scripts (typically,
shell scripts) to validate a configuration. In a nut shell, these
approaches search for a regular expression in a configuration
file. A majority of security checklists such as Center for Internet
Security (CIS) security benchmarks [5] XCCDF (The Extensible
Configuration Checklist Description Format) [19] fall into this
category. One of the major drawbacks of such approaches
is that these checklists are often specific to a function (e.g.,
security), are cumbersome to use by average skilled developer
for validation of other configuration validation tasks (e.g., con-
figurations related to performance). Moreover, their efficacy
is as good as the underlying script and are thus difficult to
reason from a validation perspective. Consequently, recent
approaches are taking a declarative approach for defining
configuration rules [6, 17]. However, such approaches still
require significant expertise from a DevOps person ([17]) or
are specific to an application component ([6]) of the software
stack. The inference-based approaches cite explicit rule specifi-
cation as burdensome and thus rely on inference and machine
learning techniques to validate configuration [31]. Thus, by
design, they have some error deltas built into them. Since
checking of security misconfigurations is not explicitly guar-
anteed, our experience in building production cloud systems
informs us that inference-based approaches have rarely found
use in production systems on a continuous basis.

In this paper, we present our system, ConfigValidator , for
seamless configuration validation across heterogeneous enti-
ties - applications, systems and the cloud. We believe that rule
specification should be declarative which makes validation
checks easy to encode, comprehend, extend and maintain.
To assist users – specialists and non-experts alike – in this
task, we have designed a declarative Configuration Valida-
tion Language (CVL). We show ConfigValidator’s coverage in
terms of the entities and checklists currently supported, and
efficiency both in execution time and rule specification in CVL.
ConfigValidator has been operational in the IBM Cloud as part
of IBM Vulnerability Advisor [12] for over an year. It has been



Middleware Industry ’17, December 11–15, 2017, Las Vegas, NV, USA S. Baset et al.

validating of the order of tens of thousands of containers and
images daily, capturing security misconfigurations. 1

This paper has the following contributions:
∙ Introduces a Configuration Validation Language (CVL) with

YAML-based syntax for writing and maintaining configu-
ration rules for a single application component, or across
multiple components of a software stack and cloud deploy-
ment.

∙ Describes a system, currently running in production, that
validates the configuration declarations from CVL against
real configurations that are converted into a ‘tree‘ or a
‘schema‘ like structure.
∙ Evaluates the rules against a multitude of environments,

including the host systems, Docker images, running contain-
ers, as well as configuration residing inside the applications
or the cloud.

2 Background and Related Work
One of the main goals for ConfigValidator is to validate con-
figuration from an applications, hosts, or cloud environment.
For ease of exposition, we use the word entity when referring
to an application, host, or a cloud. In this section, we first
describe the different styles in which configurations can exist
across entities. Then we differentiate ConfigValidator against
existing approaches for configuration validation.

2.1 Configurations
In this paper, we define configuration to be the following:

∙ Configuration file(s) containing modifiable parameters for
software execution or system function. For example, ng-
inx.conf or /etc/fstab stores configuration parameters for
nginx web server [9] and device file systems, respectively.

∙ System state such as file and directory permissions, owner-
ship, software packages and their versions.

∙ Custom Configuration stored within an entity’s runtime
state (e.g., cloud security groups) or in custom formats.

2.1.1 Configuration Files
This configuration type forms the bulk of configurations across
all entities. The format of configuration files typically follows
two types of patterns:

Key-value tree pattern Consider the configuration file (foo-kv1
.conf) shown in the figure below. It has three sections, namely,
A, B, and C. Section A has one key, namely A. Sections B and
C have two and one keys defined, respectively, namely, subB1
and subB2, and subC1.

# foo-kv1.conf
A = valA
B: {

subB1 : valsubB1
subB2 : valsubB2

}
C: {

subC1 : valsubC1
}

1The rule set is constantly being expanded very soon the users will have the
ability to write and edit their own rules, once ConfigValidator is open sourced.

This pattern occurs in many configuration files such as
Nginx [9], MySQL [8], Apache [3]. However, the section sepa-
rators used may be different.

Schema pattern Consider the configuration file (foo-schema1
.conf) shown in the figure below. It does not have a key /
value or section structure. Rather, it has some values defined
which are separated by a separator. The program that reads
this configuration file is able to interpret the meaning of each
component on each line depending on its position. Thus, the
‘key’ in this case is implicit.

# foo-schema1.conf
A1 B1:C1 D1=B1 E1
A2 B2:C2 D2=B2 E2

This pattern occurs in many configuration files such as
/etc/passwd, /etc/group, /etc/audit/audit.rules. How-
ever, the separators used may be different.

Note that in some configuration files, the schema pattern can
occur inside a tree pattern and vice versa. However, this mixing
typically increases the configuration management complexity.

2.1.2 System State
System state comprises file and directory permissions, own-
ership, software packages and their versions. Depending on
the configuration validation rules, certain files or directories
may be checked for their presence or absence, having the right
ownership and permissions, and belonging to packages with
the right versions.The example below shows the permissions
for /etc/sysctl.conf file.
-rw-r--r-- 1 root root 2210 Dec 21 18:09 /etc/sysctl.conf

2.1.3 Custom Configurations
Some applications (e.g., MySQL) either store configuration in
their own formats or need certain commands to be executed
for retrieving configuration for verification (e.g., SSL enabled).
As such, these configurations are not stored in a text file
and must first be retrieved by executing application-specific
commands. In other cases, configurations might exist within an
entity’s runtime state (e.g. in-memory data structures). The OS
also does not always explicitly expose all of its configuration.
For example, sysctl.conf typically contains only a subset
of the kernel parameters available via sysctl -a. Similarly,
cloud platforms typically store state about cloud resources
in a central/master management node, typically accessible
over APIs or HTTP(S) endpoints. Obtaining these types of
configurations requires querying the entity-specific interfaces,
commands or APIs. Another alternative is to extract such
configurations from the source code [21].

2.2 Configuration Validation Techniques
Enterprise policies dictate compliance with security check-
lists and configuration guidelines issued by specialized or
authorized organizations such as CIS, DISA STIG, FEDRAMP,
FISMA, PCI DSS, USGCB, NIAP, OSSG, and GovReady amongst
others [15, 16, 20]. An example rule could be to ‘disable root
login over ssh’ [13]. A typical configuration validation process
would include comparing the values of the target configuration
parameters against the ones specified in such checklists. For
this particular example, this would translate to checking the



ConfigValidator Middleware Industry ’17, December 11–15, 2017, Las Vegas, NV, USA

value of PermitRootLogin inside sshd_config configuration
file.

A popular configuration validation approach to enforce
these rules and guidelines is to encode them in the form of
scripts to be executed on the target machines [14]. However,
such ad-hoc scripts become hard to maintain as they are ex-
tended. An alternative is to encode compliance rules and
guidelines in more structured specification formats. Examples
include the SCAP standard’s XML-based configuration de-
scription and vulnerability specification languages- XCCDF,
OVAL, and OCIL [19]. But, even standardized specification for-
mats like XCCDF can be hard and cumbersome to comprehend
and encode in, as we highlight in Section 4.2.

We believe rule specification should be more declarative,
which makes validation checks easy to encode, comprehend,
extend and maintain. There has been recent support of this
philosophy in ConfValley [17], which although still requires
significant DevOps expertise, and Chef Inspec [6], which seems
to have been developed along the same time as ConfigValidator
.

Although Inspec and ConfigValidator share the same belief
of clear, declarative, and easy-to-comprehend specification
of compliance, security and policy requirements, but there
are a few subtle differences. While Inspec requires writing
application-specific custom parsers from scratch, leveraging
opensource Augeas parser makes ConfigValidator easier to
extend to more targets. Although Chef Inspec supports declar-
ative constructs (via app-specific libraries), Chef Compliance’s
CIS-rules encoding for Inspec-based validation just uses plain
bash scripts instead, as discussed in Section 4.2. Another differ-
entiation is ConfigValidator’s ability to work against system
configuration frames [24], which allows it to validate systems
without requiring any local installation or remote access.

An alternative configuration validation approach is to use
deployment automation tools, such as Chef [7], Puppet [10],
Ansible [2], to validate the deployed configurations encoded
as part of the automation process. However, such approaches
suffer from two problems. First, assertions about correct con-
figurations are not cleanly specified and are mixed in the
code. Second, lack of clean specification makes it difficult
to validate configurations. Deployment and validation are
two distinct operations, and mixing them (even in the de-
ployment code) makes detecting misconfiguration harder and
maintenance of this code difficult. Facebook [25] also follows
the configuration-as-code approach, and consequently has
to employ an entire ecosystem to keep misconfigurations in
check, including code review, compiler-based invariant ver-
ification, continuous integration testing, incremental rollout
and rollback mechanisms.

In addition to these explicit rule-based validation approaches,
there exist complementary code-level and system-level ap-
proaches to prevent or troubleshoot misconfigurations. Exam-
ples of the former include inferring configuration constraints
from the source code [18, 29], dynamic flow analysis [11], and
instrumentation [26, 32]. Examples of system-level misconfig-
uration detection approaches include snapshots diff-ing [28],
peer-based comparison [27], and kernel level dependency
tracking and speculative execution [23]. Out of scope are

Figure 1. Conceptual Architecture of ConfigValidator .
configuration storage and distribution systems like Akamai’s
ACMS [22].

3 Design and Implementation
In this section, we describe how ConfigValidator (i) extracts
a given entity’s (application / system / cloud) configuration
parameters, (ii) normalizes them, and (iii) validates them
against specific rules/checks. We also present the key attributes
of our Configuration Validation Language (CVL), which is
used to encode these rules.

3.1 Architecture
ConfigValidator’s architecture in Figure 1 is conceptually
similar to other rule-based systems. However, the novelty lies
in (i) how rules are defined and interpreted by the system,
and (ii) how the same rules can be seamlessly run against the
configurations belonging to a multitude of environments such
as the host, guest VMs, containers, Docker images, as well as
the ones residing inside an application or the cloud runtime.
The roles of the different ConfigValidator components are
described as follows.

Config Extractor We use Crawler open source tool [1] devel-
oped by our team to extract an entity’s configuration files, and,
optionally, metadata such as file/directory permissions and
ownership, software package versions, etc, when required by
specific validation rules. For configurations that don’t exist
in the form of text files, and instead reside inside the en-
tity’s runtime (e.g., in-memory data structures) or in custom
formats, these would have to be extracted by querying the
entity-specific commands, interfaces or API calls. The Crawler
tool contains several application-specific plugins to extract
such runtime state, which ConfigValidator can then consume.
In other cases, a script (or a crawler plugin) would still need
to be written to perform this state extraction.

ConfigValidator’s seamless multi-platform configuration
validation capability is derived in part from the crawler’s
ability to run directly against hosts, VMs, Docker images and
running containers.

Data Normalizer This module normalizes the extracted con-
figuration data based on its type. It converts the raw data
inside configuration files into a tree or schema structure for
further processing. We use the open source Augeas tool [4]
tool to perform this conversion. In Section 3.3, we discuss the
challenges related to Augeas parsing.

Rule Engine The rule engine is the brain of ConfigValidator .
It applies the validation checks (e.g. a config parameter’s value
correctness) on the normalized configuration data and pro-
duces a validation output. It takes as input entity-specific rule



Middleware Industry ’17, December 11–15, 2017, Las Vegas, NV, USA S. Baset et al.

definitions written in the Configuration Validation Language
(CVL) (Section 3.2). The engine itself is written in Python. For
single entity validation checking, the rule engine simply ap-
plies the corresponding rules against the entity’s configuration
parameters. For cross-entity validation (see ’Composite rules’
in Section 3.2), the rule engine performs a logical conjunc-
tion/disjunction over the per-entity rule evaluations for each
component entity.

Output Processing The output processing module converts
the rule validation output from the rule-engine into a human
readable format. It combines the rule engine’s validation result
with a rule description, validation output description and a
possible suggestive action, obtained from the rule specification
file.

3.2 Configuration Validation Language
Configuration Validation Language (CVL) defines the config-
uration validation rules which are fed as an input to Config-
Validator . CVL is designed so that potentially any user– be it
a developer, an IT admin, a DevOps personnel, or a domain
specialist – can easily specify configuration assertions to be
checked against configuration files in a simple declarative
syntax. Below, we list its key properties.

Syntax CVL uses the YAML syntax for encoding rules. The
choice was motivated by its simplicity, brevity, declarative
nature, and ease of understanding, which aids ConfigVal-
idator in its goal for comprehensible and maintainable rules.
YAML is also popular with many modern configuration and
deployment tools such as Docker Compose, Ansible, and
Kubernetes.

CVL Keywords A CVL rule comprises of a handful of key-
value pairs. The keys in the key-value pairs are “keywords”
in CVL. They are interpreted by ConfigValidator during rule
execution. CVL has a total of 46 keywords across all rule types
and entity description. A configuration rule typically has no
more than ten keywords.

Keywords in CVL are grouped as follows.
Keywords Common Across Rules These keywords are

used to define an entity and rules for that entity. These key-
words include entity name, entity rule file, the path for a file
containing CVL rules for an entity, a parent rule file if any, rule
type, rule description, the value to match (or not match), an
output string to generate in case of a success (or failure), and
various tags specified by the rule writer. The tags can be used
for filtering based on compliance standard such as #HIPAA, or
ruleID from an official checklist such as #cisubuntu14.04_2.1).
A total if 19 such keywords are defined. These keywords are
shown in bold in Listings 1-5.

Listing 2. Config tree rule example
config_name: ssl_protocols
config_path: ["server", "http/server"]
config_description: "Enables the specified SSL protocols."
preferred_value: [ "TLSv1.2", "TLSv1.3" ]
non_preferred_value: [ "SSLv2", "SSLv3", "TLSv1", "TLSv1.1" ]
non_preferred_value_match: substr,any
preferred_value_match: substr,all
not_present_description: "ssl_protocols is not present."
not_matched_preferred_value_description: "Non-recommended TLS ver."
matched_description: "ssl_protocols key is set to TLS v1.2/1.3"
tags: ["#security", "#ssl", "#owasp"]
require_other_configs: [ listen, ssl_certificate , ssl_certificate_key ]

file_context: ["nginx.conf", "sites-enabled"]

Keywords Specific to Rule-Types CVL allows a rule writer
to specify five types of rules based on the configuration type
(see Section 2.1. The keywords specific to each rule type are
shown in parenthesis.

∙ config tree - the configuration has a hierarchical tree struc-
ture (9 keywords).

∙ schema - the configuration has a SQL-table like structure.
(6 keywords).

∙ path - the configuration is path or directory with associated
metadata (that may or may not exist). (6 keywords).

∙ script - the configuration needs to be extracted from within
the target entity’s runtime state using a script. (3 keywords).

∙ composite - the rule is an aggregation across multiple entities.
(3 keywords).

Depending upon the rule type, a CVL rule definition would
include certain type-specific keys such as config_path for
tree-type as in Listing 2 and query_constraints for schema-
type as in Listing 3. This provides the configuration parameter
context for the rule engine to apply a particular rule against.
Listings 1-4 show a rule definition in CVL for composite, config
tree, schema, and path rule types for various applications and
host configurations.

Listing 3. Schema rule example
config_schema_name: check_tmp_separate_partition
config_schema_description: "Check if /tmp is on a separate partition"
query_constraints: "dir = ?"
query_constraints_value: ["/tmp"]
query_columns: "*"
non_preferred_value: [""]
non_preferred_value_match: exact,all
not_matched_preferred_value_description: "/tmp not on sep. partition"
matched_description: "/tmp is on a separate partition"
tags: ["#cis", "#cisubuntu14.04_2.1"]

Listing 4. Path rule example
path_name: /etc/mysql/my.cnf
path_description: "Permissions and ownership for mysql config file"
ownership: "0:0"
permission: 644
tags: [ "#owasp" ]

Manifest To provide the rule engine the complete context
to validate configurations, a per-entity manifest specifies (i)
the location(s) within the target environment to search for the
configuration file(s) in, and (ii) the rule specification file that
groups together all CVL rule definitions for the entity. The
manifest also contains a few other keys to aid ConfigValidator
in its rule processing, such as the rule-type (as discussed
above), an enabled/disabled boolean, etc. Listing 5 shows an
example manifest for nginx application.

Listing 5. Manifest for nginx configuration validation
nginx:
enabled: True
config_search_paths:
- /etc/nginx

cvl_file:
"component_configs/nginx.yaml"



ConfigValidator Middleware Industry ’17, December 11–15, 2017, Las Vegas, NV, USA

Listing 1. Composite rule example
composite_rule_name: "mysql ssl-ca path and sysctl and nginx SSL"
composite_rule_description: "Check if nginx is running with SSL, ip_forward is disabled , and mysql server ssl-ca has a cert"
composite_rule: mysql.ssl-ca.CONFIGPATH=[mysqld].VALUE == "/etc/mysql/cacert.pem" && sysctl.net.ipv4.ip_forward && nginx.listen
tags: ["docker", "nginx", "sysctl"]
matched_description: "mysql server ssl-ca has a cert, ip_forward is disabled, and nginx has SSL enabled."
not_matched_preferred_value_description: "Either mysql server ssl-ca does not have a cert, or ip_forward is enabled, or nginx has SSL disabled."

Applications apache, nginx, hadoop, mysql
System services audit, fstab, sshd, sysctl, modprobe
Cloud services openstack, docker

Table 1. Targets supported by ConfigValidator

Inheritance CVL enables easy extensibility atop the baseline
configuration checks created by application developers or
community users. When these rules are run against a tar-
get environment, some of them may need to be updated to
match deployment-specific peculiarities. To this end, a rule
writer may inherit rules from a parent CVL file, override the
rule checks (e.g., by updating the acceptable configuration
parameter value), or disable the rules.

Composite Rules An application such as nginx may be de-
pendent on system configuration such as sysctl. For complex
configuration checks that span multiple entities, CVL allows
specifying ‘composite’ rules. Listing 1 highlights this feature
across three entities, by defining a rule to be true only when
(i) MySQL is running with authorized SSL certificates, (ii) IP
forwarding is disabled, and (iii) nginx has SSL enabled on
listening sockets.

3.3 Challenges in Configuration Parsing
As mentioned in Section 2.1, configuration files typically follow
a key-value tree pattern or a schema pattern or a mix of the
two. While it is possible to convert a schema pattern into a key-
value tree pattern and a vice versa, we determined after some
experimentation that it would actually increase the amount of
work needed to parse the configurations and digress us from
our core work of configuration validation. Thus, we maintain
the ’natural’ format of configuration files while parsing them
using Augeas [4].

4 Evaluation
In this Section, we first highlight ConfigValidator’s coverage
in terms of the entities and checklists supported today. Next,
we compare it qualitatively and quantitatively against existing
configuration validation tools.

4.1 Coverage
As shown in Table 1, currently ConfigValidator supports 11
different target types, spanning 135 rules in total. These checks
are in adherence with the CIS benchmarks, except for Apache,
Nginx and Hadoop applications, which conform to OWASP,
HIPAA, and PCI standards, and Openstack which conforms to
OSSG guidelines. ConfigValidator presently covers 41% of the
CIS Docker checklist, and all of the audit rules of the Ubuntu
checklist. Work is under progress to increase ConfigValidator’s
rule coverage, and we hope to achieve a community boost
when our ongoing internal-clearance process for opensourcing
completes.

Tool
Specification

Language
Implementation

Language
Time to run

40 rules
ConfigValidator YAML Python 1.92 s
Chef Inspec Ruby Ruby 1.25 s
CIS-CAT XCCDF/ OVAL Java 14.5 s
OpenSCAP* XCCDF/ OVAL C 0.4 s

Table 2. Comparison across validation tools. *: OpenSCAP
was run against different rules than the others

4.2 Comparison
Here we compare ConfigValidator with other compliance/-
validation engines – OpenSCAP, CIS-CAT and Chef Inspec
– quantitatively in terms execution times, and qualitatively
in terms of effort required to encode a rule. Both OpenSCAP
and CIS-CAT follow the XCCDF/OVAL specification formats,
while ConfigValidator and Chef Inspec employ declarative
rule specifications.

We selected 40 CIS rules common to ConfigValidator , Chef
Inspec and CIS-CAT. These rules target validation of system
services in Ubuntu Linux, as shown in Table 1. We targeted
maximum common rule coverage across the different engines.
However, since OpenSCAP does not implement CIS rules yet,
we ran it against random 40 rules from its Ubuntu security
guide (XCCDF) to get it’s expected validation time. Table 2
shows the average time taken to run the same rules under the
4 engines, as well as the corresponding rule specification and
engine implementation languages.

The unusually high time for CIS-CAT should not be related
to XCCDF/OVAL since openSCAP also uses it as its rule
specification language. It might be due to JVM overhead, or
related to some license checking during initialization, since
CIS-CAT is a commercial software and not opensourced unlike
the other tools. Other than that, the engines take the expected
amount of time to run, given their underlying implementation
language. A catch may be that although Inspec supports
several declarative constructs to encode rules (via app-specific
Inspec::Resources libraries), Chef Compliance’s CIS-rules
encoding for Inspec-based validation boils down to just bash
scripts as shown at the bottom of Listing 6.

Listing 6 also highlights how a rule is encoded under the
different tools. For brevity, we trimmed down the contents
of several XCCDF XML flags in the listing. In the particu-
lar example shown, it takes 45 and 10 lines respectively to
specify the rule with XCCDF/OVAL and ConfigValidator .
These emphasize our belief that ConfigValidator’s declarative
specification is easier to encode, reason, and maintain, than
bash scripts and XML-based encodings.

5 Contribution
ConfigValidator has been deployed in production as part of
IBM Container Service’s Vulnerability Advisor [12]. It has
been operational for over an year, and has been validating on



Middleware Industry ’17, December 11–15, 2017, Las Vegas, NV, USA S. Baset et al.

Listing 6. Comparing rule encoding for “Disable SSH Root Login" across different formats

******* OpenSCAP: XCCDF/OVAL [45 Lines] *******

<select idref="xccdf_org.ssgproject.content_rule_sshd_disable_root_login" selected="true"/>
:
<Rule id="xccdf_org.ssgproject.content_rule_sshd_disable_root_login" selected="false" severity="medium">
<title xml:lang="en-US">Disable SSH Root Login</title>
<description xml:lang="en-US"> The root user should never be allowed to login to a system ... </description >
<reference href="http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf">AC-3</reference >
:
<rationale xml:lang="en-US"> Permitting direct root login reduces auditable information ... </rationale >
<ident system="https://nvd.nist.gov/cce/index.cfm">CCE-</ident>
<check system="http://oval.mitre.org/XMLSchema/oval-definitions -5">
<check-content-ref name="oval:ssg-sshd_disable_root_login:def:1" href="ssg-ubuntu1604 -oval.xml"/>

</check>
:

</Rule>
:
<definition class="compliance" id="oval:ssg-sshd_disable_root_login:def:1" version="1">
<metadata >

<title ... /> <affected ... /> <description ... /> <reference ... />
</metadata >
<criteria comment="Check...sshd_config" negate="true" test_ref="oval:ssg-test_sshd_permitrootlogin_no:tst:1"/>

</definition >
:
<ind:textfilecontent54_test check="all" check_existence="none_exist" comment="Tests the value of the
PermitRootLogin[\s]*(&lt;:nocomment:&gt;*) ... " id="oval:ssg-test_sshd_permitrootlogin_no:tst:1" version="1">
<ind:object object_ref="oval:ssg-obj_sshd_permitrootlogin_no:obj:1"/>

</ind:textfilecontent54_test >
:
<ind:textfilecontent54_object id="oval:ssg-obj_sshd_permitrootlogin_no:obj:1" version="2">
<ind:filepath >/etc/ssh/sshd_config </ind:filepath >
<ind:pattern operation="pattern match">^[\s]*(?i)PermitRootLogin(?-i)[\s]+no[\s]*(?:|(?:#.*))?$</ind:pattern>
<ind:instance datatype="int">1</ind:instance >

</ind:textfilecontent54_object >

******* ConfigValidator: YAML [10 Lines] *******
config_name: PermitRootLogin
tags: ["#security","#cis", "#cisubuntu14.04_5.2.8"]
config_path: [""]
config_description: "Enable root login."
file_context: ["sshd_config"]
preferred_value: [ "no" ]
preferred_value_match: substr,all
not_present_description: "PermitRootLogin is not present. It is enabled by default."
not_matched_preferred_value_description: "PermitRootLogin is present but it is enabled."
matched_description: "Root login is disabled."

******* Chef Inspec: Ruby (Expected) [6 Lines] *******
control 'sshd-06' do
impact 1.0
title 'Server: Do not permit root-based login or do not allow password and keyboard -interactive authentication '
desc 'Reduce the potential risk to gain full privileges access of the system .... '
describe sshd_config do
its('PermitRootLogin ') { should match(/no|without-password/) }

end
end

******* Chef Inspec: Ruby (Observed) [ 7 Lines] *******

control "xccdf_org.cisecurity.benchmarks_rule_9.3.8_Disable_SSH_Root_Login" do
title "Disable SSH Root Login"
desc "The PermitRootLogin parameter specifies if the root user can log in using ssh(1). The default is no."
impact 1.0
describe bash("grep '^\\s*PermitRootLogin\\s' /etc/ssh/sshd_config

| head -1").stdout.to_s.[](/\s*\S+\s+(.+?)\s*(#.*)?$/, 1) do
it { should eq "no" }

end
end

the order of tens of thousands of containers and images daily,
and identifying security misconfigurations. Its ability to work
against system configuration frames [24] allows it to validate
systems without requiring any local installation or remote
access, although it is equally applicable and functional in these
settings as well. Process is under way to clear ConfigValidator
for opensourcing, which shall enable leveraging community
support to increase ConfigValidator’s coverage further.

6 Observations and Limitations
While CVL eases rule encoding and checklist maintenance,
it might require a one-time parsing effort (‘normalization’,
Section 3.1) for an entity’s configuration parameters, in cases
where the entity is not already supported in ConfigValidator
(Table 1). This parsing effort is greatly simplified by leveraging
the Augeas configuration editing tool, but for a new rule writer

it might involve a learning curve for writing (or extending) an
entity-specific Augeas parser ‘lens’.

In our experience, the configuration definition style for dif-
ferent entities introduces a tradeoffwith respect to parsing ease.
It might be trivial to parse a more descriptive but seemingly
tedious configuration style, as in sysctl.conf, as compared to
a more modular style as in apache2.conf but one that makes
it non-trivial to programmatically infer relationships between
configuration parameters and sections.

Developers of an application are best suited to define what
constitutes a ’correct’ or ’secure’ configuration of an applica-
tion. Our hope is that one day, all applications will ship with
their configuration profiles possibly defined in CVL or equiv-
alent, which will it significantly ease the effort in validating
their configurations.



ConfigValidator Middleware Industry ’17, December 11–15, 2017, Las Vegas, NV, USA

7 Conclusion
We presented our ConfigValidator approach for seamless
configuration validation across heterogeneous entities - ap-
plications, systems and the cloud. We highlighted the key
attributes of our declarative Configuration Validation Lan-
guage to assist users - specialists and non-experts alike - in
easy encoding, reasoning, and maintenance of configuration
checklists. We compared ConfigValidator with existing ap-
proaches and demonstrated its efficiency both in execution
time and rule specification. While ConfigValidator has been
assisting the users of our cloud service in security validation of
their containers, we are also working towards opensourcing it
to the broader community. Work is under progress to increase
ConfigValidator’s coverage in terms of supported entities,
and we hope to leverage the community support once the
opensourcing process completes.

References
[1] Agentless System Crawler. https://developer.ibm.com/open/openprojects/

agentless-system-crawler/, 2017.
[2] Ansible. https://www.ansible.com/, 2017.
[3] Apache HTTP server. https://httpd.apache.org/, 2017.
[4] Augeas tool. http://augeas.net/, 2017.
[5] Center for internet security (cis) security benchmarks. https://benchmarks.

cisecurity.org/, 2017.
[6] Chef inspec: Compliance as code. https://www.chef.io/inspec/, 2017.
[7] Chef tool. https://www.chef.io/, 2017.
[8] MySQL server. https://www.mysql.com/, 2017.
[9] Nginx web server. http://nginx.org/, 2017.

[10] Puppet. https://puppet.com/, 2017.
[11] Mona Attariyan and Jason Flinn. Automating configuration troubleshoot-

ing with dynamic information flow analysis. In OSDI, volume 10, pages
1–14, 2010.

[12] Salman Baset. Identifying insecure configurations with IBM Vulnerability
Advisor. https://ibm.co/2waEFMm, 2016.

[13] United Compliance. Stig viewer: The system must not permit root logins
using remote access programs such as ssh. https://www.stigviewer.com/stig/
red_hat_enterprise_linux_6/2013-02-05/finding/RHEL-06-000237, 2017.

[14] Docker. Docker bench for security. https://github.com/docker/
docker-bench-security, 2017.

[15] Center for Internet Security. Cis benchmarks. https://www.cisecurity.org/
cis-benchmarks/, 2017.

[16] GovReady. Toolkit for getting open source apps ready for secure, approved
government use. https://github.com/GovReady/govready, 2017.

[17] Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou.
Confvalley: A systematic configuration validation framework for cloud
services. In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 19:1–19:16, New York, NY, USA, 2015. ACM.

[18] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
Mining configuration constraints: Static analyses and empirical results.
In Proceedings of the 36th International Conference on Software Engineering,
pages 140–151. ACM, 2014.

[19] NIST. The extensible configuration checklist format (xccdf). https://scap.
nist.gov/specifications/xccdf/, 2017.

[20] OpenSCAP. Security compliance. https://www.open-scap.org/features/
security-compliance/, 2017.

[21] Ariel Rabkin and Randy Katz. Static extraction of program configuration
options. In Proceedings of the 33rd International Conference on Software
Engineering, pages 131–140. ACM, 2011.

[22] Alex Sherman, Philip A Lisiecki, Andy Berkheimer, and Joel Wein. Acms:
The akamai configuration management system. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation-
Volume 2, pages 245–258. USENIX Association, 2005.

[23] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. Autobash: improving
configuration management with operating system causality analysis. In
ACM SIGOPS Operating Systems Review, volume 41, pages 237–250. ACM,
2007.

[24] S Suneja, C Isci, R Koller, and E de Lara. Touchless and always-on cloud
analytics as a service. IBM Journal of Research and Development, 60(2-3):11–1,
2016.

[25] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay
Chander, Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl.
Holistic configuration management at facebook. In Proceedings of the 25th

Symposium on Operating Systems Principles, pages 328–343. ACM, 2015.
[26] John Toman and Dan Grossman. Staccato: A bug finder for dynamic

configuration updates. In 30th European Conference on Object-Oriented
Programming, ECOOP 2016, pages 24:1–24:25, 2016.

[27] Helen J Wang, John C Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang.
Automatic misconfiguration troubleshooting with peerpressure. In OSDI,
volume 4, pages 245–257, 2004.

[28] Andrew Whitaker, Richard S Cox, and Steven D Gribble. Configuration
debugging as search: Finding the needle in the haystack. In OSDI, volume 4,
pages 6–6, 2004.

[29] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding
Yuan, Yuanyuan Zhou, and Shankar Pasupathy. Do not blame users for
misconfigurations. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 244–259. ACM, 2013.

[30] Tianyin Xu and Yuanyuan Zhou. Systems approaches to tackling con-
figuration errors: A survey. ACM Comput. Surv., 47(4):70:1–70:41, July
2015.

[31] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge,
Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting system
environment and correlation information for misconfiguration detection.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, pages 687–700,
New York, NY, USA, 2014. ACM.

[32] Sai Zhang and Michael D Ernst. Automated diagnosis of software config-
uration errors. In Proceedings of the 2013 International Conference on Software
Engineering, pages 312–321. IEEE Press, 2013.

https://developer.ibm.com/open/openprojects/agentless-system-crawler/
https://developer.ibm.com/open/openprojects/agentless-system-crawler/
https://www.ansible.com/
https://httpd.apache.org/
http://augeas.net/
https://benchmarks.cisecurity.org/
https://benchmarks.cisecurity.org/
https://www.chef.io/inspec/
https://www.chef.io/
https://www.mysql.com/
http://nginx.org/
https://puppet.com/
https://www.stigviewer.com/stig/red_hat_enterprise_linux_6/2013-02-05/finding/RHEL-06-000237
https://www.stigviewer.com/stig/red_hat_enterprise_linux_6/2013-02-05/finding/RHEL-06-000237
https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://github.com/GovReady/govready
https://scap.nist.gov/specifications/xccdf/
https://scap.nist.gov/specifications/xccdf/
https://www.open-scap.org/features/security-compliance/
https://www.open-scap.org/features/security-compliance/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Configurations
	2.2 Configuration Validation Techniques

	3 Design and Implementation
	3.1 Architecture
	3.2 Configuration Validation Language
	3.3 Challenges in Configuration Parsing

	4 Evaluation
	4.1 Coverage
	4.2 Comparison

	5 Contribution
	6 Observations and Limitations
	7 Conclusion
	References

