Paracloud: Bringing Application Insight into Cloud Operations

Shripad Nadgowda, Sahil Suneja, Canturk Isci
IBM TJ Watson Research Center, NY USA

Abstract

Applications have commonly been oblivious to their
cloud runtimes. This is primarily because they started
their journey in IaaS clouds, running on a guestOS inside
VMs. Then to increase performance, many guestOSes
have been paravirtualized making them virtualization
aware, so that they can bypass some of the virtualiza-
tion layers, as in virtio. This approach still kept appli-
cations unmodified. Recently, we are witnessing a rapid
adoption of containers due to their packaging benefits,
high density, fast start-up and low overhead. Applica-
tions are increasingly being on-boarded to PaaS clouds
in the form of application containers or appc, where
they are run directly on a cloud substrate like Kuber-
netes or Docker Swarm. This shift in deployment prac-
tices present an opportunity to make applications aware
of their cloud. In this paper, we present Paracloud frame-
work for application containers and discuss the Para-
cloud interface (PaClI) for three cloud operations namely
migration, auto-scaling and load-balancing.

1 Introduction

Traditionally applications were deployed on physical
servers and they had certain assumptions about their plat-
forms. For example, they will be long running on their
platform with dedicated resources. It influenced appli-
cation design, for instance many applications started al-
locating large buffer caches to optimize IO. Then as
applications started on-boarding on /aaS$ clouds encap-
sulated in VM running on guestOS, certain properties
about their platform changed. In cloud, they are rou-
tinely migrated for maintenance, load balancing, server
consolidations; auto-scaled for elasticity in performance
and cost. As a result, their operations and management
on cloud became inefficient. For example, large buffer
caches (although empty) created overhead during live
migration. Since applications were oblivious to the cloud
platform through abstraction of VMs, much of the inven-
tion was done to optimize VMs on this new cloud plat-
form in the form of paravirtualized drivers for memory
ballooning[1], migrations[2][3].

Recently containers started gaining acceptance as a
lightweight alternative to virtual machines (VMs), owing
to technology maturity and popularization by platforms
like Docker[4], CoreOSs rocket[5], Cloud Foundry

Warden[6]. Containers are being adopted as a founda-
tional vitualization capability in building Platform-as-
a-Service (PaaS) cloud solutions, e.g. Amazon Con-
tainer service[7], Google Container Engine[8] and IBMs
Container Servicebluemix. And applications are being
ported on the PaaS cloud in the form of application con-
tainers or appc which are run directly on-top of the
cloud substrate like kubernetes, docker swarm or mesos
and are truly becoming cloud-native.

However, across these shifts of the deployment envi-
ronments, what continues to prevail is the need of in-
corporating application awareness in the platform man-
agement operations [9, 10]. With containers, the com-
munication gap between the application and the cloud
management layer has improved further, with removal of
the guestOS to facilitate a direct communication channel.
Therefore, we believe it is the right time to make applica-
tions aware of the characteristics of their cloud platforms
and revisit and revise their assumptions about them. Ku-
bernetes, for example, has enabled Downward APIs[11]
and Container hooks[12] to allow applications to intro-
spect their runtime cluster lifecycle and become cluster
native.

In Paracloud we are extending the notion of ’applica-
tion knows best’ in to container clouds. In this work we
propose a uniform Paracloud interface (PaCI) to enable a
bi-directional communication channel between applica-
tion containers and the cloud management substrate. We
highlight the benefits of PaCI in terms of incorporating
application-awareness at the cloud management layer, as
well as cloud-awareness at the applications level, with
three use-cases namely migration, auto-scaling and load-
balancing. We describe PaCI’s design for one of the most
popular container cloud platform i.e. kubernetes, and
evaluate its benefits for an auto-scaling use case.

2 Background and Related Work

Taking example of the Linux kernel, since the early days,
it has been positioned as a general-purpose operating sys-
tem to host all kinds of application, taking responsibility
for managing memory, scheduling, file-access for them
all. But as different applications started posing differ-
ent behavior and requirements, kernel allowed applica-
tions to share their anticipated file or memory access be-
haviour via system calls such as fadvise or madvise as

Paravirtualized Driver

Paracloud Interface

Container Container
App App
VM PaCl PaCl
App l
GuestOg| | Vitio Kub 1t
App) Guesttool _ ubernetes
d uest tools - N oa
frzfjv;g:e PVD Migration | |Auto-scaling Placement |
[HostOS || Hypervisor | [HostOS | Host0S |
A
HW HW HW HW

(a) Applications on physical machine

(b) Applications on virtual machine

(c) Applications in containers on Paracloud

Figure 1: Application runtime evolution

shown in Fig. 1(a). Using these hints to choose the appro-
priate read-ahead and caching techniques enabled kernel
to improve application performance and avoid redundant
operations. The benefits of such hints have been reported
for several applications [13, 14, 15, 16, 17, 18] and dis-
tributed filesystems [19, 20, 21]. Java runtime on the
other hand has taken an approach to manage heap mem-
ory by itself in JVM to insulate from host machine’s pe-
culiarities and also because it can manage memory better
by identifying and garbage collecting orphaned objects.

Applications today are increasingly being hosted di-
rectly on top of container clouds like kubernetes, docker
swarm and mesos in the form of application containers.
Like their traditional counterparts, these clouds are be-
coming a general-purpose operating platform to host var-
ious kinds of applications (containers). However, they
have to additionally deal with the management concerns
similar to those of VM clouds. The need for application
awareness has long been recognized in literature, and the
fact that an application is deployed in cloud makes it ever
more important [22, 23, 10, 24, 25].

Moving over to higher level management tasks, bene-
fits of application assistance has been explored in both
physical and virtual systems, in the context of fault-
tolerance [9, 26], physical memory management [27],
checkpointing [9], migration [28], QoS adherence [29,
22], memory overcommitment [30, 31], load balanc-
ing [32] and scaling [24, 33, 34]. Others have also ex-
plored moving management functionailites into the ap-
plication itself [4]. Alternatives to using applications
level knowledge for management tasks have also been
explored via statistical learning and prediction-based ap-
proaches [35, 36, 37].

In the past, different techiques have been employed to
extract application level knowledge for aiding manage-
ment operation. This includes installing paravirtualiza-
tion drivers [28], in-guest controller agents [26, 38, 39,
34] (both referred to as PVD in Fig. 1(b)), leveraging
or extending language runtime capabilities like apache
modules or JDBC interfaces [30], or modifying the ap-
plication directly [40].

With containers clouds, the principle of ’application
knows best’ does not change. What does change is the

nature of the interface between applications and the host-
ing layer, which becomes closer to the traditional sys-
tems with the removal of the guestOS abstraction of
VMs. Also, the scale of management operations grows,
owing to an even greater flexibility and elasiticity af-
forded by the container abstraction.

Thus, with a similar intention of incorporating
application-awareness at the cloud management layer,
as well as cloud-awareness at the application level, the
goal of our work is to provide a uniform interface (PaCI
in Fig. 1(c)) to enable such bi-directional communica-
tion. One way to realize this channel for container-based
OS virtualization is via a generic signal-and-syscall (or
ioctl) based implementation. However, in this work we
present an implementation for a higher-level abstraction
layer for easier consumability, by targeting the popular
Kubernetes container platform.

3 Paracloud Orchestration Usecases

Amongst various cloud management tasks, here we
specifically target three operations - namely migration,
auto-scaling and load-balancing, to highlight how our
Paracloud interface can help make them more efficient
for both the application and the cloud management layer.

3.1 Migration

Although migration may seem redundant for stateless ap-
plication containers, it is still pertinent to several state-
ful microservice applications like databases (e.g., Mysql,
Cassandra), message brokers (kafka), and coordination
services (zookeeper), amongst others. This is being ac-
knowledged and supported in standard frameworks like
Kubernetes’ ‘StatefulSet’. Portability of stateful contain-
ers is also explored in existing solutions like ClusterHQ’s
Flocker[41], Virtuozzo[42] and Picocenter[43]. At the
same time, it has certain inefficiencies that we would like
to address below.

During initialization, many applications, like
databases, tend to allocate large memory buffers to
optimize their 10 operations. Similarly, application
runtimes, like JVM, allocate large operating heap mem-
ory which they manage themselves such as via custom
garbage collection policies. This becomes a problem

when such application containers are to be migrated !.
In stop-and-copy based migration, this increases appli-
cation downtime by also migrating non-dirty or unused,
speculatively cached or to-be-garbage-collected pages.
Although the downtime is lower for pre-copy or post-
copy migration, unnecessary page transfer processing
on an already troubled host (that influenced application
offloading in the first place), possibly also coupled with
a congested network outflow, can still slow down the
readiness of a migrated application.

Although it may be possible to add certain memory
filtration heuristics to the migration process, but the ap-
plication can do a far better job of minimizing its state
for checkpointing or transfer. Therefore, in Paracloud
we propose signaling an application container to be mi-
grated, and allowing a short migration grace-period for
‘preparation’. This allows application to minimize its
memory footprint, for example by running its garbage
collector to release heap-memory, flushing its IO buffers,
releasing all temporary resources like temp files. It can
even exercise aggressive eviction on its cache by flushing
less common objects, or optionally settle at a consistent
state pre-transfer. Similarly, on restoration at the target,
the application container is signaled to re-configure itself
to the new environment. During restore grace-period, ap-
plication can perform sanity checks, re-acquire its mem-
ory share for caching, as well as any temporary or lost
resources like network connections, register its service,
and re-discover other services.

3.2 Auto-scaling

It is one of the core capability for any cloud platform to
enable elasticity for their workloads. Policy-based scal-
ing techniques, which are common in today’s clouds,
scale out instances when certain resource-use metrics
grow beyond a particular threshold. For instance, a sam-
ple policy could be to increase container instances when
the average memory utilization of the container is greater
than 70% for a duration of 1 minute. We argue that
such externally monitored metrics may not be true in-
dicators of demand to derive auto-scaling policies. For
example, most database applications(e.g. Mysql, Elas-
ticSearch) tend to perform various auxiliary functions
besides storing and accessing data, like periodic log ro-
tation, data compaction, data pruning, auditing and con-
sistency checks etc. These functions are commonly de-
signed to exploit slack. They consume resources over the
actual workload processing when there are free cycles,
and can cause false-positive auto-scaling triggers. An-
other issue with black-box triggers is that several mod-
ern applications are designed to respond to their operat-

I'Several container runtimes today support migration; Docker, for
example, achieves this via the popular CRIU [44] checkpoint-restore
Linux utility.

ing environment constraints. For example, ElasticSearch
(ES) aims to keep as much of its index in memory. There-
fore, a memory-based auto-scaling trigger, oblivious to
this behavior, can start scaling number of ES instances
once memory grows beyond a certain threshold, as the
new instances start to grow their memory footprint, it
continues to further scale up the instances, resulting in
a chain reaction.

In contrast, Paracloud provides a way for an applica-
tion to indicate whether it really desires new instances
to be forked, given its current operational state. The
auto-scaler on sensing an increased usage beyond the
set threshold, can signal the container indicating an up-
coming scaling operation, allowing it to optionally dic-
tate its intention. The application can validate the trig-
ger against its actual state, and try to minimize usage
of some resources if its operational state allows, for ex-
ample by running its garbage collector or flushing some
caches and buffers. This gives cloud users a trade-off
knob, where they can intelligently balance performance
and operational cost.

Another use of Paracloud interface is for the applica-
tion to itself proactively hint the auto-scaler for a more
prompt service, based on its key performance indicators.
Furthermore, Paracloud also enables an application con-
tainer to specify the rype of sibling instances it needs.
Auto-scaling typically forks a brand-new instance which
then has to be initialized, configured and cache-warmed,
thereby delaying the achievement of steady-state perfor-
mance for the application as a whole. Instead, it may
be advantageous to hot-scale the instance with a pre-
initialized state and a warm cache [45].

3.3 Load Balancing

A cloud host’s resources (CPU, memory, 10) are usu-
ally over-committed to save costs by increasing density
(i.e. number of colocated instances existing at any given
time). During high resource contention, some of the in-
stances (containers) are either killed or migrated. These
may be selected based upon their priorities or current re-
source allocations. For example, one common practice
is to kill containers consuming most resources. But in-
tuitively, those could be amongst the most active and/or
stateful containers on the host, which could have been
kept running by killing other less-active and/or state-
less applications’ instances (a stateful application gets
hurt worse, having to re-warm its cache on reinstani-
taition [45]).

Such scenarios can be handled better by tying Para-
cloud with cloud load balancers. Cloud applications are
typically deployed as “replica sets”, with multiple identi-
cal instances available at any given time, which are load-
balanced by an ingress controller like haproxy [46]. With
Paracloud, we propose to expose an appYield interface

between containers and the cloud platform, enabling ap-
plications to yield themselves temporarily during high
resource contentions, similar to Linux’ sched_ yield-
based co-operative scheduling [47]. For a host under
pressure, its containers get notified with a yield request
notification. Such notification would contain informa-
tion about the resource under contention, and the health
status of the container’s replica/peer instances. An appli-
cation can then decide to yield, releasing the contended
resource, or risk termination. The load-balancer would
temporarily tag the instance out-of-service, bringing it
back into action once the resource contention smoothes
out. Essentially, the application stays alive but dormant.
Similarly, the application can also advertise its stateful-
ness over Paracloud so that the host can accordingly tar-
get a ‘less critical” application if possible. It is impor-
tant to acknowledge that such co-operative scheduling is
helpful only when the resource contention is transient,
and work better with the existence of some ‘incentive’
schemes for applications to yield, than perhaps with the
autocratic yield-or-die regime.

4 System Design

We design Paracloud interfaces to ensure consumability
and simplicity. Therefore PaCls are implement on the
Kubernetes container platform. Kubernetes advocates
building applications that are cluster-aware and has ba-
sic machinery in place in the form of Container Lifecy-
cle Hooks [12] to inform containers about management
lifecycle events. Currently two container hooks are fa-
cilitated, PostStart and PreStop. PostStart hook is called
immediately after container is created and PreStop hook
is called before it is terminated. These hooks are cap-
tured and processed inside container in hook handlers.
Kubernetes supports two handler types, Exec to execute
a command or script in container namespace, and HTTP
to invoke a specified http endpoint of container. Appli-
cation containers that participate in cluster lifecycle are
termed as cluster-native.

In Paracloud we motivate the extension of the scope of
cluster-native applications beyond just lifecycle events to
critical cloud operations like auto-scaling, migration and
load-balancing. We have currently designed six new in-
terfaces for Kubernetes substrate as summarized in Table
1. We envision addition of new interfaces in support of
other Paracloud operations like placement, compliance,
security and monitoring.

4.1 PaClI Definitions

PaCls are completely optional for applications. There-
fore hook handler invocations are not retried on cloud
platform and all PaCIs are designed as asynchronous so
they do not block any cloud operation.

H PaCI Delivery guarantees H

preMigrate at-most-once
postRestore at-most-once
reqYield? at-least-once
appYield] -
chkAutoscalet at-least-once
hotScale] -

Table 1: Paracloud Interfaces; 1 = interface implementation as
a container hook; | = extension to Kubernetes API set.

Migration: The preMigrate hook is sent after con-
tainer is scheduled for migration but before it is check-
pointed. postRestore hook is sent after container is re-
stored to running state and before it is reported as avail-
able. Both these hooks follow at-most-once delivery
guarantees since the hook handler might not be idem-
potent. Applications can have different grace-period re-
quirements to process hook handlers. Therefore, we al-
low applications to configure these grace-periods as con-
tainer labels.

Load-balancing: When a compute node is heavily
loaded, cloud platform invokes reqYield hook on all con-
tainers on that node. It follows ar-least-once guarantee
since a hook might be called multiple times during the
lifetime of application container. The hook handler in
response evaluates yield chances and calls appYield API
on Kubernetes if it decides to yield reseources. Multi-
ple appYield calls are processed in the same order they
are received. When the node load drops to an acceptable
level, the remaining yield calls are ignored. Containers
for which yield call is accepted are temporarily removed
from load-balancer.

Auto-scaling: For every auto-scale triggered on the plat-
form, the chkAutoscale hook is called on the correspond-
ing containers to validate the scaling request. This gives
the applications a chance to mitigate the auto-scaling
conditions in the case of false positives. In the handler,
containers can release the heavily-used resources to clear
the trigger. For example, when high memory usage trig-
gers an auto-scale, the application can employ garbage
collection or flush caches to reduce its footprint. This
hook also allows a configurable grace-period for handler
processing and mitigation actions. If the auto-scale con-
dition still holds true after grace-period, application scal-
ing is implemented by the platform. If the application
wants to hot scale by creating a clone of one of its run-
ning instance, it calls hotScale API on Kubernetes.

4.2 PaCl Sidecar Implementation

In Paracloud we implement hook handlers and the Ku-
bernetes client for PaClI calls in sidecar containers. Side-
car containers are a common microservice composite
container pattern for providing supporting services, such

Uniform Workload —Zipfian Workload ——baseline

w

—coldscale

—baseline —coldscale

— hotscale

— hotscale

3

Memory Used
4 90

N
w
.

3.5 80

2.5

2||I||

o

3 70

2.5

1.5

Latency (ms)
[
[

2

€ 15

1

Latency (ms)

o
[

Pruning (K/sec)
@
3
memory used (%)

1 20

0.5

o

0.5 10
0 0
0 3 6 912151821242730333639424548

o< NV
n oSO o
IR N

Time (sec)

< QN
NN]
m on < <

b 0

86.4
0

N 0 N
oS owm®
n o~~~

Time (sec) Time (sec)

(a) Cache Pruning and Memory Monitor

(b) Zipfian access workload

Figure 2: Paracloud Autoscaling Usecase

as service discovery and logging, to main application
containers by creating new containers that share names-
paces with them. The important benefit of this pattern
is that the sidecar containers can be developed indepen-
dently without changing applications. Most PaCls ac-
tions, like garbage collection, cache flush, post-restore
service registration, evaluating auto-scale criteria can be
implemented in sidecar containers with minimum disrup-
tion and high consumability by most applications.

5 Evaluation

In this paper we focus on the auto-scaling use-case for
Paracloud. As described in the previous section, Par-
acloud uses the chkAutoscale hook to inform the con-
tainer of an autoscale trigger and the hotScale API to
actuate a hot scale if requested by the container. Tra-
ditionally, auto-scaling uses cold scaling, wherein new
container instances are created from a pristine image. In
hot scale new instances are created by live-cloning the
running state of the container. In the below experimental
evaluation we show how an application can optimize its
performance by judiciously employing hot scaling when
advantageous.

We use MySQL 5.7.15 from Docker Hub as our test
application and YCSB [48] as the benchmark. The con-
tainer is configured with 512MB memory. The workload
consists of two runs of 400K read operations against a
200MB database table consisting of SOK records of 4KB
size each. The Kubernetes cluster triggers an autoscale
when container used memory >80% for more than 30
seconds. We use Haproxy to arbitrate requests among
multiple instances using the round-robin policy. We also
enable query cache for MySQL engine and monitor its
rate of low memory pruning.

We run two sets of experiments with different access
patterns, zipfian for popularity-based long tail access
and uniform for random access pattern. The applica-
tion exhibits similar memory usage in both experiments,
as shown in Fig. 2(a). This usage pattern triggers an
autoscale at around 50s, which is communicated to the
container via chkAutoscale. In each experiment the ap-
plication can respond in one of three ways: (i) do noth-
ing, which triggers a cold autoscale; (ii) take mitigating

actions, such as releasing memory resources, to revert
the autoscale trigger; and (iii) request a hotScale. In our
evaluation we exercise the first and third options. This
shows that requesting a hotScale for the zip fian access
leads to significant performance improvements, while
employing cold scaling performs better for wuniform.
Fig. 2(b) shows the results for zipfian. Container-
triggered hot scaling helps reduce the latency of appli-
cation by 20% immediately. In comparison, cold scaling
requires a ramp-up time for cache warming to attain the
same performance. 2(c) shows the contrasting results for
uniform. In this case, the container does not initiate a
hotScale. As a result cold scaling is applied, which im-
proves performance by reducing latency by 20%. The
figure also shows the latency if hot scaling were applied,
where it actually deteriorates performance. These results
demonstrate the substantial advantages with Paracloud
providing application insight in cloud operations.

While the advantage of hot scaling in zipfian is ex-
pected, its negative effect for uniform is interesting.
This is because with with hot scaling applications can
inherit bad state as well as good state. Only judicious
application of scaling techniques, driven by the applica-
tions themselves, can lead to net benefits. In the uniform
case, the hot scaled container inherits the thrashing state
of the MySQL query cache which dampens the initial
scale-out gain. This can be observed from the high prun-
ing rate of uniform in Fig. 2(a). Cold scaling in such
scenarios performs fundamentally better since it removes
cache pruning overheads and only incurs cold cache miss
latencies. Thus, the containerized application can simply
use this additional pruning rate signal to decide on when
to request hotScale, while the container runtime is obliv-
ious to these characteristics.

6 Conclusion

We presented our Paracloud idea for container clouds,
wherein application insights are brought into the cloud
platform thorough a generic Paracloud interface (PaCI).
The critical inference here is that applications have in-
timate knowledge of their own operating state parame-
ters, which are typically different for every application.
The cloud platform cannot gauge these parameters reli-

(c) Uniform access workload

ably for all applications. Paracloud can help bridge this
gap and provide a shared-responsibility model, where all
the cloud functions like auto-scaling, migration, load-
balancing, etc. are implemented by the platform with
application insight and cooperation through PaCIs. We
are planning to extend the scope of PaClI to cover many
more cloud operations and establish them as a standard
design choice during application development.

7 Discussion

First, we would like to establish that Paracloud frame-
work is beneficial for both application developers and
cloud providers. For developers there’s motivation to
make their applications more agile, cost-efficient, con-
sistent and highly elastic on clouds, while for providers it
helps ease their operational overheads for different kinds
of applications and satisfy SLAs.

How disruptive is this model ? As illustrated above for
auto-scaling use case, few common PaCls can be im-
plemented as a sidecar containers for applications. But,
some PaCls requires support from the applications with
revision in their design and implementation, for exam-
ple, to release resources during migration, acquiring re-
sources for vertical auto-scaling, identifying and book-
keeping of relevant operational states etc. But, we be-
lieve this is an incremental feature addition as-oppose to
the complete application re-modeling imposed by event-
driven serverless architectures or single address space
unikernels.

How secure are these interfaces? Although not limited
by design, currently we are regulating applicability of
Paracloud to a single tenant platform wherein different
hosted applications have trust amongst their peers. But,
at the same time we are doing security profiling of PaCls
by evaluating their security implications and any possible
exploitation in multi-tenant environments, so they can be
hardened.

Open Issues: (i) Should PaCI be vendor-agnostic, per-
haps via a signal-and-syscall implementation? (ii) Bet-
ter incentives than yield-or-die may be needed for less
crude, escalation inhibitive, and more harmonious exis-
tence in the load balancing scenario. (iii) Whether PaCls
are applicable for non-containerized deployments ?

References

[1] Carl A Waldspurger. Memory resource manage-
ment in vmware esx server. ACM SIGOPS Operat-
ing Systems Review, 36(S1):181-194, 2002.

[2] Michael R Hines and Kartik Gopalan. Post-copy
based live virtual machine migration using adap-
tive pre-paging and dynamic self-ballooning. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS

(3]

(5]
(6]

(7]

(8]

[9]

(10]

(1]

[12]

(13]

[14]

[15]

[16]

international conference on Virtual execution envi-
ronments, pages 51-60. ACM, 2009.

Kai-Yuan Hou, Kang G Shin, and Jan-Lung Sung.
Application-assisted live migration of virtual ma-
chines with java applications. In Proceedings of the
Tenth European Conference on Computer Systems,
page 15. ACM, 2015.

Docker. http://www.docker. com/.
CoreOS. https://coreos.com/rkt/.

CloudFoundry.
cloudfoundry/warden.

https://github.com/

Amazon EC2 Container Service. https://aws.
amazon.com/ecs/.

Container Engine. https://cloud.google.
com/container-engine/.

Yennun Huang and Chandra Kintala. Software im-
plemented fault tolerance: Technologies and ex-
perience. In FTCS, volume 23, pages 2-9. IEEE
COMPUTER SOCIETY PRESS, 1993.

Giovanni Toffetti, Sandro Brunner, Martin
Blochlinger, Josef Spillner, and Thomas Michael
Bohnert. Self-managing cloud-native applications:

Design, implementation, and experience. Future
Generation Computer Systems, 2016.

Kubernetes. Downward api. https:
//kubernetes.io/docs/user-guide/
downward-api/.

Kubernetes. Container lifecycle hooks.

https://kubernetes.io/docs/user-guide/
container-environment/.

Michael McCandless . Lucene and fadvise/-
madvise. http://blog.mikemccandless.com/
2010/06/1ucene-and-fadvisemadvise.html.

Greg Bowyer. Solr / Lucene madvise performance
? http://people.apache.org/~gbowyer/
madvise-perf/.

google-perftools @ googlegroups.com. Google
Performance Tools system_alloc in MoongoDB.
https://github.com/mongodb/mongo/tree/
master/src/third_party/gperftools-2.5.

Don Burleson. Using direct I/O with Oracle.
http://www.dba-oracle.com/art_orafaq_
oracle_direct_io.htm.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

MySQL. Optimizing InnoDB Disk I/O.
https://dev.mysql.com/doc/refman/5.
5/en/optimizing-innodb-diskio.html.

Tobias Oetiker. Tuning RRDtool for performance.
http://oss.oetiker.ch/rrdtool-trac/
wiki/TuningRRD.

Hadoop HDFS. Add HDFS support for fadvise
readahead and drop-behind. https://issues.
apache.org/jira/browse/HDFS-2465.

NFSv4 Working Group: D. Hildebrand, T. Myk-
lebust, S. Falkner. Support for posix_fadvise.
http://www.potaroo.net/ietf/idref/
draft-hildebrand-nfsv4-fadvise/.

James Coomer. Lustre File System Ac-
celeration Using Server or Storage-Side
Caching. http://www.opensfs.org/wp-
content/uploads/2014/04/D2_S27 LustreFileSystem
AccelerationUsingServerorStorageSide-

Caching.pdf.

Khalid Alhamazani, Rajiv Ranjan, Fethi Rabhi,
Lizhe Wang, and Karan Mitra. Cloud monitoring
for optimizing the qos of hosted applications. In
Cloud Computing Technology and Science (Cloud-
Com), 2012 IEEE 4th International Conference on,
pages 765-770. IEEE, 2012.

Qinghua Lu, Xiwei Xu, Liming Zhu, Len Bass,
Zhanwen Li, Sherif Sakr, Paul L Bannerman,
and Anna Liu. Incorporating uncertainty into in-
cloud application deployment decisions for avail-
ability. In Cloud Computing (CLOUD), 2013 IEEE
Sixth International Conference on, pages 454-461.
IEEE, 2013.

J Yang, T Yu, LR Jian, J Qiu, and Y Li. An ex-
treme automation framework for scaling cloud ap-
plications. IBM Journal of Research and Develop-
ment, 55(6):8—1, 2011.

Hanieh Alipour, Yan Liu, and Abdelwahab Hamou-
Lhadj. Analyzing auto-scaling issues in cloud envi-
ronments. In Proceedings of 24th Annual Interna-
tional Conference on Computer Science and Soft-
ware Engineering, pages 75-89. IBM Corp., 2014.

Jerome H Saltzer, David P Reed, and David D
Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems (TOCS),
2(4):277-288, 1984.

Sitaram Iyer, Juan Navarro, and Peter Druschel.
Application-assisted physical memory manage-
ment. Technical report, Citeseer, 2004.

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Kai-Yuan Hou, Kang G Shin, and Jan-Lung Sung.
Application-assisted live migration of virtual ma-
chines with java applications. In Proceedings of the
Tenth European Conference on Computer Systems,
page 15. ACM, 2015.

Ripal Nathuji, Aman Kansal, and Alireza Ghaf-
farkhah. Q-clouds: managing performance inter-
ference effects for qos-aware clouds. In Proceed-

ings of the 5th European conference on Computer
systems, pages 237-250. ACM, 2010.

Michael R Hines, Abel Gordon, Marcio Silva,
Dilma Da Silva, Kyung Ryu, and Muli Ben-
Yehuda. Applications know best: Performance-
driven memory overcommit with ginkgo. In Cloud
Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on,
pages 130-137. IEEE, 2011.

Jin Heo, Xiaoyun Zhu, Pradeep Padala, and Zhikui
Wang. Memory overbooking and dynamic con-
trol of xen virtual machines in consolidated en-
vironments. In Integrated Network Management,
2009. IM’09. IFIP/IEEE International Symposium
on, pages 630-637. IEEE, 2009.

Mosharaf Chowdhury, Srikanth Kandula, and Ion
Stoica. Leveraging endpoint flexibility in data-
intensive clusters. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 231—
242. ACM, 2013.

Ming Mao and Marty Humphrey. Auto-scaling to
minimize cost and meet application deadlines in
cloud workflows. In High Performance Computing,
Networking, Storage and Analysis (SC), 2011 Inter-
national Conference for, pages 1-12. IEEE, 2011.

Rui Han, Moustafa M Ghanem, Li Guo, Yike Guo,
and Michelle Osmond. Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications.

Future Generation Computer Systems, 32:82-98,
2014.

Zhenhuan Gong, Xiaohui Gu, and John Wilkes.
Press: Predictive elastic resource scaling for cloud
systems. In Network and Service Management
(CNSM), 2010 International Conference on, pages
9-16. Ieee, 2010.

Alexandru-Florian Antonescu and Torsten Braun.
Improving management of distributed services us-
ing correlations and predictions in sla-driven cloud
computing systems. In Network Operations and
Management Symposium (NOMS), 2014 IEEE,
pages 1-8. IEEE, 2014.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Sadeka Islam, Jacky Keung, Kevin Lee, and Anna
Liu. Empirical prediction models for adaptive re-
source provisioning in the cloud. Future Genera-
tion Computer Systems, 28(1):155-162, 2012.

Zhikui Wang, Yuan Chen, Daniel Gmach, Sharad
Singhal, Brian J Watson, Wilson Rivera, Xi-
aoyun Zhu, and Chris D Hyser. Appraise:
application-level performance management in vir-
tualized server environments. IEEE Transactions
on Network and Service Management, 6(4), 2009.

Gregory Katsaros, George Kousiouris, Spyridon V
Gogouvitis, Dimosthenis Kyriazis, Andreas Meny-
chtas, and Theodora Varvarigou. A self-adaptive hi-
erarchical monitoring mechanism for clouds. Jour-
nal of Systems and Software, 85(5):1029-1041,
2012.

José E Moreira and Vijay K Naik. Dynamic re-
source management on distributed systems using
reconfigurable applications. IBM Journal of Re-
search and Development, 41(3):303-330, 1997.

ClusterHQ. Flocker. https://docs.clusterhq.
com/en/1.0.3/.

Andrey Mirkin, Alexey Kuznetsov, and Kir
Kolyshkin. Containers checkpointing and live mi-
gration. In Proceedings of the Linux Symposium,
pages 85-92, 2008.

Liang Zhang, James Litton, Frank Cangialosi,
Theophilus Benson, Dave Levin, and Alan Mis-
love. Picocenter: Supporting long-lived, mostly-
idle applications in cloud environments. In Eu-
roSys’16, page 37. ACM, 2016.

CRIU. www.criu.org/.

Shripad Nadgowda, Sahil Suneja, and Ali Kanso.
Comparing scaling methods for linux containers. In
To appear in the IEEE Third International Work-
shop on Container Technologies and Container
Clouds (WoC), 2017.

HAProxy. The Reliable, High Performance
TCP/HTTP Load Balancer. http://www.
haproxy.org/.

Linux Programmer’s Manual. sched_yield -
yield the processor. http://man7.org/linux/
man-pages/man2/sched_yield.2.html.

Brian F Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with ycsb. In Pro-
ceedings of the 1st ACM symposium on Cloud com-
puting, pages 143-154. ACM, 2010.

