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SOUNDNESS AND COMPLETENESS OF AN AXIOM SYSTEM FOR
PROGRAM VERIFICATION*

STEPHEN A. COOKer

Abstract. A simple ALGOL-like language is defined which includes conditional, while, and
procedure call statements as well as blocks. A formal interpretive semantics and a Hoare style axiom
system are given for the language. The axiom system is proved to be sound, and in a certain sense
complete, relative to the interpretive semantics. The main new results are the completeness theorem,
and a careful treatment of the procedure call rules for procedures with global variables in their
declarations.
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1. Introduction. The axiomatic approach to program verification along the
lines formulated by C. A. R. Hoare (see, for example, [6] and [7]) has received a
great deal of attention in the last few years. My purpose here is to pick a simple
’programming language with a few basic features, give a Hoare style axiom system
for the language, and then give a clean and careful justification for both the
soundness and adequacy (i.e., completeness) of the axiom system. The justifica-
tion is done by introducing an interpretive semantics for the language, rather like
that in [ 10] and [8]. These two papers also have outlined soundness arguments for
axiom systems, but for somewhat different language features, axioms, and
interpretive models. The completeness claim and argument presented here is new
(although completeness and incompleteness proofs inspired by an earlier version
of this paper [2] appear in [3], [11], [12], [13], and [14]). I have tried to choose the
axioms and rules of the formal system to be as simple as possible, subject to the
constraints that they be sound, complete, and in the style and spirit of Hoare’s
rules.

Donahue [4] presented a soundness argument for a similar axiom system, but
soundness was proved in terms of mathematical semantics in the style of Dana
Scott. This led to a rather different argument than that presented here.

Most of the complication in the present paper comes from handling proce-
dure statements. The rules for procedure call statements often (in fact usually)
have technical bugs when stated in the literature, and the rules stated in earlier
versions of the present paper are not exceptions. In the process of trying to prove
the soundness of these rules, I uncovered some of the bugs, and this led me to
believe a careful and detailed proof of soundness is necessary to have any
confidence that there are no further bugs. I have allowed procedure declarations
to have global variables (subject to some restrictions) and this has added to the
complications of the rules and their justifications.

In addition to procedure statements, the programming language used allows
assignment, conditional, while, compound, and block statements, but disallows
input/output statements, jumps, functions, and data structures.
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The programming language is specified in 2, the interpretive model appears
in 3, and the axiom system in 4. The soundness of the system is proved in 5,
and the completeness is proved in 6.

2. The language AI[’, .’2]. We do not want to specify the particular
primitive relations and operations used to form expressions in our ALGOL
fragment, so we assume these are the same as a given language ?1 for the first
order predicate calculus. For concreteness we could take ,1 ’N where nonlogi-
cal symbols inN are {<, =, +,., 0, 1}, but more generally any list {P1, P2," "} Of
predicate symbols and any list {fl, f2, "} of function symbols will do. In addition,
we assume we are given a predicate calculus language 2, an extension of
which will be used for assertions. In most examples, we will take 2 1

The programming language Alibi, 52] will be a modified subset of ALGOL
60, with the following objects.

Variables. The variables (identifiers) will coincide with the variables of 1.
All variables have the same (unspecified) type. In our example in which
we think of that type as "integer".

Declarations. a) Procedure declarations have the form

p(" t3) proc K

where p is the procedure name, ( 7) is the formal parameter list, and K is the
procedure body. and t5 are disjoint lists of distinct variables, and the variables
in v3 cannot occur to the left of any assignment statement in K, nor can they appear
as actual parameters to the left of the colon (:) in any procedure call statement in
K. The variables and 3 are considered local to the declaration. We allow global
variables in K (in addition to and ). However, the variables in and 7 cannot
occur globally in any procedure declaration for another procedure which could be
activated by executing K. Also note the restriction on procedure calls stated
below.

To avoid confusion over associating procedure names with procedure bodies,
we require that no procedure name can be declared more than once in any
program. In general we shall assume that some fixed procedure declaration is
associated with each procedure p.

We shall assume in this paper that no procedure is recursive. That is, there is
no chain of procedure namesp, , p such thatp p,,, and the procedure body
for p contains a call to p+l, 1 -< < n.

b) Variable declarations have the form

new x

where x is any variable. Both procedure and variable declarations occur at the
beginning of blocks. A variable can occur without being declared, in which case it
acts as an input to the program (it must have a value before the program is
executed). Also, a given variable can be declared in any number of blocks.

Expressions. a) A Boolean expression is any quantifier-free formula of 1.
For example, in the case of v, 0=0, x+l<y+l&z<x are Boolean
expressions.

b) Numerical expressions are terms of . For example, in the case of ,
(x + 1) (z + 1)+ 1, 0, 1 are numerical expressions.
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Statements. a) Assignment statements have the form x := e, where x is a
variable and z is a numerical expression.

b) Procedure calls have the form call p(t7:6), where a is a list of distinct
variables, 6 is a list of expressions containing no variable in a, and no variable in
(ti :6) occurs as a nonlocal variable either in the procedure declaration for p or in
the procedure declaration for any procedure which can be activated indirectly by
activating p. (Formal parameters are local to a procedure declaration.)

c) Conditional, while, compound, and block statements are as in ALGOL 60,
except we use fi and od to punctuate the end of conditional and while statements,
respectively, as in ALGOL 68.

3. The interpretive model. An interpretive model =[] for the pro-
gramming language Alia1, 2] is determined by giving an interpretation for the
predicate_calculus lan_gua_ge2 (of course also interprets the langu_age_.Cl). Thus

<D, P1, P,""", f, f2,’" ") where D is a nonempty domain, {P1, P.,"" "} are
the predicates on D interpreting the predicate symbols of 2, and {1, [2, "} are
the functions on D interpreting the function symbols of 2. As usual in predicate
calculus interpretations, the predicates Pi and the functions fi are assumed to be
total. In our example N, the natural interpretation is v, in which D is the set of
integers, and <, =, +,., 0, 1 are all given their standard meanings. If the function
symbol + is included in the language and it is interpreted as division, then some
value must be assigned to n + 0. One way to do this is to add an extra element
the "undefined" element to the domain D, and let n + 0 be i). In this case, all
function and predicate symbols must have their interpretations extended to be
defined at f, although their values at f could be f. In any case, during execution
of a program, all expressions which must be evaluated will have well-defined
values in D, so an undefined expression is never a cause for termination.

Notation. If E is a term or formula, tl, , tk are terms, and y 1, , Yk are
distinct variables, then

E tl tk

Y Yk

indicates the result of simultaneously substituting l, , tk for free occurrences
of y 1, , Yk, respectively, in E. In the definitions of P(s, ) and e (s, ) below, the
role of ti is played by s((yi)). The latter object is an element of D rather than a
term, so that strictly speaking a constant c should be introduced whose value
under the interpretation is s((yi)), and then

C1

’Ye(s, ,) el
However, the abuse of notation below is convenient and, we hope the intended
meaning is clear.

The set of registers t is the infinite set {X1, X2," "}. A state of[] is a total
map s t D. A variable assignment is a one-one partial map

: {variables of2} -’

with a finite domain. If P is a formula of2 with free variables y 1, , yk, and s is
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a state, 6 is a variable assignment to {yl,. ", Yk}, then

P(s, 6)- true
/

(false

if pS(6(y))’’’ S((yk))

otherwise.

is true in

Thus P becomes either true or false in o when its free variables are given values
according to s and 6.

If e is a term (i.e., numerical expression) with free variables y 1, , Yk, and 6,
s are as above, then

S((y)) S((yk)))e(s, 6) e
Yl Yk

Thus e (6, s) is that element of D which is the value of the expression e when the
free variables of e are assigned values according to s and 6.

A procedure assignment is a partial map

r: {procedure names} {procedure bodies} x {formal parameter lists}

such that r has a finite domain. Thus, if the procedure declaration p( :7) lroe K
occurs in a program, we will define or(p)= (K, ( iT)).

The heart of the model :g is the function Comp(A, s, 6, or), which assigns to a
statement A, state s, variable assignment 6, and procedure assignment zr, a finite
or infinite sequence (Sl, S2,’’ ") which represents the successive states of the
computation determined by the statement A when the initial state is s. This
computation is not defined unless 6 assigns a register at least to each free (i.e.,
global) variable of A and r assigns a procedure body and formal parameter list at
least to each procedure name associated with A which has no corresponding
procedure declaration. (In general, A will be taken from the interior of a block B,
and the declarations of B must be recorded in 6 and zr, as shown below.)

The function Comp(A, s, 6, zr) is defined below by giving one defining clause
for each of 8 possible forms which the statementA can take. The reader can check
that every legal statementA in Alia1, 2] fits one and only one of the 8 cases. The
definition is recursive, in the sense that Comp appears on the right side of the
clauses. This may appear ironic in a paper on program verification, since one of the
important issues in programming language semantics is interpreting recursively
defined procedures. However, one does not have to understand recursive proce-
dures in general in order to understand this specific definition. Suffice it to say that
we intend Comp to be evaluated by "call by name," in the sense that occurrences
of Comp are to be replaced successively by their meanings according to the
appropriate clauses in the definition. Simplifications are to be made using knowl-
edge about the model :g[o]. Of course the process may not terminate, in which
case an infinite sequence of states will be generated.

Notation. A* stands for a sequence A 1; A2; Ak, k -> 0, of statements of
AI[I, 2], and D* stands for a sequence D1; D2; ;Dr, >-0, of declarations
of Alia’l, ?2], and A is a statement of Alia1, 2]. The symbol indicates
concatenation. More precisely, C1 C2 is the concatenation of sequences C1 and
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C2, if C1 is finite, and C1 C2 is C1 if C1 is infinite. IfK is a procedure body, then

K
u, e

X, I)

indicates the result of substituting the actual parameters t2, for the corresponding
free (i.e., global) occurrences of the formal parameters $ and 3 (respectively) in K.
If any variable z in (ti, ) is declared locally in K and if the formal parameter
corresponding to z occurs within the scope of the declaration of z in K, then the
local variable z must be renamed in K before the substitution takes place, so that
no actual parameter gets "caught" by the declaration when it is substituted.

Out(A, s, 8, r) is the last state in the sequence given by Comp(A, s, , 7r),
when this is a finite sequence, and is undefined otherwise.

DEFINITION. Comp(A, s, , r)
Cases A: (The value of Comp appears to the right of the arrow for each of

the eight cases of the form of A given below.)

begin new x; D*; A * end (s)^Comp (begin D*; A * end, s, t’, r),

((y),
where ’(y) lXk+l,

if y X,

if y X, where Xk is the highest
indexed register in the range of

begin p ($" 7) proc K; D*; A * end --> (s)^Comp(begin D *; A * end,
s, 8, "rr’),

Tr(q), if q #p,
where zr’(q)

(K, ( "0)), if q p.

begin A 1; A * end--> Comp(A a, s, 6, r)^Comp(begin A * end,
Out(A 1, s, 8, r), 6, r).

begin end -- (s).

x := e --> (s’), where s’(X/)= e(s, ,),

call p(a ":.) --> (s) Comp --_, s, 8, where zr(p) (K, ( "0)).
X, 1)

s)^Comp(A 1, s, 8, 7r), if R (s, 8) is true,
if R then A else A2ti-

(s) Comp(A2, s, 8, zr), otherwise

Comp(A 1, s, 8, 7r) Comp(while R do A 1,

while Rdo A od- Out(A 1, s, 8, zr), t, zr),
(s), otherwise, if R(s, ) is true.

where is defined for all variables global in A and r is defined for all undeclared
procedure names in A.

Note that the clause defining the statement call p(a :) means procedures
have dynamic rather than static scope.
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4. The axioms and rules. The axioms and rules of inference of our deductive
system are basically those of Hoare [6], [7], with amendments due to Lauer [ 10],
Igarashi, London and Luckham [9] (among others) and modified so as to reflect
the structure of the recursive definition of the function Comp.

The basic object in the system is the formula P(A)Q, where P and Q are
formulas in 2 and A is a statement of Alia1, 2]. Informally, P(A)Q is true
(relative to our interpretation 3) iff whenever the assertion P is true before A is
executed, either A will fail to terminate, or Q will hold after A is executed.

DEFINITION. The free set of a statement A consists of all variables with
global occurrences in A, together with variables with global occurrences in the
procedure bodies of any procedures which might be activated by executing A. A
formal definition can be given recursively by considering each of the possible
statement types for A (as in the definition of Comp). We give four of the more
interesting clauses in this definition. The free set of begin new x; D*; A* end
consists of the union of the free sets of D* and A *, with x deleted. The free set of
begin p(: "5) proc K; D*; A* end consists of the union of the free sets of K, D*,
and A *, except : and t3 are excluded from the free set of K. The free set of x := e
consists of the variable x, together with all variables in e. The free set of call p(t2
consists of the variables in (t :), together with the free set of

u,e
K_---_,
x v

where K is the procedure body for p and () :3) are the formal parameters for p.
(Note that K and (: 7) are uniquely determined in any program by our conven-
tion of unique declarations, and see the remarks at the end of this section.)

Notation. P, Q, R, S stand for the formulas of 2.

indicates the rule: from the formula(s) c, 1,. , n, deduce the formula/3.
D, a
/’

where D is a declaration of some procedure p, indicates the rule

/’
with the understanding that all calls of p in a and/3 are according to D (see the
remarks at the end of this section).

The rules and axiom schemes of the system consist of 1) through 11) below.
1) Rule of variable declarations.

P-Y{begin D*; A * end}Qy--
x x

P{begin new x; D*; A * end}Q
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where y is not free in P or Q, and is not in the free set of D* or A*.
2) Rule ofprocedure declarations.

D, P{begin D*; A * end}O
P{begin D; D*; A * end}0

where D is any procedure declaration.
3) Rule of compound statements.

P{A}Q, Q{begin a * end}R
P{begin A A * end}R

4) Axiom ofcompound statements.

P{begin end)P

5) Axiom of assignment statements.

P e-{x := e}P
x

6) Rule of conditional statements.

P & R{a ,}O, P & -R{A2}0
P{if R then A else A2 fi}Q

7) Rule of while statements.

P & Q{A}P
P{while Q flo A od}P & Q

8) Rule of procedure calls.

p(Y :5) proc K, P{K}O
P{cali p(Y 5)}0

9) Rule of parameter substitution.

P{call p (.’ 5’)}0

P "";,{call p(a- )}oyu,; ’e

provided that no variable in ri (except possibly one in :g’) occurs free in P or O.
Here Y’ and 5’ are lists of distinct variables which may be, but need not be, the
same as the formal parameters ( :5) for the procedure p. We require, of course,
that the statements call p(’: 5’) and call p(ti :) be syntactically correct, which
means (for call p(ti :)) that the variables a be distinct and have no occurrence in
the expressions & and no variable in ti or (other than one in or 5) can be in the
free set of the procedure body K of p.

10) Rule of variable substitution.

P{call p(a
Po-{cali p(gt e)}Otr
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where

is a substitution of expressions for variables such that no variable in or f’ occurs
in the free set of call p(a ").

11) Rule of consequence.
PR,R{A}S, SDQ

P{A}Q

Note that in the rule of consequence, P DR and S Q are formulas of 2. We
assume they are correct (that is their universal closures are true in the model )
but the manner in which they are deduced is not the concern of this axiom system.
This point is discussed further in later sections.

It is worth pointing out that rules 9) and 10) could be replaced by the simpler
rule

Ka’IQp($’3) proc K, P/ $,----j
P{can

and soundness and completeness could be preserved (in fact the justification
would be much simpler). However, this rule is unsatisfactory because its use
requires a separate proof of the hypothesis

each time a call statement for the procedure p appears with different actual
parameters. In contrast, the present rule 8) requires the proof just once of a
general property P{K}Q of the procedure body, and rule 9) (with rules 10) and
11)) allows the deduction of suitable instances of the property for different sets of
actual parameters. (The use of rule 10) will come out in the completeness
argument in the last section.)

A second objection to the above alternative to rules 9) and 10) is that it spoils
the pleasing principle that no substitutions for variables are made in the program
text for the hypothesis of any rule.

The rules of our system are a little awkward in handling procedure declara-
tions. This is not a real issue for our particular programming language, since we do
not allow a given procedure name to have more than one declaration in a given
program. If more than one such declaration were allowed (as in ALGOL 60), some
device would have to be introduced in the rules to keep track of which declaration
applied to a given procedure call statement. One possibility suggested in Gorelick
[5], is to transform each rule

D*/a OnCI,’’’,Cn
into

D*/
so that the context of procedure declarations D* is made explicit at each rule
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application. The rule for blocks with procedure declarations would now become

D*; D/P{ben D’ a * end}Q
O*/P{ben D; O* A * end}Q

enabling us to "discharge" heretofore implicit assumptions about the context of
procedure declarations. Similarly, the rule for procedures would become

D*/P{K}O
D*; p(Y ) proc K/P{cali p(." ts)}Q

where p is a new procedure name. This would be a possible way of handling the
problem if one thought it were important to allow a given name to refer to two
different procedures. However, in practice, this flexibility would probably cause
more confusion than it would save. Furthermore, our definition of Comp would
have to be significantly more complicated, requiring that the map r store the
environment of the procedure body, as well as the body and formal parameters.
Therefore, we shall stick to our simplifying assumption, and our simpler rules.

5. The model satisfies the axioms and rules. Most of the rules and axioms
seem to be clearly valid, given the informal meaning for P{A}O stated above.
However, there is always a worry that some condition or possibility has been
overlooked. This is particularly true of rules 8)-10) for procedure calls, variations
of which have been stated incorrectly in the literature several times.

How can we be sure we aren’t omitting some restrictions on these rules or the
use of parameters that are necessary to ensure the validity of the rules? One way is
to prove that all the axioms and rules are true in our interpretive model /[3]. (At
least this ensures that the axioms and rules are correct, provided it is agreed that
the model is correct.)

Thus suppose we are given an interpretation 3 for , and hence a model
///[5] for our language Al[Cpl, ’2]. We say a formula P of ,2 is true in (or

in) if[ the closure of P is true in 5, where by closure we mean universal closure
(i.e., the result of prefixing to P universal quantifiers for all free variables in P).

DEFINITION. A formula P{A}Q is true in l (denoted by: tP{A}Q) iff
for all states s, s’, if P(s, ,3) is true in and s’ Out(A, s, 6, 7r), then Q(s’, 6) is
true in, where 6 is any assignment to the free variables of P, Q, and the free set
of A, and 7r assigns the proper bodies and parameter lists to all necessary
procedure names. The subscript on is sometimes omitted.

Lemma 4, at the end of this section, states that this definition of truth is
independent of 6.

DEFINITION. A formula P{A}Q is valid itt it is true in all models M[5]. A
rule

is valid itt/3 is true in every model in which al,. ", an are true.
Theorem 1 below states that all our axioms and rules are valid. However, they

are not sufficient in the following sense" It is usually necessary to use the rule of
consequence (rule 11)) to prove interesting formulas, and for this we need a
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method of establishing the truth of the (universal closures of) the formulas P R
and S O in 2. Hence we will need to supplement our rules and axioms by a
deductive system @ for deducing formulas in z whose closures are true in 5. Of
course must be sound relative to 5, in the sense that the universal closure of
every formula deducible in is true in 5. We should emphasize that the
soundness of has meaning only relative to 5, in contrast to our system , whose
rules and axioms are valid for all interpretations. Further discussion of the system

appears in 6.
THEOREM 1. Axioms and rules 1) through 11) ]:or the system are valid.
A formal proof in the system (Y, ) consists of a finite sequence of formulas,

each either of the form P{A}Q, or P, with P, O in z and A a statement in
AI[I, z]. Each formula is either an axiom of Y(, a formula deducible in @, or
follows from earlier formulas in the sequence by one of the rules of X. We use the
notation e. P{A}O to mean P{A}O is provable in this sense.

COROLLARY. If is sound relative to and -e.P{A}Q, then
sjP{A}Q.

The main tool in the proof of Theorem 1 is "induction on the definition of
Comp." This principle allows us to conclude an assertion of the form "for all A, s,, r, if the sequence Comp(A, s, 6, r) is finite, then it has a certain property
P(A, s, 6, or)." To make this conclusion, it is sufficient to prove, for each of the
eight cases in the definition of Comp, that if A takes the form of the case, then
Comp(A,s, 6, r) satisfies P (provided it is finite), assuming as an induction
hypothesis that Comp(A’, s’, 6’, r’) (and sometimes Comp(A", s", 6", r")) satisfy
P (provided they are finite), where the latter are the occurrence(s) of Comp that
appear on the right hand side of the case. The justification of this principle comes
directly from the definition of Comp, by a simple induction on the length of the
sequence Comp(A, s, 6, r). The principle is used in the proofs of Lemmas 1 and 3
below.

We will now prove Theorem 1 for rules 1), 9), and 10). The other cases are
straightforward. For the rest of this section, "true" means true in some arbitrary
model . Starting with rule 1, we assume the premise

(i) PY{begin D*; A * end}Q-y

where y is not free in P or Q, and is not in the free set of D* or A*.
In order to verify the conclusion of the rule, we assume P(s, 6) is true, where 6

assigns registers to all relevant variables. Now let s’= Out(begin new x; D*; A *
end, s, 6, r), where ,r makes the proper assignments to procedure names.
According to the appropriate clause in the definition of Comp, we have

(ii) s’= Out(begin D*’, A * end, s, 6’, r)

where 6’ agrees with 6 everywhere except at the variable x, to which 6’ assigns a
new register. Now if we define the assignment 6 by

6’(2) if z
6’(z)

6(x) ifz=y,
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then 6 is one to one (because 6(x) is not in the range of 6’), and furthermore
P(s, ,3) has the same truth value as

P-Y (s, 6
X

namely true. (This is because y has no occurrence in P, x has no occurrence in

and 6 (x) 6 (y).) By our premise (i), we conclude

OY--(s’1, tl)
X

is true, where

(iii) s Out(begin D*; A * end, s, 6, r).

LEMMA 1. g61 and 62 are two variable assignments which agree on thefree set
ofa statementA, and ifthe largest-numbered registers in the ranges of61 and2 are
the same, then Comp(A, s, 61, 7r) Comp(A, s, 62, 7r), provided the computations
are finite.

The proof is by induction on the definition of Comp. All clauses except that
for variable declarations are immediate, because 6 does not enter into the
definition, and the exception is also easily handled.

We notice that 8’ and 8 satisfy the hypotheses of the lemma for the statement
begin D*; A* end, (because by our assumptions on the rule 1) y has no free
occurrence in D* orA *), so that it follows from (ii) and (iii) that s’ s. Therefore

is true and hence Q(s’, 6) holds by the same reasoning that showed

PY--(s, Si)Cr>P(s, 6).
x

This establishes the conclusion of the rule 1) and completes the proof of the
validity of 1).

The rule 9) of parameter substitution is worth verifying in some detail.
Assume the premises to the rule hold, so that

(1) P{call p(.’: O’)}Q

Let us use the abbreviation

u, e(2) tr
X

and assume

(3) Per(s, 6)
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holds for some 6 which assigns registers to all relevant free variables. If we set

(4) s’= Out(call p(a :), s, 6, r),

and assume s’ is defined, and 7r(p) (K, (2 5)), then by the definition of Comp for
procedures we have

/ ti,
(5) s’ OuttK, , s, & Tr).
Suppose

(6) 2t=X Xm, U-’-Ul, ,Um P--V e el, , en.

In order to use our premise (1), we must find a new pair (sa, 6a) such that
a) s (6 a(z)) s (6 (z)) for all z (2’, 5’) if both 6 (z) and 6 (z) are defined,
b) sa(61(x))- s(6(u,)), 1,..., m,
c) sl(61(v))=e,(s, 6), 1,..., n,
d) Sl(Xml/i)=s(X,,/i), i= 1,2,’’’, where X,,1 (respectively X,,) is the

highest indexed register in the range of 61 (respectively 6).
Let us say (s 1, 61) is matched to (s, 6) relative to r if a)-d) are satisfied. There is no
difficulty in finding such an (s l, 61), since the variables in (2’, 5’) are all distinct.

LEMMA 2. I[ (Sir 61) is matched to (s, 6) relative to

U e

and R is an assertion (of ’2) and e is an expression (term of1), then

Rr(s, 6) R (s 1, 61), and (er)(s, 6) e (s 1, 61)

(assuming 6 and 61 assign registers to all the free variables of Rtr and err).
Proof. We have

Ro’(s, 6) =- R

and, using equations a)-c),

R (s, 61) =- R

s(6(u,))"" e,(s, 6)... s(6(z))

..s(6(u,)... e,(s, 6)... s(6(z))
..x; v; z

This establishes Rr(s, ) --- R (s 1, 61), and the equation in the lemma is established
in the same way.

LEMMA 3. Suppose (s 1, 61) is matched to (s, 6) relative to

u e

and s’=Out(Ar,s, 6, r), and s’l Out(A, sl, 61, 7r), where A is any statement
such that p("O’) lroe A could be a legal procedure declaration ]’or a legal
statement call p(a "). Then (s, 6a) is matched to (s’, 6) relative to r.

The hypotheses of the lemma imply that no variable in (ti, ) (except possibly
one in (2’, 5’)) occurs in the free set of A, and no variable in 5’ occurs on the left
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side of any assignment statement in A or to the left of the colon in any procedure
call statement of A. Also, no variable in ($’ 3’) occurs globally in any procedure
declaration of a procedure which could be activated by executing A.

We wish to apply the lemma for the case A is

g.

The hypotheses of the lemma are satisfied in this case because p ($ ") lroe K is a
legitimate procedure declaration, and both (a ") and ($" 7’) are legitimate sets of
actual parameters for p. These hypotheses were stated explicitly because the proof
is by induction on the definition of Comp, and it is important to check that the
induction hypothesis can be legally applied to the appropriate statement A’ in
each case. It seems that all hypotheses stated are necessary for one case or
another, in order to push the argument through.

For most cases in the definition of Comp the argument is straightforward. For
example, in the case of conditional and while statements, we can apply Lemma 2
to see that Rtr(s, 6)=-R (S l, 61), SO the same branch of the conditional and the
same case of the while definition will apply for both A and Ao’.

The case of a procedure call statement is more subtle. Suppose A is
call p’(a’ ’), where the procedure declaration for p’ is p’("" 3") lrOe K’. In order
to apply the induction hypothesis, we must verify that

satisfies the hypotheses of the lemma. First, the free set of A’ can have no variable
in (ti, ) (other than one in (’, 3’)), by the hereditary nature of the definition of
"free set". Second, no variable v in 5’ can occur either in t’ or globally in the
procedure declaration of p’, so by our restrictions on procedure call statements, v
cannot occur to the left of any assignment statement or to the left of the colon in
any procedure call statement in A’. Third, A’ satisfies the final hypothesis of
Lemma 3 because A does. Hence the induction hypothesis applies to A’. By
definition of Comp,

and

s’ Out(A, s 1, 1, 7r) Out(A ’, s 1, 6, 7/’)

s ’= Out(Ao’, s, 6, 7r)= OutK -,, 7, s, ,
Since no variable in $’ or ’ occurs globally in the procedure declaration for p’, it
follows that

Therefore

s’= Out(A ’r, s, 5, zr).
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Hence, by the induction hypothesis, (s, 61) is matched to (s’, 6) relative to o-. This
completes the case of procedure call statements.

In the case of an assignment statement, A is simply x := e, Ao- is xcr := eo’,

and

s(X,)
’(xi)

er(s, 6)

if 6 (xo’) # X,

if 6(xcr) X

sI(X/) if l(X)

[e(s1, 1) if 61(x)=X/.

To check condition a) for (s], 61), (s’, 6) we note that if z is not x then z is
unchanged by the assignment, so a) for the pair (s, 61), (s’, 6) follows from our
assumption a) for the pair (sa, 61), (s, 6). If z is x, then s[(6a(z))=e(s, 61)
e(s, 6) (by Lemma 2) s’(6(za)) s’(6(z)). Condition b) is proved similarly, but
it is necessary to use the facts that the u are distinct and that the assignment
statement A cannot be u := e, (unless ui is some x}) because no variable in (, 6)
(other than one in (’, 6’)) is global in A. To verify condition c), we note that v[ is
not on the left side of the assignment statement A, and no variable in ei is on the
left side of the assignment statementA by our restrictions that actual parameters
are not global in A and no u can occur in ei. Therefore the values of v[ and ei
remain unchanged by A and A, respectively. Condition d) is obviously
unaffected by the assignment statement.

The remaining troublesome case in the proof of Lemma 3 is that of variable
declaration in the definition of Comp. In this case, A is bennew x; D*; A *; end,
and we again assume (s 1, 61) is matched to (s, 6) relative to . We can assume that
the variable x being declared does not occur in (, 6), because of our convention
for renaming locally declared variables in A explained before the definition of
Comp. If x is in (’, ’), then let ’ be a with the substitution for x deleted.
Otherwise, let ’ . Note thatA A’, because x is not free in A. We claim
(s, 6[) is matched to (s, 6’) relative to ’, where 6 and 6’ are the variable
assignments determined from 1 and 6, respectively, in the first clause in the
definition of Comp. The claim is staightforward to verify, using in particular
condition d) from the definition of "(s a, 6a) is matched to (s, ) relative to ," to
verify condition a). From the claim and the easily verified fact that the induction
hypothesis applies to A’ ben D*; A * end we can conclude (s , 6 ) is matched
to (s’, 6’) relative to ’. From this we can conclude (s’, 6) is matched to (s’, 6)
relative to , where we must also use the fact that (s l, 6) is matched to (s, 6)
relative to and the contents of the register 6a(x) (respectively 6(x)) remains
unchanged during the computation ofA under 61 and s (respectivelyA under 6
and s). This completes the proof of Lemma 3.

Using Lemmas 2 and 3 it is easy to complete the proof of the validity of the
parameter substitution rule. We assume equations (1) to (6) hold, and select
(sa, 6) to match (s, 6) relative to . By Lemma 2 and our assumption (3) that
P(s, 6) is true, it follows that P(s1, ) is true. If we set

(7) s Out(call p(Y’ ’), sa, 61, ),
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then by our assumption (1), Q(s, 61) is true. On the other hand, by (7) and the
definition of Comp we have

(8) s Out K s1, 81,

If we now take A in Lemma 3 to be

and note that then

X, V

K U_ ’-e_ Acr,
X, V

it follows (using (5) and (8)) that (s, 81) is matched to (s’, 8) relative to tr. Hence
by Lemma 2, Otr(s’, ) is true..This establishes the truth of the conclusion of rule
9), and hence the validity of rule 9).

Let us now verify rule 10), the rule of variable substitution. This rule can just
as easily be verified in the more general setting

P{A}O
where tr

Po’{A }Otr’ 2

is a substitution of expressions for variables such that no variable in 2 or 5’ occurs
in the free set of A. The reason we selected a special case of this rule for rule 10) is
that this special case is precisely what is needed to prove completeness of the
system .

To verify the more general rule, assume the premise P{A}Q, and suppose
Pit(s, 8) is true for some state s and variable assignment 6. Let 2 z 1, , Zk and
2’= z ],..., z,. Let the state S be given by

s(6(y)) s(6(y)) for all y not in 5 for which 6(y) is defined,

Sl((Zi))-" Z;(S, 8), 1 =<i =<k,

s I(X-) s (X.) for all registers X. not in the range of 8.

Then (s 1, 8) is matched to (s, ti) relative to o-, in the sense defined before Lemma 2.
Hence by Lemma 2, P(sl, 8) is true. Let s’=Out(Ar,s, 8, zr) and S’l
Out(A, s 1, 8, 7r). Then the hypotheses of Lemma 3 are easily verified, so (s , ti) is
matched to (s’, ) relative tort. Since P(s1, t) is true andP{A}Q holds, Q(S’l, ) is
true. By Lemma 2, Qtr(s’, ) is true. Since Air A, this establishes the truth of
Ptr{A}Qtr, and hence rule 10) is valid.

All other rules can be verified directly from the corresponding clause in the
definition of Comp. This completes the proof of Theorem 1.

Using Lemma 3 we can give a short proof that the truth of a formula P{A}Q,
as defined at the beginning of this section, is independent of the choice of 6. Of
course it would have been more logical to prove this immediately after the
definition, and in fact Lemmas 1 through 3 could have been proven there.
However, Lemma 3 would have been very difficult to motivate.
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LEMMA 4. The truth of P{A}Q is independent of the choice of 6.
Proof. Suppose 61 and 62 both assign registers to the free variables of

formulas P and Q, and the free set of statement A, and 7r makes the proper
procedure assignments for A. Suppose for all states Sl and s, if P(Sl, 61) is true
and s’ Out(A, s 6 r), then Q(s’1, 1, , 61) is true. We wish to show the same can be
said with 61 replaced by 62. Hence let s2 be any state, and suppose P(s2, t2) is true.
Choose a state Sl such that (Sl, 6) is matched to (s2, 62) relative to the empty (or
identity) substitution ro. Then by Lemma 2, P(s1,61) is true. Let s=
Out(Atro, s2, 62, r) (note that Ao-o A). Then the hypotheses of Lemma 3 are
satisfied, since the lists , g, , are all empty, so (s l, 61) is matched to (s2, t2)
relative to tro. By Lemma 2 Q(s’, tl)Q(s2, t2), so Q(s’2, t2), is true. This
completes the proof of Lemma 4.

6. The question of completeness of the rules. The corollary to Theorem 1
states that if is a sound deductive system for the language 2 relative to an
interpretation ,9, and if -e, P{A}Q, then P{A}Q is true in ///[# ]. We turn now to
the converse question, and ask under what conditions every true formula P{A}Q
is provable in the system (Y(, ).

If we assume is an axiomatic deductive system, then the formulas P{A}Q
provable in the system (Xe, ) are recursively enumerable. On the other hand, the
formula true {A } false is true in dR[#] iff A fails to halt for all initial values of its
global variables. Therefore the true formulas cannot be recursively enumerable in
case 5’x, f’2 and # are such that the halting problem for AI[, ot’2] is recursively
unsolvable. In particular, we have

THEOREM 2. Ifo is (or +" i.e., without multiplication) and is an
axiomatic deductive system for 2, then (, ) is incomplete in the sense that there
is a formula P{A}Q true in d///[o ], but such that not -e. P{A}Q, where includes
the standard interpretation in the natural numbers ]’or 1.

On the other hand, one has a feeling that the axioms and rules 1)-11) (or
small modifications of 1)-11)) are complete in some sense, and the
incompleteness is probably due to the incompleteness of the system @. But there is
another way in which the system can fail to be complete, and that it is if the
assertion language2 is not powerful enough to express invariants for the loops.
Let us fix the language 1, 2 and the interpretation # with domain . Suppose
P2 and A is a statement of Alia1, ’2], and $ =(21,""" ,Xn) is a list of all
variables occurring either free in P or in the free set of A. Then we say the post
relation corresponding to P and A is the relation Q(Xl,’", x,) on D such that
Q(dl, , d,) is true iff there is a state s and variable assignment 6 to Xl, , x,
such that d s’((x)), 1,. ., n, where s’= Out(A, s, , r), P(s, ) is true, and
r is appropria_te to the context ofA in the program. The formula Q in2 expresses
the relation Q iff Q has free variables Xl,."", x,, and

<::>O(dl,""" ,d,)
Xl,

for all da, , d, O. We let ’post(P, A)’ denote a particular formula in oY2 (say
the one with the least G6del number)which expresses the post relation corre-
sponding to P and A.
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DEFINITION. The language ’2 is expressive (relative to ,91 andS) iff
(i) is in and receives its standard interpretation in

(ii) For every formula P in ,2 and statement A there is a formula O in ,2
which expresses the post relation corresponding to P and A.

LEMMA 5. N is expressive (relative to N, lV, and i).
Proof. Given P and A, then roughly speaking the post relation O is true of

numbers a 1, , a, iff there are initial values b 1, , b, satisfying P such that A
will terminate with these as initial values, and the final values of (xl,. ", x,) are
(al,. ", a,). Since A describes a partial recursive function and partial recursive
functions are expressible in N, the lemma follows.

We remark that / (i.e., N without multiplication) is not expressive
(relative to /, /, and /) because every recursively enumerable (r.e.) set is the
post condition corresponding to 0 0 and some A. On the other hand, truth in
is decidable (by Presburger’s result), so not every r.e. set is expressible in /.

Let us say that the proof system forO2 is semantically complete relative to
iff: a formula P of2 is provable in iff its universal closure is true under 5. Of
course by the G6del Incompleteness Theorem, no axiomatic system fi0 for number
theory can be semantically complete, but for the purpose of stating a completeness
theorem for Y(, we shall assume we have a complete nonaxiomatizable system.

THEOREM 3 (Completeness of Y(). Let 3-be a semantically complete proof
system for2 (relative to d) and suppose 52 is expressive relative to1 and. Then
-e,rP{A}Q whenever P{A}Q.

COROLLARY. Let 3- be a complete (noneffective) proof system for. Then
t--g,P{A}Q if and only if P{A}Q is true in d//[5v].

Proof of theorem. Given a statement A (part of a larger program) let A’ be
the result of substituting all procedure bodies, with formal parameters replaced by
actual parameters and local variables renamed where necessary, for procedure
calls repeatedly until no procedure calls remain. This process terminates because
of our outlawing of recursive procedures. The theorem is proved by induction on
the sum of the length of A’ and the number of procedure body substitutions
necessary to convert A to A’. If A is not a procedure call statement, then exactly
one of the rules 1)-7) can be applied nicely (sometimes with rule 11), the rule of
consequence) to prove A from previously proved statements. Rules 8), 9), and 10)
are needed for procedure call statements. We will discuss several of the more
interesting cases.

a) Compound statements. Suppose P{begin A; A* end}R is true in d/t[].
Let Q be a formula expressing the post relation corresponding to P and A. Then
by the definitions involved, it is easy to see that P{A}Q and Q{begin A * end}R
are both true, and so both are provable in the system (, 3-) by the induction
hypothesis. Therefore by rule 3),

i--e, P{begin A A * end}R.

The case P{begin end}Q is handled by using rule 4) and the rule of
consequence.

b) Assignment statements. Suppose P{x := e}Q is true. Then the universal
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closure of

must be true under the interpretation N, so

But

e,-Qe{x := e}Q
X

by axiom 5), and t-- Q Q, so e,rP{x := e}Q by the rule of consequence.
c) While statements. Suppose P{while R doA od}Q is true in d/t[ ]. In order

to apply rule 7), the rule of while statements, we must find a loop invariant P1 with
the properties that P1 & R{A }P1 is true, and (the universal closures of) P P1 and
(P1 & -nR) Q are true. The induction hypothesis can then be applied to assume
-ae,r) PI&R{A}P1, and by the completeness of -, PP1 and
t--r (P1 & R)Q. Hence by rules 7) and 11), e,rP{while R do A od}Q.

Let y l, , yn be a list of the variables in the free set of A, together with the
free variables in P, R, and Q. We will construct the loop invariant P1 with free
variables yl,..., yn such that Pl(d,"’, dn) holds iff there are initial values
d, d for Yl, ..., y such that P(d’l, d’,) is true, and after some finite
number of passes through the while loop (i.e. after A has been executed some
finite number of times with the condition R satisfied before each time) the values
of y 1," , y,, will be dl, , d,. More precisely, PI is equivalent to the infinite
disjunction Q v Q2 v..., where QI is P and Qi+l is post(Q & R,A), i=
1, 2, . The reader can easily verify that if such a finite P1 can be found, then the
conditions in the previous paragraph are satisfied. But in fact, P is just
::lZl ::iznP2, where P2 expresses the post relation corresponding to P and

while (R & (y Z V y2 7 Z2 V V Yn 7 Zn)) doA od,

and z 1, , zn are new variables. P2 is in the language 2, by our assumption that
2 is expressive. This completes case c).

d) Procedure calls. Suppose P{eall p(t :)}Q is true, where the procedure
declaration for p is p(Y :7) pro K. By definition of Comp,

is true. The naive argument, which only works if there are no variable clashes, is
the following. Since . & P-{K}O-

U U

is true, it is provable by the induction hypothesis. By the rule of procedure calls



88 S.A. COOK

(rule 8)),

3 6 & P- {call p($ 7)} Q-_
u u

is provable. By the rule of parameter substitution (rule 9)), 6=
6 & P {call p(ti "6)}Q is provable. Finally P{cali p(t "6)}Q is provable by the rule
of consequence.

The difficulties with this argument are first, the formal and actual parameters
might have variables in common, and second, P and Q may have occurrences of
the formal parameters even if the first condition does not hold. To handle the
second problem, we let - be a substitution which assigns distinct new variables to
all variables in ($, t3) which do not occur in (a, 6). We will concentrate on showing
P-{call p(u’e)}Q" is provable, and then apply the rule of variable substitution.
Since the variables renamed by z do not occur in the free set of call p(t7 "6), and
since P{call p(a’6)}Q is true, it is intuitively clear (and follows formally from
Lemmas 2 and 3) that

(1’) P-{call p(a g)}O-.

To handle the first problem (along with the second problem) let f be a list of
the variables occurring in the expressions 6, and let f’ be a list of distinct new
variables of the same length, and let 6’ be the result of substituting these new
variables for the old in . By definition of Comp and (1’),

is true. We will show PI{K}Q1 is true, where

Plisg=’&Pr and QliSO’_

Suppose S1 and tl are state and variable assignments such that PI(S1, tl) is true,
and 61 assigns registers to the free set of K and the free variables of P1 and Q1, and
to no other variables. Thus t is not defined for any variable in (ti, ) unless that
variable is also in (, 3). Hence we can find s and 6 so that

A) s(6(z))=Sl(61(z)) for all variables z (:, 3), if 61(z) is defined,
B) s(6(u,)) sl(61(x,)), 1,. , m,
C) s(6(f))= s1(61(f’)) for each variable f in 6 and corresponding f’ in 6’,

and further, condition d), stated before Lemma 2, is satisfied. Hence (s l, 1) is
matched to (s, 6) relative to

u, e

x/)

[Condition c) is satisfied by condition C) above, and the fact that PI(s1, 1) is true,
and P1 includes the conjunct ’.] Thus by Lemma 3, (s, 1) is matched to
(s’, 8) relative tor, where s’= Out(Kr, s, 8, 7r) ands Out(K, Sl, 81, 7r). Nowby
comparing the values (s, 81) given to variables in P with those (s, 8) gives to the
variables in Pr, it is easy to see P’(s, ) is true. Since P’{Ko’}O" is true, it follows
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that O’(s’, 6) is true. Again by comparing values assigned to variables, and noting
property C) above holds when s and s are replaced by s’ and s respectively (since
K and Ktr leave the values of f’ and f unchanged), we see that O(s, 6 a) is true.
This completes the proof that Pa{K}Q1 is true.

By the induction hypothesis, Pa{K}Q is provable. By the rule of procedure
calls, P{cali p($ 5)}01 is provable. By the rule 9) of parameter substitution, we
can rename t3 by 5’ and rename $ by 2’ (these new variables are distinct from the
ones - assigns) to obtain that

5’ 6’ &P’ call p(Y’

is provable. Again by the rule 9) of parameter substitution and the substitution

we obtain that

t3’= ? & P-{cali_ p(.2’" tS’)}Q-r

is provable. Again by the rule 9) of parameter substitution and the substitution

u, e

X,

we obtain that

e e & P-{cali p(a’e)}Qr

is provable. Finally, conjunct can be removed by the rule of consequence,
and the rule 10) of variable substitution with substitution - can be applied to
prove P{cI p(a "6)}O.
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