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Abstract

Operational visibility is an important administrative capability and
is one of the critical factor in deciding the success or failure of a
cloud service. Today, it is increasingly becoming more complex
along many dimensions which include being able to track both
persistent and volatile system state, as well as provide higher level
services such as log analytics, software discovery, behavioral anom-
aly detection, drift analysis to name a few. In addition, the target
endpoints to monitor are becoming increasingly varied in terms of
their heterogeneity, cardinality, and lifecycles, while being hosted
across different software stacks. In this paper, we present our unified
monitoring and analytics pipeline to provide operational visibility,
that overcomes the limitations of traditional monitoring solutions,
as well as provides a uniform platform as opposed to configuring,
installing and maintaining multiple siloed solutions. Our OpVis
framework has been running in our production cloud for over two
years, while providing a multitude of such operational visibility and
analytics functionality uniformly across heterogeneous endpoints.
To be able to adapt to the ever-changing cloud landscape, we high-
light it’s extensibility model that enables custom data collection
and analytics based on the cloud user’s requirements. We describe
its monitoring and analytics capabilities, present performance mea-
sures, and discuss our experiences while supporting operational
visibility for our cloud deployment.

1 Introduction

In cloud environments, operational visibility refers to the capability
of collecting data about the underlying system behavior and mak-
ing this data available to support important administrative tasks.
Without visibility into operational data, cloud operators and users
have no way to reason about the health and general behavior of
the cloud infrastructure and applications.

Traditionally, the operational visibility practices have been lim-
ited to resource monitoring, collection of metrics and logs, and
security compliance checks on the underlying environment. In to-
day’s world, better equipped to manipulate massive amounts of
data and to extract insights from it using sophisticated analytics
algorithms or machine-learning techniques, it becomes natural to
broaden the scope of operational visibility to enable, for instance,
deep log analytics, software discovery, network/behavioral anomaly
detection, configuration drift analysis, to name a few use cases.

To enable these analytics, however, we need to collect data from
a broader range of data sources. Logs and metrics no longer suf-
fice. For example, malware analysis is done based on memory and
filesystem metadata, vulnerability scanning needs filesystem data,
network analysis requires data on network connections, and so on.
At the same time, these data sources are potentially very different
in nature. Log events are typically continuously streamed, whereas
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filesystem data changes are less frequent, and configuration changes
normally occur when an application is deployed.

Yet another source of data for modern operational visibility stems
from the diverse and prolific image economy (DockerHub, Amazon
Marketplace, IBM Bluemix) that we witness as a result of perva-
sive virtualization. The more the world relies on cloud images, the
more important it becomes to proactively and automatically certify
them by performing security and compliance validation, which
requires visibility into dormant artifacts, in addition to running
cloud instances.

Adding to the complexity of dealing with a multitude of data
types for modern operational visibility, cloud environments are
becoming larger and increasingly heterogeneous. For instance, it is
nowadays common for a cloud provider to support deployments on
physical hosts, virtual machines (VMs), containers, and unikernels,
all at the same time. As a result, for more effective visibility, opera-
tional data from this diverse set of runtimes needs to be properly
collected, interpreted, and contextualized. Tenancy information,
resource limits, scheduling policies, and the like are exposed by
different cloud runtime platforms (e.g., Openstack, Kubernetes, and
Mesos) in different ways.

As if heterogeneity were not enough, the lighter the virtualiza-
tion unit (e.g., containers and unikernels), the higher the deploy-
ment density, which leads to a sharp increase in the number of
endpoints to be monitored. Figure 1 summarizes the complexity of
modern cloud environments along multiple dimensions, including
deployment types and cloud runtimes, as well as some challenges
for which operational visibility is needed.

In this paper, we propose a novel approach to operational visi-
bility to tackle the above challenges. To enable increasingly sophis-
ticated analytics that require an ever-growing set of data sources,
we implemented OpVis, an extensible framework for operational
visibility and analytics. Importantly, OpVis provides a unified view
of all collected data from multiple data sources and different cloud
runtimes/platforms. OpVis is extensible with respect to both data
collection and analytics.

We contend that an effective operational visibility platform must
decouple data collection from analytics. Old solutions that attempt
to mix data collection and analysis at the collection end do not scale,
and are limited to localized rather than holistic analytics. We enable
algorithms that can uncover data relationships across otherwise
separated data silos.

Furthermore, to scale to the increasing proliferation of ephemeral,
short-lived instances in today’s high-density clouds, we propose
an agentless, non-intrusive data collection approach. Traditional
agent-based methods are no longer suitable, with their maintenance
and lifecycle management becoming a major concern in enterprises.

Our implementation of OpVis supports multiple data sources
and cloud runtimes. We have been using it in a public production
cloud environment for over two years to provide operational vis-
ibility capabilities, along with a number of analytics applications
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Figure 1. Cloud operation management.

we implemented to, among other things, provide security-related
services to our cloud users.

We evaluate OpVis with a combination of both controlled exper-
iments and real production data in cases where we were allowed
to publicize it.

2 Existing Techniques

To gain visibility inside VMs, most existing solutions usually re-
purpose traditional monitoring tools, typically requiring installa-
tion inside the monitored endpoint’s runtime, and thus causing
guest intrusion and interference [4]. Other’s avoid application-
specific agents by installing generic hooks or drivers inside the
guest [34, 58-60], requiring VM specialization, leading to vendor
locking. The ones that do not require guest modification, can usu-
ally provide only few black box metrics, for example by querying
the VM management consoles like VMware vCenter and Red Hat
Enterprise Management. Yet another approach is to gather metrics
by remotely accessing the target endpoints (e.g. over SSH, or via
HTTP queries). A combination of one or more of these techniques
is also typically seen in some solutions [3, 45].

The landscape is a bit different with containers, since the se-
mantic gap between the guest environment and the management
layer (host) is greatly reduced, with containers at their core being
just a special packaging of host processes and directories. In addi-
tion to container image scanning [5, 17, 48, 49, 57], some solutions
are able to provide some level of agentless, out-of-band container
inspection by talking to Docker daemon [20, 50], querying ker-
nel’s cgroups stats [13], monitoring container’s rootfs [27], or via
syscall tracing [54]. While these are able to provide basic metrics,
for deep inspection most resort to installing in-guest components-
agents, plugins, scripts, instrumentation libraries, or custom ex-
porters [19, 44, 50], and thus require guest modification.

Furthermore, most existing solutions address only certain sub-
components of operational visibility, and only a few (seem to) cover
all amongst image scanning, as well as out-of-band basic metrics
and deep inspection [27, 48, 57]. And amongst those handful, none
are opensourced and extensible (although several of the aforemen-
tioned ones are).

These properties translate to installation, configuration and
maintenance of multiple siloed solutions to cover all aspects of
the operational visibility spectrum (Figure 1). And given the above
arguments, to the best of our knowledge, no existing solution pro-
vides all of OpVis’ capabilities of a unified, agentless, decoupled,
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Figure 2. OpVis overview.

extensible and opensourced operational visibility framework, that
does not enforce guest cooperation or cause guest intrusion, inter-
ference and modification.

3 Design and implementation

In this section we describe the design and implementation of OpVis,
our unified operational visibility and analytics framework. The
overall architecture of OpVis is depicted by Figure 2, which clearly
separates three layers: data collection, data service, and analytics.
We refer to OpVis data collectors as crawlers (see top of Figure 2).
They monitor cloud instances and images to take periodic memory-
state and persistent-state snapshots, which are then encoded into
an extensible data format we refer to as the frame. In addition to
discrete state snapshots, the crawlers track log files of interest from
cloud instances. Snapshots, in the form of frames, and streaming
log events enter the data service through a scalable data bus from
which they are fetched and then indexed on a data store for per-
sistence. A search service makes all collected data available and
queriable, enabling a variety of analytics applications, for instance,
to diagnose problems experienced by a cloud application, to dis-
cover relationships among application components, and to detect
security vulnerabilities. The rest of this Section describes the OpVis
data collectors (crawlers) (§3.1), data format (frame) for discretized
state snapshots (§3.2), and backend data service (§3.3). We also
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present a few analytics applications that take advantage of OpVis

(§4).

3.1 Data collectors: agentless crawlers

We take an agentless approach to data collection, that is, OpVis
crawlers collect data in an out-of-band, non-intrusive manner. Crit-
ically, an important role of the crawlers is to enable operational
visibility with a unified view across different cloud-runtime types
and for different forms of application and system state. We im-
plement out-of-band visibility into container runtimes, e.g., plain
Docker host, Kubernetes, and Mesos, and into VM runtimes, e.g.,
OpenStack.

We observe that monitoring live cloud instances (containers
and VMs) is important for reactive analytics; however, to enable
proactive analytics applications it is equally important to also scan
cloud images (Docker images and VM disks). For this reason, OpVis
crawlers provide visibility into these dormant artifacts as well.

The types of analytics applications that can be written are lim-
ited by the collected data. To enable semantically-rich end-to-end
visibility and analytics, the crawlers collect in-memory, live sys-
tem state, e.g., resource usage and running-processes information,
as well as persistent system state, e.g., filesystem data and logs.
This broad range of data types requires proper manipulation of
continuously-streaming data, such logs, as well as state that needs
to be taken at discrete snapshots, such as process, network, and
filesystem information.

Exposing and interpreting persistent and volatile state of VMs
and containers requires techniques tailored for each runtime and
state type. Broadly, we apply introspection and namespace-mapping
techniques for VMs and containers, respectively. Despite slight
differences in the specifics of the techniques, the key tenet of our
approach remains unchanged: to provide deep operational visibility
in near real time and out of band, with no intrusion or side effects on
the running cloud instances. Next, we delve into our implemented
techniques, organizing our presentation by runtime (container and
VM) and broad state category (memory and persistent).

3.1.1 Containers’ memory state

With the advent of Docker [22], Linux containers have become an
increasingly popular choice for virtualizing cloud infrastructures.
Containers represent a type of OS-level virtualization where related
processes can be grouped together into a logical unit (container).
Each container is given a unique, isolated view of the system re-
sources. Two Linux kernel features, namespaces and cgroups, are
used to guarantee virtualization, isolation, and controlled resource
usage for each container. Different types of namespaces provide
isolation for different kinds of resources. For instance, the pid
namespace controls process virtualization; thus, it makes the pro-
cesses inside a container to only see each other, as they belong to
the same pid namespace.

Because container processes are simply host processes with a
different view of the system, they are visible from the host. We use
two techniques to collect a container’s memory state information.
The first route is via cgroup accounting stats. Most OS virtualization
technologies provide some way of accounting container resource
utilization, like cgroups in the Linux Kernel. This is specially needed
for performance isolation, where it is necessary to limit the memory
and CPU utilization of containers so they do not take over the host.

IBM Research Technical Report, December 2017, USA

/var Host
/var/log/apache.log-| /log
/var/log/messages._ | ™ /container_logs
/tenant_5
Container 1 A /container_1

" apache. log
" messages
/vaz/log/my_app. log\ /container_2
................... /var
Container2 e /1log

Figure 3. Mapping log files from containers to the host.

These resource utilization stats include: disk IOs, CPU cycles, user
memory, and kernel memory (some).

Our second container-monitoring technique relies on the Linux
namespace APIs in such a way that the crawler process running
on the host “attaches” to the pid namespace of each container to
collect data from it. Although this is not a pure introspection tech-
nique, as the crawler logically “moves” into the container context, it
nonetheless gives us the same non-intrusiveness character we seek.
It works even if the container is unresponsive or compromised,
since the crawler still gets the overall system view from outside
the container. Importantly, it does not require any special agent or
library inside the containers.

In summary, with the above techniques the crawler collects
containers’ live memory state, including information on hardware-
usage metrics, processes, and network connections.

3.1.2 Containers’ persistent state

Besides live memory state, we also want to collect the persis-
tent state of running containers. In contrast to the namespace-
attachment technique described previously, we employ a purely
host-side monitoring scheme to collect persistent-state data. The
Linux kernel maintains a mapping from resources as seen inside
containers to the actual host resources. One such mapping pertains
to the root filesystem of each container. Our crawlers identify the
location of each container’s root filesystem in the host filesystem,
and then extract containers’ filesystem data and metadata, infor-
mation on configuration files, and installed packages. (Note that
each memory and persistent-state discrete data type is described in
detail in §3.2.)

Just as importantly, the same persistent-state data can be col-
lected from dormant container (Docker) images. To do so, the
crawler creates a container for each image to be scanned, applies ex-
actly the aforementioned technique for extracting persistent state,
and destroys the container. Since the time to create and destroy
a container is extremely short, this technique is quite reasonable.
Another technique is to mount the container image on the crawler
host and perform the inspection offline. Image scanning is per-
formed on demand, i.e., when a new image is pushed to the cloud
or an existing one is modified.

Thus far we have presented the collection of discretized state,
taken as periodic snapshots. An important form of persistent state
does not fall into that category. Log events continuously streamed
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from containers provide important pieces of evidence for debug-
ging and analytics applications alike. Capturing log streams from
containers is therefore of paramount importance. In the next para-
graphs, we describe the implementation details of log collection for
containers.

Log-file mapping. Two components of the crawler work together
to deal with logs. The crawler’s container watcher constantly polls
the host where it runs to discover new containers; when a newly-
created container is discovered, the container watcher maps log files
of interest from the container filesystem to the host filesystem so
that the log handler can monitor them.

Figure 3 illustrates this logical file mapping. The top directory of
all monitored log files in the host is /var/log/container_logs,
under which the container watcher creates one sub-directory per
cloud tenant (user). Finally, under a tenant sub-directory, one di-
rectory per container is created, and that becomes the new root
directory of all log files of that container. In the figure, container_1
has two log files to be monitored, and container_2 has one. Both
containers are owned by a tenant whose id is tenant_5.

Following this approach, the log handler independently discovers
new log files to be monitored by watching recursively the contents
of /var/log/container_logs/x*/x*.

Finding log files of interest. In order to identify log files to be
monitored, the container watcher inspects the environment of a
container, looking for a variable named LOG_LOCATIONS. When
creating a container, the user is expected to set this variable to a
string whose value is a comma-separated list of paths to log files
of interest. Other variables in a container’s environment, auto-
matically set by the cloud, uniquely identify the user owning the
container and the container itself.

To implement the file mapping described above and depicted by
Figure 3, we rely on the fact that the filesystem of a container is
naturally exposed to the host, as explained earlier. The container
watcher can then find the location of all container log files in the host
filesystem and create symbolic links to them so that they can all be
found by the log handler under /var/log/container_logs/*x/*.

In addition to allowing users to provide a list of log files to be
monitored, the crawler treats the standard output of a container
as a log file. In fact, the standard output of a container appears in
the host filesystem as a file, which is subjected to the above log-file
mapping scheme. The standard output of a container is always
monitored, even if the cloud user specifies no log files of interest.

Once the log-file mapping is established, the log handler continu-
ously tracks the log files and streams to the data service in near real
time the log events as they appear. Our log handler implementation
is based on Logstash [26].

3.1.3 VMs’ memory state

Since VMs have their own OS kernel and therefore keep their
internal memory state hidden from the host, they are more dif-
ficult to monitor than containers. We use and extend VM intro-
spection (VMI) techniques [29] to gain an out-of-band view of VM
runtime state. We have developed solutions to expose VM’s mem-
ory live with negligible overheads for KVM VMs (access in Xen
via hypervisor-exported APIs). Since KVM is part of a standard
Linux environment, we leverage Linux memory management prim-
itives and access VM memory via QEMU process’ /proc/<pid>/mem
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Feature Type Feature EIl Crawl Mode

Host Container VM
oS Type, distro, version, platform Y Y Y
Memory Used, cached, free, utilization % Y Y Y
Interface Bytes/packets tx/rx Y Y Y
Process Cmd, created, pid, cwd, openfiles Y Y Y
Metrics Per process cpu %, rss, io bytes Y Y Y
Connection Src/dst ip/port. Conn status Y Y Y
CPU Idle, wait, user, utilization % Y Y N
Load Short/ mid/ long term sys load Y Y N
Disk Fstype, mountpoint, free % Y Y N
Config Parameter name, value, path Y Y Y
Package Name, size, version Y Y Y
File Name, path, size, atime, ctime Y Y Y
Docker-ps Status, image, create_time, ports Y N N
Docker-history ~ Container image history Y N N
Kernel-module Name, state N N Y
CpuHardware Family, vendor, khz, num_cores N N Y
Ruby/python pkg  Package name, version Y Y Y
Netflow Netflow v1,5,9,10 data N Y N
Apache / Nginx  Workers, connections, bytes/s Y Y N
Redis Hits, misses, evicted_keys Y Y N
Tomcat Request count, JVM free mem Y Y N

Figure 4. Examples of features extracted by different crawler plu-
gins. An N’ in a cell represents currently not implemented or
non-applicable functionality for a particular crawling mode. Host
crawling uses OS exported functionality, Container crawling uses
kernel’s cgroups and namespace APIs, and container rootfs traver-
sal, and VM mode uses memory and disk introspection.

pseudo-file, indexed by the virtual address space backing the VM’s
memory from /proc/<pid>/maps.

The obtained external view of raw VM memory and disk is
wrapped and exposed as network-attached devices (FUSE over
iSCSI). This way, the actual crawling logic, as well as monitor-
ing and analytics components are completely decoupled from VM
execution.

The backend attaches to this raw, byte-array VM memory view
exposed by the frontend, and implements the crawl logic that per-
forms the logical interpretation of this raw state into structured
runtime VM state. This is achieved via in-memory kernel data struc-
ture traversal. Briefly, we overlay the struct templates for various
kernel data structures (e.g. task_struct for processes. mm_struct
for memory mapping, etc.) over the exposed memory, and traverse
them to read the various structure fields holding the relevant in-
formation. Further details can be found in our previous work [53],
which also describes several enhancements for selective memory
extraction and guest OS-consistent VM memory access.

After introspecting all the relevant data structures, the extracted
state (see Figure 4 for the various extracted features) is wrapped into
a single structured document (the frame), with its corresponding
crawl timestamp and VM ID, which the backend analytics pipeline
feeds off of.

3.1.4 VMs’ persistent state

Exposing and collecting a VM’s persistent state non-intrusively
requires VM disk introspection. Our design follows certain key
principles: (1) the persistent-state collection of offline and live VMs
must be identical; (2) it must have negligible impact on the VM’s
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runtime; and (3) it must be done from outside the VM and not lead
to any runtime or persistent-state change.

For offline VMs, one could implement this simply by leveraging
standard device mounting and filesystem utilities. However, for
running VMs, this process cannot be accomplished in the same
way. As the VM is actively running and accessing its disk, the disk
inherently holds a dirty state; thus, standard mounting approaches
break at this step. Even though there exist methods to circumvent
this problem, the solutions they provide violate our key principles:
they create side effects on the running VMs and intrude into the
VM’s operation.

Our approach, implemented for KVM/OpenStack, respects the
above key principles and works as follows. First, a special crawler
component, the VM disk introspector, needs to identify the device
configurations of the VMs. We use OpenStack and QEMU APIs
to determine disk layers for running VMs. Next, as the VMs are
running while the crawler accesses the disks out of band, we expose
all identified disk layers as read-only pseudo-devices to ensure that
no action can alter the device state at the physical level. Moreover,
because the disks being accessed out of band are live and hence
inherently dirty, we use Linux device mapper reverse snapshots
to wrap each pseudo-device with a separate Copy-on-Write (CoW)
layer. Then, this new device view can be exposed as either a local
storage device or a network-attached one (e.g., iSCSI). Finally, the
exposed device is mounted on the crawler VM so that it can access
the target VM’s filesystem over the entire device view to collect
the exposed persistent state, namely, filesystem data and metadata,
configuration files, and installed packages.

This technique works for both raw and QCoW?2 images, and can
be applied uniformly to offline and live VMs. During the entire pro-
cess, a live VM continues its execution and disk accesses normally;
there is no need for disk copy.

For log collection, after the VM disk instrospector performs all
the above actions to expose a VM’s filesystem, the log handler can
track updates to the log files of interest in near real time and stream
them to the data service.

3.1.5 Crawler extensibility

Extensibility has always been a core design principle for the OpVis
crawler. We envisioned various sources of heterogeneity (Fig. 1) in
the operating environment, configurations, monitored end-points.
As aresult, we adopted plugin architecture to accommodate various
extensibility dimensions. Figure 5 shows the overall plugin design
described next.

Crawl Mode We support five modes in which crawler can be
started: (i) INVM: for host or agent-based VM crawling, (ii) OUTVM:
VMI-based agentless VM memory crawling, (iii) MOUNTPOINT:
for VM disk crawling after mounting its virtual disk image, (iv)
OUTCONTAINER: for crawling containers via Docker APIs, con-
tainer rootfs, and kernel’s cgroups and namespaces API, and (v)
K8SDS: mode added specifically for kubernetes platform wherein
crawler is deployed as a privileged container in a k8s daemonset
pod.

Crawl Plugins Logic for every metric (a feature in OpVis termi-
nology, see Figure 4) being collected by the crawler is implemented
as a separate crawl plugin. This allows flexibility of configuring
the crawler to selectively enable different plugins for different en-
vironments. Crawl plugins extract both application and system
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Figure 5. OpVis crawler’s plugin architecture

state. Data collection extensibility is easily achievable via a new
crawl plugin, by abiding a contract with the crawler core, where the
plugin extends an interface class (corresponding to a host, VM or
container target), and implements a crawl () function that returns
a feature_type identifier and feature_elements dictionary. Similar ex-
tensibility models follow for data emitters, filters and environment
plugins, as described next.

Emitter Plugins The OpVis crawler supports combinations of
different data formats (csv, json, graphite) and emitter endpoints
(stdout, file, http(s), fluentd, kafka, mtgraphite). This spectrum of
data emitting capabilities enables the crawler to cater to various
types specialized data stores for analytics and monitoring.

Environment Plugins Environment information is an orthogo-
nal dimension for data collection but is important to establish the
context for the entity being crawled. For example, multiple contain-
ers from different subnets could have same ip-address, therefore,
in addition to collecting network state of a container the tenancy
information and network topology is important to resolve and fur-
ther analyze collected data. Environment plugins serve to provide
this context information, by adding a metadata dictionary to the
emitted frame containing custom namespace, owner, and tenancy
information amongst other elements. For example, a kubernetes
environment plugin adds k8 metadata such as container labels and
pod IDs to containers’ frames.

Filter Plugins These provide data aggregation and filtering ca-
pabilities atop the extracted features. Examples include metrics
aggregator (average/min/max) plugins, as well as diff plugins to
send only frame deltas to the backend.

3.2 Frame: state snapshot

A frame is a structured representation of a snapshot of a container
or VM, encompassing memory and persistent state, taken by the
crawler using the data collection techniques previously presented.
Log events are not part of a frame, as they are streamed rather than
discretized.

We refer to each element in a frame as a feature, which in turn
embodies a collection of key-value pairs where the keys are fea-
ture attributes. The set of attributes of a feature depends on the
feature type. Each feature type corresponds to a type of memory
or persistent state collected by the crawler. The feature types we
define include: os, representing general information on the operat-
ing system, process, corresponding to OS processes, connection,
encapsulating information on network connections, file, associ-
ated with metadata of filesystem objects, config, representing the
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contents of filesystem objects identified as configuration files, and
package, for metadata on OS-level and programming-language-
level packages. We also define types for discretizing resource-usage
metrics, e.g., for CPU and memory. Our framework can be extended
with a new type declaration and the corresponding crawler’s data-
collection plugin implementation.

As a concrete frame example, imagine a running container. Now,
suppose the crawler is about to take a snapshot (collect state) of the
container. If, at that time, the container has four running processes,
the frame representing the snapshot will contain four features of
the type process. The attributes of each feature will identify each
process, e.g., name, pid, parent id, and command line. Similarly,
the frame will contain one file feature for each filesystem object
inside the container at data-collection time; and so on, for all other
feature types.

In addition to features, a frame has metadata to capture important
aspects of the snapshot. In particular, a timestamp indicates when
the snapshot was taken, allowing analytics applications to run
temporal queries to reason about state evolution. Also, associated
with a frame is a namespace, which is used to identify the cloud
instance in question, typically as a combination of a cloud-assigned
id and a user-provided string with a name and version of the cloud
application/service. Finally, a group identification is used to allow
the aggregation of frames pertaining to related cloud instances, e.g.,
those that are part of the same auto-scaling group. Other pieces
of metadata provide provenance information to identify image
versions and cloud users.

3.3 Data service backend

The OpVis data service is illustrated in the middle part of Figure 2. It
comprises a data pipeline whose entry point is a scalable, replicated,
and fault-tolerant data bus. To realize our data-bus cluster we use
Apache Kafka [6]. One key function of the data bus is to provide
buffering, which is critical when the data-ingestion rate exceeds
the data-consumption rate. Kafka allows data producers to publish
data to different topics. Thus, frames and log events emitted by the
crawler enter the data pipeline through two different Kafka topics.

In the next stage of the data pipeline, clusters of indexers fetch
data from Kafka. Frame indexers subscribe to the frame topic and
store the incoming frames on Elasticsearch [25], a data store based
on the index-and-store Apache Lucene [7] engine. Once indexed
on Elasticsearch, a frame representing the system state of a con-
tainer or VM becomes a searchable document. We refer to this
general management paradigm as state as documents. Using the
Elasticsearch query language, logically corresponding to the search
service in Figure 2, users, operators, or analytics applications can
execute semantically-rich queries to find frames and frame fea-
tures. Every attribute of every feature of every indexed frame can
be used as a key query. Similarly, the frame’s metadata fields can
also be query keys. This notion of applying search to manipulate
operational data (system state) made visible, derived from the state-
as-documents paradigm, is extremely powerful, as the analytics
applications presented in §4 demonstrate.

We used Logstash [26] to implement our frame indexers. In
particular, we relied on two Logstash plugins: Kafka input plugin
and Elasticsearch output plugin. To process the frames as emitted
by the crawlers, add some pieces of metadata to them, and convert
them into a proper Elasticsearch document, we implemented a new

Logstash filter plugin.
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Backend extensibility. The annotators (see Figure 2) are also an
important element of our data pipeline. An annotator’s key goal
is to read frames of interest to create and index a different type of
document. This is done to support certain analytics applications
that might need to search for these special, curated documents.

We distinguish between two categories of annotators: privileged
and regular. Privileged annotators typically originate from the cloud
provider to support analytics applications that have general appli-
cability, e.g., to detect vulnerabilities in all cloud-user images (see
§4.1). These annotators fetch frames directly from Kafka, like the
indexers. To help cloud providers implement privileged annotators,
we provide a Python framework with wrappers for reading frames
from Kafka and indexing new Elasticsearch documents. Also, since
the frame format is well defined, we provide functions to facilitate
frame manipulation. Reading frames from Kafka saves cycles from
Elasticsearch, which is the portion of the data pipeline exposed to
end users (with multi-tenancy controls).

Regular annotators, on the other hand, can be created by cloud
users if there is a need for querying a document type not supported
by the existing privileged annotators. User-provided regular an-
notators are deployed on a sandbox environment provided by our
serverless cloud infrastructure, and they read frames from Elastic-
search, not Kafka. To help end users create annotators, we provide
well-defined, high-level APIs to transparently read frames from
Elasticsearch, manipulate retrieved frames, and trigger the index-
ing of annotator-specific Elasticsearch documents.

Log indexing. Log indexers subscribe to the log topic and store
incoming log events on Elasticsearch. Like the frame indexers, we
used Logstash to implement them. Unlike frames, which have a well-
defined structure, cloud application logs can have any format, since
many of them are application-specific. This implies that performing
semantically-rich Elasticsearch queries on logs (using attributes in
log records as keys) might not be possible, unless the log indexers
know what log format to expect. Before emitting logs, the crawler’s
log handler tries to apply the Logstash JSON filter plugin; thus, if
logs coming from cloud applications are in the JSON format, our
log indexers will guarantee that log records can be queried by log
attributes, whatever they might be. Note that free-text queries are
still possible, even if logs are emitted in an unknown format. Those
queries, however, will be no better than grep-style searches.

4 Analytics applications over OpVis

Our operational visibility pipeline has been running in our pro-
duction cloud for over two years. It has been providing our clients
several security oriented operational insights derived from their
images, containers and VMs. We highlight four such services in
this Section, focusing specifically on Docker images and containers,
while the analytics presented are independent of the target runtime.
To run their containers, users typically download images from
public repositories like Docker Hub [21]. Studies have highlighted
the various security vulnerabilities that such images tend to con-
tain [10]. In a pure container cloud like ours, where containers
are hosted directly on the host OS, security of client images and
containers becomes paramount since a vulnerability in the client
runtime (or a malicious container itself) can lead to a malicious in-
trusion, as well as an escape to host, enabling exploits on co-located
container instances as well as the cloud infrastructure itself.
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The common feature across all our security services built over
the OpVis pipeline is that they do not require any setup prerequisites
to be built in to the user’s runtime, and start working immediately
as soon as a user brings in their images or runs a container or
VM. These services feed off of systems frames from the kafka pipe,
perform analytics-specific ‘annotations’ on the frames, generat-
ing user-visible ‘reports’ highlighting the security posture of their
images and systems.

4.1 Vulnerabilty Analyzer (VA)

VA discovers package vulnerabilities in a user’s Docker images and
containers hosted on our public cloud, and guides them to known
fixes in terms of relevant distribution-specific upgrades. Once a
system frame enters the OpVis analytics pipeline, the VA annotator
extracts the package list from it and compares its against publicly
available vulnerability databases (e.g., NVD). We currently target
Ubuntu security notices while support for other distributions is in
the process. Listing 1 shows a sample VA report, containing CVEs
and a url to the security notice corresponding to the vulnerable
package found during scans. VA has been integrated as part of the
DevOps deploy pipeline where, based upon user-specified deploy-
ment policies, images tagged as vulnerable by VA can be blocked
against deployment as containers.

Recently, we have also added support to scanning vulnerabilities
of application runtime-specific packages brought in by application-
level package installers like Ruby gems and Python pip packages.
An interesting security dimension this feature addresses is defense
against typosquatting attacks on application libraries [55]. In this
case, malicious packages similar in names to legitimate/intended
packages make their way into a user’s system, when the user inad-
vertently makes a typo while executing an installation command,
for example, pip install reqeusts instead of requests. By com-
paring installed packages against permutations of whitelisted ones,
such malicious packages can be detected and protected against.

We are also currently converting VA to an as-a-service model,
and shall soon release a version enabling easy extensibility in terms
of supported environments beyond just our own cloud, as well as
custom client analytics.

{

"vulnerability-check-time":
"2017-05-18T08:45:02.696Z",

"os-distrbution": "ubuntu",

"os-version": "xenial",

"vulnerable": true,

"crawled-time": "2017-05-18T08:45:00",

"execution-status": "Success",

"namespace": "container:10.0.2.15/ubuntu",
"vulnerabilities": [

"cveid": [

"CVE-2016-6252", "CVE-2017-2616" 1,

"summary": "su could be made to crash or stop

programs as an administrator.",
"url": "http://www.ubuntu.com/usn/usn-3276-1",
"usnid": "usn-3276-1"
"type": "vulnerability"
}

Listing 1: Sample Vulnerability Analyzer report
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4.2 SecConfig

Software misconfiguration has been a major source of availability,
performance and security problems [63]. For an application devel-
oper using third-party components shipped as standard Docker
images, it is non-trivial to ensure optimal values for various config-
uration settings spread across the different components. To aid in
this process, SecConfig scans applications and system configuration
settings to test for compliance and best practices adherence from a
security perspective.

SecConfig gives container developers a view into their runtimes’
security properties, and gives guidance on how they should be
improved to meet best practices in accordance with certain industry
guidelines lik HIPAA, OWASP, PCI, and CIS [40], mixed with own
internal deployment standards. We currently have a small pool of
‘policies’ (135 rules spanning 11 different applications and system
services), which we test ‘compliance’ against as part of SecConfig.
Examples configuration rules include passwords to be greater than
8 characters, and set to under 90-days expiration, secure ciphers to
be used in apache’s SSL/TLS settings, etc. A sample report snippet
can be seen in Listing 2.

Current efforts include making SecConfig SCAP-validated [39]
which can then enable clients to confidently gauge if their systems
are in full compliance with authorized agency-specific security
checklists like USGCB, DISA STIG, etc.

{

"compliance-check-time":
"2017-05-17T02:23:45.804772Z2",

"compliance-id": "Linux.9-0-a",

"compliant": true,

"crawled-time": "2017-05-17T02:23:41.145098Z",

"description": "checking if ssh server is
installed",

"execution-status": "Success",

"namespace": "container:10.0.2.15/mysql:5.7",

"reason": "SSH server not found",

"type": "compliance"

}

Listing 2: Sample SecConfig report

4.3 Drift Analysis

One of the key tenets of DevOps automation is enforcing container
immutability. Once a container goes into production, the expec-
tation is that it would never be accessed manually (login or ssh)
and thus its contents or behavior at day zero, tightly controlled
with deploy scripts to adhere to an overall architecture, should be
the same thereafter. However, it has been observed that systems
inevitably ‘drift’ [1]- deployed containers change over time and
show unexpected behavior, with the change being either persistent,
as in disk-resident, or existing solely in-memory. Such drift can
introduce unexpected exposures and side effects on deployed appli-
cations and can go unnoticed for a long time with image-centric
validation processes.

With our OpVis pipeline, we are able to detect such drift by track-
ing evolution across time for all monitored systems. Specifically,
by diffing system frames across time, we can discover ‘which’ sys-
tems violated the immutability principle, and then narrow down
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on ‘what’ caused that drift by uncovering potential causes ranging
from package level changes to even the granularity of the suspect
application configuration settings.

In one particular instance, in an analysis of our production cloud
over a 2 week period, we found that almost 5% of the hosted con-
tainers exhibited drift between containers and their corresponding
images, in terms of difference in their vulnerability and compliance
counts (as described in the previous two subsections). Although
one reason could be the change in vulnerability database itself, our
analysis uncovered that ‘in-place’ updates to the containers, both
benign ! and undesirable, were indeed taking place in our cloud
via SSH, docker exec, automated software updates, and software
reconfiguration via web frontends.

4.4 Malware Analysis

Malwares typically manifest themselves in various forms including
rootkits, viruses, botnets, worms, and trojans that infect and com-
promise the operating environment for your applications. Rootkit
in particular is a malicious software or program intended to en-
able unauthorized access to your compute platform and often tries
to hide its existence. There are various open-source tools avail-
able for detecting rootkits[12][38][41]. On a standard Linux box,
rootkit checks involve various system forensics, including but not
limited-Filesystem scan to check existence of known offending
files or directories, scanning kernel symbol table, process/network
scanning.

Scope of vulnerabilities exposure by rootkits is smaller than that
for a VM or physical server. For example, there are certain kernel-
mode rootkits developed as loadable kernel modules in Linux. Ap-
plication containers do not generally have such high privileges
(Linux capabilities) to load kernel modules. Therefore, containers
are less susceptible to kernel-mode rootkits. Bootkits are a vari-
ant of kernel-mode rootkits that infect startup code, like Master
Boot Record (MBR), Volume Boot Record (VBR), or boot sector.
Since container start up does not involve the traditional OS start up
paradigm, these rootkits also become less relevant for containers.

Therefore, in the current capability of Malware detection, we
focused on detecting file-based malware in container images and
instances. A repository of known malwares and their corresponding
offending file-paths is maintained by pulling their definitions from
available open-source targets[41][12]. Then crawled file-paths from
images and instances are validated against this repository to identify
any potential malwares.

5 Experiences

In this section we discuss some experiences and lessons we learned
while running OpVis in our public production cloud environment
for over two years.

Visibility vs side-effects tradeoff. Different systems provide dif-
ferent levels of visibility; interestingly, more visibility requires more
privileges and has higher chances of side effects (i.e., a data collector
affecting the state during state collection).

This tradeoff becomes apparent with the two types of systems
that we monitor: containers and VMs. Containers are easy to moni-
tor as they share the kernel with the host. Everything that happens
in the container (at the POSIX level) is visible from the host. This

! An example of benign update is an honest fix of SSH-related violations, albeit breaking
container immutability principles
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means that asking things like "what processes are running in a con-
tainer?" can be easily answered by taking a look at the host kernel.
On the other hand, VMs have their own kernel; thus, they keep their
own state, forcing an agentless monitor to peek into the kernel,
which is more difficult and requires introspection techniques.

The consequence of easy visibility is higher chances of leaving
side effects. Our implementation presents some data points for this,
when comparing containers to VMs. One such case is reading files.
Typically, when reading a Unix file, the filesystem keeps track of
the access time in the file metadata. Doing this from the host for a
container leaves this access-time trail. On the other hand, doing this
for a VM is not as easy; it requires disk introspection techniques
previously discussed.

Choosing the right APIs for monitoring. A critical aspect re-
lated to monitoring is deciding what layer of the stack to look at.
This affects the data to be obtained, but even if the data is the same,
different layers may pose different challenges. One such challenge
is the stability of the APIs.

One of the many crawler functions is to collect information from
containers. Doing so can be achieved at different layers and with
different methods. For example, if we were interested in collecting
the CPU usage of a container, we can do it by using either Docker
APIs, or cgroups in the host. We observed that the Docker APIs
have been changing rapidly, compared to the cgroup APIs, which
are provided by the Linux kernel. Using more stable monitoring
APIs will require fewer changes to OpVis as a result of updates to
the underlying systems.

Burst and sampling bias. The number of crawler processes cre-
ated by the main thread can be one or more and is provided as
an option. When multiple threads are created, their cumulative
activity may result in spikes for CPU utilization. By staggering the
activity of the threads, the overall consumption can be amortized
leading to an average lowering of CPU activity.

Watching out for starvation. To monitor the crawler’s behavior
with respect to log collection, one of the things we did was to
deploy on each cloud host a test container emitting log events at a
low frequency: 2 log events per minute. We created a dashboard to
verify whether and when the logs from our test containers were
being indexed on the data store. We noticed that, occasionally,
some containers generating logs at an extremely high frequency
were deployed to a few hosts and, when that happened, our low-
frequency test logs from those hosts were significantly delayed.

Our investigation revealed that the root cause was not in the
data service; the indexers were working properly and there was
no backlog of outstanding data on the data bus. To corroborate
our suspicion of starvation caused by the crawler behavior, we
experimented with throttling high-frequency logs, which indeed
mitigated the problem.

Operational visibility systems need global, distributed admission-
control policies in place to allow fair and timely visibility into all
systems across all monitored cloud runtimes.

6 Contribution

OpVis has made both internal (production cloud department) and
external (github) contributions. OpVis crawler, with python-based
host and container inspection and VM introspection capabilities,
has been opensourced [18] for over an year now, and has seen
contributions from 19 developers internationally. The latest wave
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Figure 6. Time to crawl different features for 200 containers.

of commits has been after the crawler restructuring to enable a
plugin-based extensibility.

To maintain stability with an active multi developer contribu-
tion, we have integrated our github repository with Travis CI. On
each code Pull Request (PR), over 250 unit and functional tests are
fired, and tested across 5 docker versions. 90% code coverage is
enforced, together with pylint, pep and flake-based style enforce-
ment (python code-style tools). A PR merge triggers an automated
Docker image build available publicly at DockerHub (further en-
abling continuous delivery via webhooks).

THe backend is closed-sourced and offers analytics services
to customers of our production container clouds. The full OpVis
pipeline (crawler + backend) has been active in our production
cloud for over two years now 2. VM monitoring service was previ-
ously part of our Openstack cloud deployment that supported over
1000 OS versions. Multiple instances of the crawler alone have been
deployed as data collectors for our other internal departments.

7 Evaluation

In this section we evaluate the efficiency and scalability of the
OpVis framework. We first showcase the monitoring frequency that
can be realized with our out-of-band crawler. Next, we compare
it with agent-based in-band monitoring in terms of performance
impact on guest workload. Given a disaggregated processing model
of OpVis. we also measure space and network overhead for data
curation between crawler and annotators. Finally, we demonstrate
the feasibility of OpVis’ log streaming in terms of being able to
successfully process production-scale log events. We focus our ex-
periments on container clouds, with the corresponding benefits
for VM-based cloud deployments having being proven in our pre-
vious work [53]. The latter also features other evaluation metrics
including high state extraction accuracy, frame storage scalability
as well as supremacy over in-guest monitoring by virtue of holistic
knowledge (in-guest + host-level resource use measures).

Setup: The host machines have 16 Intel Xeon E5520 (2.27GHz)
cores, and 64G memory. The host runs CentOS 7, Linux kernel
3.10.0-514.6.1.e17.x86_64, and Docker version 1.13.1. The guest con-
tainers are created from the Apache httpd-2.4.25 DockerHub image.
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Figure 7. Effective crawl frequency per container.

7.1 Monitoring latency and frequency

In this experiment, we measure the maximum monitoring frequency
with which the crawler can extract state from the guest containers.
Figure 6 shows the time it takes to extract different runtime state
elements (features) from 200 webserver containers. Shown are two
sets of bars for each feature representing two modes of crawler
operation. The left bar represents the case where the crawler syn-
chronizes with the docker daemon on every monitoring iteration to
get metadata for each container, whereas the right bar represents
the optimization where the crawler caches the container metadata
after the first iteration, and subscribes to docker events to update its
cached metadata asynchronously based upon container creation or
deletion events. The optimization yields an average improvement
of 4.4s to crawl 200 containers.

Another point to note is the improvement in crawl times when
namespace jumps are avoided as can be seen in Figure 6 . For exam-
ple, 11.6s vs 4.8s to crawl packages with and without namespace
jumping respectively. Finally, while the crawl latencies shown in
Figure 6 are for extracting individual features, as we also verified
by experiments, crawl times for feature combinations can be calcu-
lated by adding the individual components together. For example,
for the performance impact experiments in the next subsection,
we simultaneously enabled the CPU, memory and package crawler
plugins yielding a combined base crawl latency of 6s (~ 0.18 + 1 +
4.8s for respective plugins).

Scaling these crawl latency numbers across 200 containers then
yields the effective monitoring frequency per container. As can be
seen in Figure 7 , the crawler is easily able to support over 10Hz of
monitoring frequency per container. This is with a single crawler
process consuming a single CPU core (for many feature plugins,
actually only 70% of a core, with time spent waiting either for (i)
crawling the containers’ rootfs from disk, or (ii) the kernel while
reading cgroups stats and/or during namespace jumping).

7.2 Performance impact

In this experiment, we measure the impact of monitoring the guests
with our OpVis agentless crawler, and compare it with the impact of
agent-based in-guest monitoring. We ran 200 webserver containers
on the host, and configured the crawler to extract CPU, memory
and package information from each container. The idea being that
the first two plugins provide resource use metrics data, while the

2We cannot divulge the actual scale of the endpoints scanned/processed by the OpVis
pipeline
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Figure 8. CDF of webserver response times.

third plugin allows periodic vulnerability analysis for the guests,
as described in Section 4.1.

Setup: Each container was given equal CPU shares and 256 MB
memory. The http containers were pinned to 10 cores on the host,
while pinning the docker daemon and its helper processes (like
docker-container shims, xfs/devicemapper etc.) to the other 6 cores
to minimize interference. Further, various httpd and kernel parame-
ters were tuned appropriately to enable high throughput operations,
such as maximum open files, maximum processes, maximum avail-
able port range for connections, etc. The workload consisted of
random 64-byte static files, requests for which were made to each
webserver container from another host via httperf [37] workload
generators (file size selected so as to avoid network bottleneck,
verified by experiments). Throughputs and response times were
recorded after a warm-up phase to ensure all data was brought
in and served from memory in subsequent test runs, so as to put
maximum stress on the system.

The base webserver capacity (maximum number of serviced
requests per second without any connection drops) aggregated
across all 200 webserver containers was observed to be 28000 re-
quests/second (140 req/s per container), with an average response
time of 30ms per request. With continuous out-of-band crawling,
no impact is recorded on the sustainable request rate across the web-
server containers. However, the average response time degrades by
50% to 45ms. Not all webserver containers see a hit in their response
times, as can be seen in Figure 8 which plots the CDF of response
times for the 200 containers with and without out-of-band moni-
toring. The crawl latency itself increases from 6s to 8s to extract
CPU, memory and package information across all 200 containers,
even though the crawler process is running on a separate core than
the webserver containers.

To mimic an agent-based monitoring methodology, we next ran
the crawler process inside each webserver container, configured to
run after every 8s as per the above out-of-band crawling experiment.
With such in-guest monitoring, the aggregate sustainable request
rate sees a 14% hit with response times degrading by 65%.

In the in-guest monitoring mode, the monitor process competes
for resources with the user workload, whereas in the agentless
monitoring mode, the monitor process (the crawler) had its own
dedicated core (taskset to run on one of the 6 cores not running the
webserver containers, see ’setup’ above). For completeness, we ran
another experiment where the out-of-band crawler was restricted
to use only the cores that were running the webserver containers.
This still lead to a lower impact than in-guest monitoring in that
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the webserver(s) base request rate could still be achieved but with
a 75% response time degradation (up from 50% when the crawler
had a dedicated core). Alternatively, base response times could be
achieved but with a 7% lower sustainable request rate (still bet-
ter than a 14% hit with in-guest monitoring, going as high as 21%
to realize the base response times). But, being able to use separate
core is in fact desirable and indeed a benefit of OpVis’ decoupled
execution-monitoring framework, that enables offloading monitoring
tasks outside the critical workflow path, thereby minimizing interfer-
ence.

7.3 Space and network overhead

Disaggregated delivery of analytics functions is one of the core
features of OpVis enabled through separation of data collection
by crawler and data curation by backend annotators. This also
implies the need to transfer the data between these two process-
ing endpoints which are typically separated by low-latency high-
bandwidth local-area-network (LAN) connections. In this set of
experiments our objective was to measure the overhead of transfer-
ring and storing crawled data. Fig.9 shows size of crawled data for
each individual feature type from a single httpd container. During
this experiment a more common emitter format, json was used and
it is important to note that size overhead would differ for different
emitter formats. This size overhead can further be reduced by using
data compression which has its own performance implications of
adding data curation latency during decompression.

7.4 Performance study of annotators

H Annotators Avg. "Vis" latency (sec) H
Remote Login Check 1-15
Vulnerability Analyzer 1
Compliance Check 7

Table 1. Data curation latency measured at the annotator

From cloud users perspective, what is important is how quickly
any non-conformity to security policies can be discovered for their
hosted containers. In certain cases it depends on external factors,
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Figure 10. New log files per minute (top) and logs processed per
second (bottom).

for instance, how quickly any newly-discovered package vulner-
ability is formally added to standard CVEs. In the OpVis context,
we measure vis latency, which translates into the time taken by
individual annotators to produce their respective verdict. Given
that all annotators operate in parallel, their vis latencies are also
overlapping.

In Table 1, we report average vis latencies for 3 OpVis applica-
tions. In the Remote Login Check application, all account passwords
inside containers are checked for weaknesses. For containers with
weak passwords, the security report is produced quickly (within
a second), and for containers with strong passwords it can take
up to 15 seconds. Intuitively, this aligns with the common security
expectation wherein any potential violation is reported on prior-
ity. During Compliance Check, close to 21 standard security rules
are validated within 7 seconds. Finally, for Vulnerability Analyzer,
respective packages from containers are cross-checked with any
known vulnerabilities, all within 1 second.

7.5 Log streaming in production

We now present data on the crawler’s log-streaming behavior ob-
served during a period of 1 month, while it was exercised by exter-
nal users and internal core services of our production public cloud.
Over this period, the crawler was tracking several hundred contain-
ers per host and thousands of containers, collecting approximately
250, 000 log events per minute per host on average. Figure 10 shows
the actual data for one of our cloud hosts. The top plot shows the
rate of new log files created per minute, exhibiting the level of
dynamism and live activity in the cloud, with many new log files
discovered every minute as instances come and go. It also shows
a trend of increasing adoption and scale at the macro level as the
month progresses. The bottom plot shows the number of log events
processed per second.
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8 Related Work

While Section 2 differentiates OpVis with existing operational visi-
bility solutions for VMs and containers, here we discuss other work
related to OpVis’ VMI use, as well as systems analytics focus.

Memory Introspection Applications. Most previous VM intro-
spection work focuses on the security and forensics domain. It is
used by digital forensics investigators to get a VM memory snap-
shot to examine and inspect [14, 15, 24, 30, 47]. On the security side,
VMI has been employed for kernel integrity monitoring [9, 33, 43],
intrusion detection [29], anti-malware [11, 23, 28, 35, 42], firewall
solutions [52], and information flow tracking for bolstering sensi-
tive systems [31]. Outside the security domain, IBMon [46] comes
closest to OpVis’ approach, using memory introspection to esti-
mate bandwidth resource use for VMM-bypass network devices.
Other recent work employs VMI for information flow policy en-
forcement [8], application whitelisting [32], VM checkpointing [2],
and memory deduplication [16].

Systems Analytics. While Section 4 discusses a few analytics ap-
plications developed over OpVis framework, others have explored
several related systems analytics approaches. Examples include (i)
Litty and Lie’s out-of-VM patch auditing [36] that can detect exe-
cution of unpatched applications, (ii) CloudPD [51] cloud problem
management framework which uses metrics correlations and to
identify problems, (iii) EnCore [62] that detects misconfigurations
by inferring rules from configuration files, (iv) DeltaSherlock [56]
that discovers system changes via fingerprinting and machine learn-
ing methodologies, (v) PeerPressure [61] which identifies anoma-
lous misconfigurations by statistically comparing registry entries
with other systems running the same application. There exist quite
a few other works in literature in the systems analytics domain.
With the entire system state, ranging from metrics, to packages,
to configuration files, exposed to the backend, OpVis provides a
uniform and extensible framework to enable such analytics to be
performed across-time and across-systems.

9 Conclusion

In this paper, we presented our unified monitoring and analytics
framework- OpVis- to achieve operational visibility across the cloud.
We described the various techniques employed to enable agentless
extraction of volatile and persistent state across VM and container
guests, without enforcing guest cooperation or causing guest intru-
sion, interference and modification. We emphasized the extensible
nature of our framework enabling custom data collection as well as
analysis. We described 4 of the analytics applications we’ve built
atop the OpVis pipeline, which have been active in our public cloud
for over 2 years. We highlighted OpVis” high monitoring efficiency
and low impact on target guests, as well as presented production
data to demonstrate its usability. We described our opensource
contributions, as well as shared our experiences while supporting
operational visibility for our cloud deployment.
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