CS 24098
Lecture 4

Notes by: Henry J. Pasko Januvary 17, 1973

Method I - proposed strategy for resolution

/% = set of input clauses

n = pumber of atoms in ﬁ

T 24,

Ll,.,.,Lm.“ stack

The Algorithm:

1)
2)
3)

- 4)

5)

INITIALIZATION: m + 1
. q'q. .ﬁ&

If m>n then STOP (the stack describes a satisfying truth
assignment for & ) -

LITERAL SELEC’I‘ION# Select a literal L esé so that neifher’
L nor ’E is on the stack Ll""’Lm 1° Lm « L '
FALSIFICATION CHECK: If Ll,.. .,Lm , falsxfies no member of
Y, ther ;ms-mﬂ. Go to 2 ., '
Else let Cl ‘e “U .be a clause falsif'iéd by Lyseeesly and |
set L <« II' If the new Ll,...,l. falsif:.es no member : o
of ) , W m+1 » 80 to 2. Else let Cz e T be a clause - |
falsified by Ll’*"’Lm . |
RESOLVE: T « Ty {R(C,,C,}} |
If R(Cl ,Cz) = 0 then STOP (4 is inconsistent)‘ ' .
COMMENT: R(Cl,cz) is falsified by tlie‘ stack, and therefore N
did not appear previousl& in ‘T « (Nor is it sub-
sumed by anything inof. For, suppose it was sub-
sumed by ce V. But then C would also have
been falsified by the staék.)
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6) POP STACK: Find the largest k < m so that Ll""’Lk
does not falsify R(Cl’cz) .
m <+ k¢l (kao E empty stack). go to 4.
This procedure always terminates either with a resolution
proof of‘ﬁﬁ,Aor a satisfying assignment,
Example: PvQ,Pv{@,PvR,Fv E.
For step 3 of ihe algorithm, pick the literal which occurs most

often in J& . More will be said about this, later.

1) m«1
Tesr

3) L1 «P

4) m <« 2

3 L, +Q

4) C; «Pvag
L, + (4]
C, «PvQq

5) T « T r(c,,c1 = Ty 2}
6) k=0 , m « 1
4) C; «P, L, « FP,m«2

3) LZ +« R

4) Cy - Pvr
th-ﬁ'
C2<=-?VR

5) T «Vy {R(C;,C,0} = Ty (P}
6) k=0 , m « 1
3) CI « P

LI « F

CZ « 7
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5) T+ Tu (r(C;,C,00 =To {m

STOP -xg is inconéistent.

Diagramatically, the algorithm looks like:

Cy ¢, .
PvQ Pv{g Pve PvR
stack: P ¢
T
‘ C -G
PvQ " PvQq ?’vdi\\ - Pv R
\P/ .
stack: P g
R
Pv{g FvRr FPv R

N A S

stack: P
P

Now, let us try choosing the iiterals for step 3 of ihe"
algorithm differently:

va FvR
stack: QR Vp QVvR Qv R
v .
ﬁy - etcC.
? )
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We can immediately see that the method of selecting
literals is indeed crucial. As shown above, it is possible
to choose literals in such a manner that the clauses resulting
from resolution are just as complex as those in the original

set 5§ .
Definition: Literal Selection Strategy (LSS): A method for

selecting L in step 3 of method I.

Exercise I: Show that if the D-P procedure without any subsumption

is applied to g2 . .and atoms are eliminated in the order .
Pl""’Pn » then every clause generaéed by‘ applying methbd 'I
to 3 wi114be generated by D-P provided the following LSS
is used:

Choose the highest ’index i so neither Pi nor P'i appears
on the stack, and let L = Pi « {(Thus, initially, the stack

is loaded in the order Pn"“’Pl) .

Conjecture (Research Prob lem)

For every inconsistent set % of clauses and every resolu-
tion proof P of A, there is a way of selecting literals
(step 3) such that method I yields a proof no longer than P .
Remark: 1If the subsumption rule is added to Method I, the re-
solution proof generated by Method I will be unaffected.
Method JA: This consists of Method I with the foliowing LSS
(Augment step 3).
Let T' consist of all clauses of “\ not verified by the
stack, modified so that all literals falsified by the stack
are deleted. Now, let ‘V » consist of all the clauses of
minimal length in V' . For each atom P , count the total
number of occurences of P or P « Let Q be the atom
with maximal count. Let L=Q or Q@ , vwhich ever has more

occurences.,
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Exercise II: a) Apply Method IA to the set {fPvQ, RvS,
Fvﬁ,Fvgg'Q”vﬁ,ﬁvS’}

b) Prove there is no shorter resolution proof
than the one obtained in (a). Hint: (Use the following
lemma, and show that it is essential to use one of the
original clauses twice.

Lemma: If A is a minimally inconsistent set of m clauses,
then every rgsoiuticm proof of & has length at least
m-1 . It will have length m-1 in the case the proof

is a tree (no clause is used more than once in a resolvent).

\./ \/
\. e
0

Proof: This follows from the fact that a binary rooted tree

with m leaves has m-1 internal nodes.

OPEN QUESTION: Is there a sound proof system (such as resolution,
analytic tableaux, etc.), such that for some polynomial

P(n) , every inconsistent formula of length n , has a proof

in the system of length < P(n) .

POTENTIAL PROJECT: Pick a particular proof system in some text
book (e.g., Mendelson, Shoenfield, Smullyan, etc.) and prove

there is no polynomial bound on the length of minimal proofs
in the system.
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Lecture 5
dotes by John Corbett Jan, 22, 1973
Note: In Exercise 1 {lecture 4, page 4) assune that 211

variables ave eliminated by the D-P procedure before the

rTated,

o]

emptiy clause is gen

e

Experinental Results Using lMethod I4
A 22

Observation: It has been observed that in NOSt exauples

Method IA uses 211 resclvents it generates. That is, every

resolvent produced is used later as a parent clause for a

X

resoglution. Yxa

Fn

aples can be found where this is not true,

but the following is an cpen question:

"Must this be the case if the original set of
clauses is mininaily inconsistent?®

Examples for Methed 1A

(1} tMethod IA generates the minipal proci for the sets of
Sﬁ of lecture 3 {(page 3). {iIt produced a “tree" proef,
I3

Thus the length is SSminla}
{2) VYhen ¢rised om the symietric case

= {P., v P, wvp
S 11 i

) , s P. ¥ Fé v 7, 1si <iy<i g5}

3 i 2 i3

i

{i.e. triples using ?i,Pz,e,@ﬁPq and their negations,)

Method IA produced a minimal proof in 19 resclutions,

(There are {;}«2 = 20 clauses.)
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A phrase is a disjunction aAEvQ.QVﬁﬁ} where ezch
- i

A; 1is an §-clause, For examnle:

(P& v RES v Ty v P)

is a phrase, (VWe omit parentheses arcund the G-clauses,)

ER(HZQHZE = gimSl) U {HZ=52} ﬁh@re

Examplie:
BRI{PEG v PER v Fgs v T, (PaS v PBU v S&T v Ul

= (PES v T v 8&T v )

where P is the literal resclved upon and

g =

I

Pt
gt

*E0, PER}, 5, = {F55, Peu}

It should be noted that the zhove "extended rescliution®™
Tule is valid and complets. The rule can be used along with
the subsumption rule without any loss. Although it is possible
to operate ordinary resclution proofs on clauses such as w

used by the example, simply by expanding and "multipivia



.

then carrying on an “ordin ary” resolution

i)

through variabile
procedure, it has bsen found that the shove extended resoluti

procedure will never be any longer {and in fact is ofcen

gm @
“«t
h.z
43
po]
(3
146}
[¢]
3
w
by

shorter) thzn the resolution proof for sn equ
clauses,

POTENTIAL PROJECT: Prove the above assertions, give sone

examples, and extend the thzory to predicate calculus.

Predicate Calculus

PFollowing is a list of bhasic symbols from

formulas in predicate calcuius aze huile:

by

{(a} An infinite 1ist for:

(1) individual varizbles - use X:¥.2 to stand
for these

{2} =mn-place function symbols for each B-use
£,8.h for thess

{3) =n-plsce predicate syimbols for each n-uss
¥,0,R for these

b} Logical connectives: § , v s
{€} dquantifiers: ¥ , 3

{3} parentheses and comna

Befinition: term: (1) A vaviabis or a constant is a term.

(2} If £ is an n-place function symbol and

secest, are terms, them £(t 12*ce0t,) is a



Definition: Atomic Formula: An expression of the forn

Definition: Feormula: (1} Atonic formulss ave fornulas,
(2} Xf A,B are formulas and % iz s varigble, then

(A8BY, (A¥B), A, FxA, VYx A are formulas,

k)

Dei

Pdis

s

inition

s
a8

Free & Bound Variabiss: An occuryence of ¢hs

variable x in a formulas A& is bound iff the sccurrence is
in some "sub formula® of the Torm:

2xB or ¥xB

If the occurence is not bound, it is free,

o~ ,““’?A' B e - fe Leng,
€of. P{xl} &.mxz Pugz) %, is free

X is bound

sfiniticn: Sentence: A i35 a Se@&@ﬁ&%:{@? closed formula)

el

FE
m
s
=
o
]
buc'
Q
I3
Ly
&
“
8
Faba
0
=
Pl
[
4
9

Definition: Interpretaticn: An interpregation, I , of a

sentence A consists of the following:
{1} A donmain (non-empty set) D .

(2) I

o

o .i 3
£}: D" » B for sach n-place function symbol, f

{3} I(¥}: An n-place relation on B . foT sach n-place

i

i
I(A} is the "truth value” (¢ or £} which I gives A



Definition:
(1} & is valid iff J7{A) = ¢ for all I .
{2} A is satisfiable iff I{A) = ¢t for some I .

sy
&
o
e
4]

unsatisfiable 1£f I{(A) = £ for a1l I

=

8isifisble iff 7{(A) = £ for some I

o~
o
Saenc?
e
feds
1]

Definition: Consistent: If § is a set of sentences, &
£

is consistent iff thsre exists an I such that I{4) is

Definition: Prenex Form: 4 ig in prenex form iff A has

the form lelAOGQ Q. x_ B whers B is quantifier fres and

each Qi is & quantifier {i.e. V¥ or = 3.

Lemma: Every formula can be put in prenex form.

Functional Forn (Skolen)

-

ven a formula {e.g. ¥z Iy Bix

3
&

s

CainW
b

3 7Y ): if it is

true under soms interprstation I , then there is 2 function
. {known as a Skolem function) defined on the domain of 71
such that y (of the exampls above) can be represented as

£{x} . The existential guantifier can subsequently be

¥x B{x, £{x} }



