
CSC 438F/2404F Notes (S. Cook) Fall, 2008

Computability Theory

This section is partly inspired by the material in “A Course in Mathematical Logic” by Bell
and Machover, Chap 6, sections 1-10.
Other references: “Introduction to the theory of computation” by Michael Sipser, and “Com-
putability, Complexity, and Languages” by M. Davis and E. Weyuker.

Our first goal is to give a formal definition for what it means for a function on N to be com-
putable by an algorithm. Historically the first convincing such definition was given by Alan
Turing in 1936, in his paper which introduced what we now call Turing machines. Slightly
before Turing, Alonzo Church gave a definition based on his lambda calculus. About the
same time Gödel, Herbrand, and Kleene developed definitions based on recursion schemes.
Fortunately all of these definitions are equivalent, and each of many other definitions pro-
posed later are also equivalent to Turing’s definition. This has lead to the general belief that
these definitions have got it right, and this assertion is roughly what we now call “Church’s
Thesis”.

Our first definition will be based on a simple computer model called Register Machines,
something proposed by Shepherdson and Sturgis in the 1960’s. Then we will give a recursion-
theoretic definition due to Kleene, and prove our two definitions are equivalent.

A natural definition of computable function f on N allows for the possibility that f(x) may
not be defined for all x ∈ N, because algorithms do not always halt. Thus we will use the
symbol ∞ to mean “undefined”.

Definition: A partial function is a function

f : (N ∪ {∞})n → N ∪ {∞}, n ≥ 0

such that f(c1, ..., cn) =∞ if some ci =∞.

In the context of computability theory, whenever we refer to a function on N, we mean a
partial function in the above sense.

Definitions:
Domain(f) = {~x ∈ Nn | f(~x) 6=∞}

where ~x = (x1 · · ·xn) We say f is total iff Domain(f) = Nn (i.e. if f is always defined when
all its arguments are defined).

Definition: A Register Machine (abbreviated RM) is a computer model specified by a
program P = 〈c0, ..., ch−1〉, consisting of a finite sequence of commands (described below).

Intuitively, the commands operate on registers R1, R2, ..., each capable of storing an arbitrary
natural number.

54

The possible commands are

command Ri ← 0 Abbreviation: Zi i = 1, 2 · · ·
Ri ← Ri + 1 Si i = 1, 2 · · ·
goto k if Ri = Rj Ji,j,k i, j = 1, 2, · · · and k = 0, 1, 2, · · · , h

Example of a program Copy: Rj ← Ri

(Here i and j should be specific numbers from {1, 2, 3, · · · }.)

c0: Rj ← 0 Zj

c1: goto 4 if Ri = Rj Jij4
c2 Rj ← Rj + 1 Sj

c3 goto 1 if R1 = R1 J111
c4

Formally, we write the above program as 〈Zj, Jij4, Sj, J111〉

Semantics of RM’s

A state is an m + 1-tuple 〈K,R1, ..., Rm〉 of natural numbers, where intuitively K is the
instruction counter (i.e. the number of the next command to be executed) and R1, ..., Rm

are the current values of the registers. (Here m must be as least as large as any register
index referred to in the associated program.) Given a state s = 〈K,R1, ..., Rm〉 and a
program P = 〈c0, ..., ch−1〉, the next state s′ = NextP(s) is intuitively the state resulting
when command cK is applied to the register values given by s. We say that s is a halting
state if K = h, and in this case s′ = s.

Example: Suppose the state s = 〈K,R1, · · · , Rm〉 and the command cK is Sj, where
1 ≤ j ≤ m. Then

NextP(s) = 〈K + 1, R1, · · · , Rj−1, Rj + 1, Rj+1, · · · , Rm〉

Exercise 1 Give a formal definition of the function NextP for the cases in which cK is Zi

and cK is Ji,j,k.

A computation of a program P is a finite or infinite sequence s0, s1, ... of states such that
si+1 = NextP(si) for each si+1 in the sequence. If the sequence is finite, then the last state
must be a halting state, and in this case we say that the computation is halting. We say
that a program P halts starting in state s0 if there is a halting computation of P starting in
state s0.

Input/Output conventions: A program P computes a (partial) function f(a1, . . . , an) as
follows. Initially place a1, ..., an in R1, ..., Rn and set all other registers to 0. Start execution
with command c0. That is, the initial state is

s0 = 〈0, a1, ..., an, 0, ..., 0〉

55

If P halts starting in state s0, the final value of R1 must be f(a1, ..., an) (which then must
be defined). If P fails to halt, then f(a1, ..., an) =∞.

Thus for each program P and each n ≥ 0 we associate an n-ary function fP,n: namely the
n-ary function computed by P .

Definition: If f is an n-ary function, we say that f is RM-computable (or just computable)
if f is computed by some RM program.

Our form of Church’s Thesis:
Every algorithmically computable function is RM-computable.

Here the notion “algorithmically computable” is not a precise mathematical notion, but
rather an intuitive notion. It is understood that the algorithms in question have unlimited
memory. In the case of register machines, this means that each register can hold an arbitrarily
large natural number.

Church’s Thesis will be discussed further at the end of this section, after we have given many
examples of computable functions.

Exercise 2 Show P = 〈J234, S1, S3, J110〉 computes f(x, y) = x+ y.

Exercise 3 Write register machine programs to compute each of the following functions:

f1(x) = x . 1
f2(x, y) = x · y

Be sure to respect our input/output conventions for RM’s.

Primitive Recursive Functions

Primitive recursion is a simple form of recursion defined as follows:

Definition f is defined from g and h by primitive recursion iff
f(~x, 0) = g(~x)
f(~x, y + 1) = h(~x, y, f(~x, y))

We allow n = 0 so ~x could be missing.

As an example, f+(x, y) = x+ y can be defined by primitive recursion as follows:

x+ 0 = x
x+ (y + 1) = (x+ y) + 1

In this case, g(x) = x, and h(x, y, z) = z + 1.

If f is defined from g and h by primitive recursion, we can compute f from g and h by the
following high-level program:

56

u← g(~x)
for z : 0..y − 1

u← h(~x, z, u)
end for

The final value of u is f(~x, y)

Definition f is defined from g and h1 · · ·hm by composition iff
f(~x) = g(h1(~x), . . . , hm(~x))

where f, h1 . . . hm are each n-ary functions, g is m-ary.

Initial Functions:
Z 0-ary function equal to 0
S S(x) = x+ 1
In,i(x1 · · ·xn) = xi 1 ≤ i ≤ n infinite class of projection functions

Definition f is primitive recursive iff f can be obtained from the initial functions by finitely
many applications of primitive recursion and composition.

Examples:
f+(x, y) (see above) is primitive recursive, since it is defined from primitive recursion from
g and h, where g = I1,1 and h can be defined by composition as follows:

h(x, y, z) = S(I3,3(x, y, z))

As another example, let Z1 be the unary zero function, so Z1(x) = 0 for all x. Then we
can define Z1 by primitive recursion Z1(0) = Z = g, Z1(y + 1) = Z1(y) = h(y, Z1(y)); here
h = I2,2.

All constant functions Kn,i(x1, · · · , xn) = i are primitive recursive. For example, K2,3(x, y) =
3, and we show it is primitive recursive by repeated composition as follows:

K2,3(x, y) = S(S(S(Z1(I2,1(x, y)))))

Exercise 4 Show that x · y and xy are each primitive recursive functions of x and y. Show
that SQ(x) = x2 is primitive recursive.

Proposition: Every primitive recursive function is total. (f is total if f(~x) 6= ∞ for all
~x ∈ Nn.)

Proof: The initial functions are all total, and the two operations composition and primitive
recursion preserve totality. Hence all primitive recursive functions are total. (Formally the
proof is by induction on the definition of primitive recursive function; see the following proof.)

57

Theorem: Every primitive recursive function is computable (on a RM).

Proof: We show that each primitive recursive function f is computable by a program which
upon halting leaves all registers 0 except R1 (which contains the output). We do this by
induction on the definition of primitive recursive function. That is, the proof is by induction
on the number of applications of composition and primitive recursion needed to derive f
from the initial functions.

The base case: Each initial function is easily shown to be computable by such a program.

Exercise 5 For each initial function, give an RM program which computes it and leaves all
registers 0 except R1.

Induction Step: We show that composition and primitive recursion each preserve computabil-
ity by such programs.

a) Composition: Assume that g, h1,..., hm are computable by programs Pg,P1, ...,Pm,
respectively, where these programs leave all registers 0 except R1. We are to show that
f is computable by such a program Pf , where

f(~x) = g(h1(~x), · · · , hm(~x))

At the start x1, · · · , xn are in registers R1, · · · , Rn, with all other registers 0. Program
Pf proceeds as follows:

Copy x1, · · · , xn to R1+k, · · · , Rn+k, where k is larger than n and larger than any regis-
ter index referred to in any of the programs P1, ...,Pm. Now compute h1(~x), · · · , hm(~x)
and store them in registers Rn+k+1, ..., Rn+k+m. Do this by executing copies of each pro-
gram P1, ...,Pm in turn, where each jump instruction Ji,j,r in each program is replaced
by Ji,j,r+d, where d is the number of commands in Pf preceding the first command of
the copy. (Note that by the definitions on page 55 the only way an RM program can
halt is to jump to h, which is one beyond the last command.) After computing each
hi(~x) copy the result in R1 to Rn+k+i and restore R1, ..., Rn to x1, ..., xn by copying
R1+k, ..., Rn+k back to R1, ..., Rn.

After computing h1(~x), ...hm(~x), copy Rn+k+1, ..., Rn+k+m to R1, ..., Rm, and then set
all other registers to 0. Finally execute a copy of Pg, with jump instructions suitably
modified as above.

b) Primitive Recursion: Implement the informal algorithm given after the definition of
primitive recursion.

Exercise 6 Give an RM program to implement primitive recursion.

Is the converse true? Is every computable function primitive recursive?
No. Some computable functions are not total.

58

Is every total computable function primitive recursive?
No, we can give a “diagonal” argument to show this. Here we give an outline of this

argument.

The first step is to assign a natural number e to every description of a primitive recursive
function. The description specifies exactly how the function is obtained from the initial
functions by the operations primitive recursion and composition. This description is a string
of symbols, and the number is assigned to the string in some standard fashion (this will be
discussed later.) Let fe be the function whose description is coded by e. We are interested
here in the unary functions (functions of one variable), so define ge to be fe if fe is a unary
function, and let ge be the constant zero function otherwise. Thus

g0, g1, g2, · · ·

is an effective enumeration of the set of unary primitive recursive functions. Here the word
“effective” means that if we define the “universal” function U by

U(x, y) = fx(y)

then the binary function U is computable.

We will show that U is not primitive recursive. For suppose that U is primitive recursive.
Then the “diagonal” function D(x) defined by

D(x) = gx(x) + 1

is primitive recursive. But then D = ge for some e, so

ge(e) = D(e) = ge(e) + 1

which is a contradiction. �

Now we give another example.

Ackermann’s Function: A total computable function not primitive recursive

Let A0(x) =

{
x+ 1 if x = 0 or x = 1
x+ 2 otherwise{

An+1(0) = 1
An+1(x+ 1) = An(An+1(x))

Now let A(n, x) = An(x). We can prove by induction on n that An is a total function.
Therefore A is a total function. Also A is intuitively computable because the equations
above represent a recursive program for computing A. It follows from Church’s Thesis (page
56) that A is RM-computable. (It is an interesting exercise to write an RM program to
compute A.) We argue below that A is not primitive recursive.

A1(x) = 2x for x > 0, since A1(0) = 1 and A1(1) = 2 (check this) and for x > 0 A1(x+ 1) =
A0(A1(x)), so A1(x+ 1) = A1(x) + 2 for x > 0.

59

A2(x) = A1(A1(...(A1(1))) = 2x

A3(x) = 222
..
.2
}

x 2’s

A4(4) is so large it would fill the universe with digits.

Lemma: For each n, An is primitive recursive.

Proof: Induction on n

The base case is to show A0 is primitive recursive. This will be easy after we show that the
primitive recursive functions are closed under definition by cases later on.

The induction step is easy. �

Fact For every primitive recursive function h(~x) there exists n so that An(x) dominates
h(~x). Here An(x) dominates h(~x) means that there is a constant B such that for all
x1, · · · , xk ≥ B, An(max{x1, · · · , xk}) > h(x1, · · · , xk). (This can be proved by induc-
tion on the definition of primitive recursive function.) Thus if we define A(n, x) = An(x),
then A(n, x) is not a primitive recursive function of both n and x. In fact F (x) = A(x, x)
is not primitive recursive, since A cannot dominate itself. Explicitly, there is no fixed pair
of numbers n,B such that A(n, x) > F (x) for all x ≥ B. For otherwise we could set
m = max(n,B), and then A(n,m) > F (m) = A(m,m) ≥ A(n,m), a contradiction. (Here
we use the fact that A(x, y) is monotone nondecreasing in both x and y.)

We are trying to characterize the computable functions. Composition and primitive recursion
are not enough, so we need another operation.

Minimization

We let µ denote the least number operator. More precisely:

Definition: f(~x) = µy[g(~x, y) = 0]
iff 1) f(~x) is the least number b such that g(~x, b) = 0

2) g(~x, i) 6=∞ for i < b
f(~x) =∞ if no such b exists

Notice that f(~x) may be undefined for some values of ~x, even though g is a total function.

Lemma: If g is computable and f(~x) = µy[g(~x, y) = 0] then f is computable.

Proof: Given an RM program for g, we need to construct a program for f .

High level version: for y = 0..∞
if g(~x, y) = 0
then output y, exit
end if

60

end for
�

Exercise 7 Give the RM program which computes f .

Notice that if g(~x, y) =∞ for some y smaller than the least b such that g(~x, b) = 0, then the
above program does not terminate. That is why we need clause 2) in the definition of µ.

Recursive Functions

Definition: f is recursive iff f can be obtained from the initial functions by finitely many
applications of composition, primitive recursion, and minimization.

It follows immediately from the above definition that every primitive recursive function is
recursive.

Theorem: Every recursive function is computable.

Proof: Induction on the definition of recursive function. (I.e., induction on the number of
applications of the operators composition, primitive recursion, and minimization needed to
derive the function.) We have already done all the steps. �

It turns out that the converse is also true: All computable functions are recursive (Kleene
1940’s). This requires more work to prove. We will start by showing lots of functions
are primitive recursive. Anticipating a little, it turns out that any function computable
in exponential time is primitive recursive. In fact if f can be computed in time T (x) =
O(Am(x)) for some fixed m (this is Ackermann’s function), then f is primitive recursive.
For example, if the time of the algorithm computing f is bounded above by

22

2.
..
2
n

then f is primitive recursive.

We now show that lots of functions are primitive recursive. We know +, ·, 2x, xy are primitive
recursive (see exercise (4)).

Next we show that the predecessor function pd is primitive recursive where

pd(x) =

{
x− 1 if x > 0
0 if x = 0

We can define pd by primitive recursion as follows:

pd(0) = 0 = g
pd(x+ 1) = x = h(x, pd(x)), where

61

h(x, z) = x, h = I2,1 (projection), g = Z (initial function)

Limited subtraction: Define

x . y =

{
x− y if y ≤ x
0 if y > x

We can define this by primitive recursion from pd as follows:

x . 0 = x
x . (y + 1) = pd(x . y)

Now we can show max(x, y) is primitive recursive by taking the composition of two primitive
recursive functions as follows:

max(x, y) = (x . y) + y

Relations considered as total 0-1 valued functions

Let R ⊆ Nn. Thus R is an n-ary relation (predicate). We will think of R as a total 0-1
valued function as follows: R(~x) = 0 iff ~x ∈ R, and R(~x) = 1 otherwise.

Thus a relation R is primitive recursive (respectively, computable) iff the corresponding total
0-1 valued function is primitive recursive (respectively, computable).

Note that in this course, 0 = “true” and 1 = “false”, in contrast to computer science
conventions. This convention of using 0 to stand for “true” among logicians goes back
at least to Gödel.

Lemma: if R and S are n-ary primitive recursive (resp. computable) predicates, then so
are ¬R, R ∨ S, and R ∧ S.

Proof: For this we will define another useful primitive recursive function:

Definition: sg(x) = 1 . x

Thus sg(x) = 0 if x > 0, and 1 if x = 0.

To prove the Lemma, note that (¬R)(~x) = sg(R(~x))
(R ∨ S)(~x) = R(~x) · S(~x)
(R ∧ S)(~x) = ¬(¬R ∨ ¬S)(~x) �

Now we can show that the following relations are primitive recursive. Define

(x < y) =

{
0 if x < y
1 if x ≥ y

(x < y) = sg(y . x), so this is a primitive recursive relation.

Similarly

62

(x = y) = ¬(x < y) ∧ ¬(y < x)

(x ≤ y) = (x < y) ∨ (x = y)

Further operations which preserve primitive recursive functions and relations
(These also preserve computable relations and computable functions)

1) Bounded sum and bounded products

g(~x, y) =
∑
z<y

f(~x, z) = f(~x, 0) + · · ·+ f(~x, y − 1)

g can be defined from f by primitive recursion as follows:

g(~x, 0) = 0
g(~x, y + 1) = g(~x, y) + f(~x, y)

h(~x, y) =
∏
z<y

f(~x, z) = f(~x, 0) · . . . · f(~x, y − 1)

h can be defined from f by primitive recursion as follows:

h(~x, 0) = 1
h(~x, y + 1) = f(~x, y) · h(~x, y)

Example: x! =
∏
y<x

y + 1

2) Bounded quantification

S(~x, y) = ∃z < yR(~x, z) (This means ∃z(z < y ∧R(~x, z)))
T (~x, y) = ∀z < yR(~x, z) (This means ∀z(z < y ⊃ R(~x, z)))

If R is a primitive recursive (resp. computable) relation, then so are S and T , because

S(~x, y) =
∏
z<y

R(~x, z), and

T (~x, y) = ¬∃z < y¬R(~x, z).

As an application, we show that the divisibility relation x|y (y is divisible by x) is primitive
recursive:

x|y = ∃z ≤ y(x · z = y).
(Note that ∃z ≤ yR = ∃z < (y + 1)R)

Now define

Prime(x) =

{
0 if x is prime
1 otherwise

= 1 < x ∧ ∀z < x(¬(z|x) ∨ z = 1)

Thus Prime(x) is a primitive recursive relation.

63

Cond(x, y, z) =

{
y if x = 0
z if x > 0

= sg(x) · y + sg(x) · z

Here sg(x) = sg(sg(x)). Thus Cond(x, y, z) is primitive recursive.

Definition by cases

f(~x) =

{
g(~x) if R(~x)
h(~x) otherwise

Then f(~x) = Cond(R(~x), g(~x), h(~x)), so f is primitive recursive (resp. computable) if g, h,
and R are primitive recursive (resp. computable).

Exercise 8 For each unary relation R(x) define the unary function #R(x) by

#R(x) = |{y ≤ x : R(y)}|

where |S| is the number of elements in a set S.

(a) Show that if R is primitive recursive, then #R is primitive recursive.

(b) Let π(x) be the number of prime numbers ≤ x. For example π(6) = 3, since {2, 3, 5}
comprise the set of primes ≤ 6. Prove that π(x) is primitive recursive.

Exercise 9 Show that the following two problems are primitive recursive.

a) Bit(x, i) = the coefficient of 2i in the binary notation of x. For example, the binary
notation for 6 is 110, so Bit(6, 0) = 0, Bit(6, 1) = Bit(6, 2) = 1, and Bit(6, i) = 0 for i > 2.

b) NumOnes(x) = the number of 1’s in the binary notation for x. For example, NumOnes(6) =
2.

Bounded Minimization

Let R(~x, y) be a relation (i.e. a total, 0-1 valued function.) We use the notation

f(~x, y) = min z < yR(~x, z) =

{
least z so z < y and R(~x, z) if such z exists
y otherwise

Notice that f is always a total function. This is because by convention every relation R(~x, z)
is a total 0-1 valued function, and we have defined a default value y in case there is no z < y
satisfying R(~x, z). This is in contrast to the result of applying the unbounded minimization
operator µ. That is, µzR(~x, z) could be nontotal, even though R is always total.

Suppose that f(~x, y) = min z < yR(~x, z), as above. In order to show that f is a primi-
tive recursive (resp. total computable) function whenever R is a primitive recursive (resp.

64

computable) relation, it is sufficient to establish the clever identity

f(~x, y) =
∑
z<y

(∃v ≤ zR(~x, v))

To see why this holds, study the table below:

z (∃v ≤ zR(~x, v))

say m = min z < yR(~x, z) 0
1
...

m− 1
m

m+ 1
...

1
1
...
1

m 1’s ∴ sum is m

0
0
...

Exercise 10 Define max z < yR(~x, z) to be 0 if ¬∃z < yR(~x, z). Show that if

f(~x, y) = max z < yR(~x, z)

then f is primitive recursive if R is primitive recursive.

Applications of the above operations:

We can show that the integer quotient function q(x, y) = bx/yc = x div y and the remainder
function rm(x, y) = x mod y are primitive recursive:

q(x, y) = min z ≤ x[y(z + 1) > x] = max z ≤ x[z · y ≤ x]
rm(x, y) = x . (y · q(x, y))

Note that the first equation gives q(x, 0) = x + 1. This convention for the case y = 0 does
not matter, since in practice we will never want to divide by 0.

Note also that these definitions represent inefficient, exponential time algorithms, but we are
not concerned about complexity here.

Now we show that f(i) = the ith prime is a primitive recursive function of i, because it can
be defined by primitive recursion as follows:

p0 = 2
px+1 = min y < ppxx (px < y ∧ Prime(y))

Thus p0, p1, p2, · · · is an enumeration of all prime numbers, in increasing order.

Note that the upper bound ppxx on px+1 given above exceeds Euclid’s upper bound of px!.

Prime Decomposition of Numbers

65

Recaull that the Unique Factorization Theorem for N states that for every x > 0 there is a
unique sequence e0, e1, ... of natural numbers such that

x = pe00 p
e1
1 p

e2
2 · · ·

where only finitely many of the exponents ei are nonzero.

For example,
63 = 20 · 32 · 50 · 71 · 110 · · · · = p00 · p21 · p02 · p13 · p04 · · · ·

Notation: (z)x = exponent of px in prime decomposition of z. Thus

z = p
(z)0
0 p

(z)1
1 · · · p(z)mm

(z)x = min y < z(¬py+1
x | z)

so (z)x is a primitive recursive function of z and x.

length: lh(z) = min y < z(
∏
x<y

p(z)xx = z) = max y < z(py|z) + 1

= 1 + subscript of largest prime that divides z

so lh(z) is primitive recursive.

Simulating RM’s

Now we have enough general machinery to show many functions are primitive recursive. We
will use primitive recursive functions to simulate a RM.

First we assign a “Gödel number” #(P) to program P .

commands c Zi Si Jijm because of prime decomposition of
codes #(c) 2i 3i 5i7j11m numbers these numbers are unique

If the program
P = 〈c0, . . . , ch−1〉 (1)

then
#(P) = p

#(c0)
0 p

#(c1)
1 · · · p#(ch−1)

h−1

Note that distinct programs get distinct codes.

This idea of using prime powers to assign unique numerical codes to combinatorial objects
such as programs goes back to Gödel in 1930. From a computer science point of view, the
numbers seem ridiculously large, and in fact more efficient methods would use ASCII style
codes, or pairing functions. However our present purpose is simply to show that various
functions are primitive recursive, so we will not worry about practical computability.

Define the relation Succ(x, i) = (x codes the command Ri ← Ri + 1) (i.e. the command Si).
This is the relation (x = 3i), and therefore it is primitive recursive. Similarly:

66

zero(x, i) = (x = 2i) x codes Ri ← 0
Jump(x, i, j, k) = (x = 5i7j11k) x codes Jijk

Prog(z) = (z = #(P)) for some program P
Prog(z) = (∀j < lh(z)[Command((z)j)]), where
Command(x) = ∃i < x(Succ(x, i) ∨ zero(x, i) ∨ ∃j < x∃k < x(Jump(x, i, j, k)))

Let P be a RM program which mentions at most registers R1, · · · , Rm, that is an upper
bound on the number of registers is m

Recall that a state of P is a tuple (K,R1 · · ·Rm), where
• K = line # of next command to be executed (instruction counter)
• Ri = current contents of ith register

We say the the state is halting if K = h, where P is as in (1).

We code this state by pK0 p
R1
1 · · · pRm

m = u

Remark: It does not matter if m exceeds the number of registers, since Ri = 0 for large i,
so u remains unchanged.

More definitions:

ẑ =

{
z if Prog(z) i.e. z is the number of a program
1 otherwise

Notation: {z} = the program P s.t. #(P) = ẑ

Thus {z} =

{
the program P such that #(P) = z if P exists
Λ (empty program) otherwise

Definition: The function Nex is defined by the condition Nex(u, z) = u′ iff u′ codes the
state resulting when program {z} executes one step when the current state is coded by u. If
u codes a halting state, then u′ = u.

Lemma: Nex is primitive recursive.

Proof Outline: Nex can be defined by a large definition by cases, where the cases depend
on the command (z)K , where K = (u)0. We leave the details as a long exercise. �

Exercise 11 Carry out the details in the above proof.

Computations

Recall the definition of computation given at the beginning of this section under Semantics
of RM’s. If (u0, u1, ..., ut) is the sequence of codes for the successive states in a computation,
then we code the entire computation by the number

y = pu0
0 p

u1
1 · · · put

t

67

We require ut to be a halting state, and ui to be a nonhalting state for i < t.

halt(u, z) holds iff u codes a halting state of program {z}. Then halt(u, z) holds iff

(u)0 ≥ lh(ẑ)

and hence halt is a primitive recursive relation. (Recall (u)0 = K is the instruction counter.)

Kleene T predicate (Important)

Definition: For each n ≥ 1 we define the n+2-ary relation Tn by the condition Tn(z, x1, · · · , xn, y)
holds iff y codes the computation of program {z} on input ~x. For n = 1 we sometimes write
T instead of T1.

Theorem: (Kleene) For each n ≥ 1 Tn is a primitive recursive relation.

Proof: Tn(z, ~x, y) holds iff y codes a computation (u0, ..., ut), where the initial state u0
satisfies

u0 = p00p
x1
1 p

x2
2 · · · pxn

n

and for all i < t
ui+1 = Nex(ui, z)

and halt(ut, z) (the last state is halting) and for all i < t

¬halt(ui, z)

(no intermediate state is halting).

More formally, setting t = lh(y) . 1 (so t = max i ≤ y[pi|y])

Tn(z, ~x, y) = [(y)0 = px1
1 p

x2
2 · · · pxn

n {initial state}
∧∀i < t[(y)i+1 = Nex((y)i, z)]
∧halt((y)t, z) {last state is halting}
∧∀i < t¬halt((y)i, z) {no intermediate state is halting} �

Output function

We define the output function U(y) to be the contents of register R1 in the final state of the
computation coded by y.

Thus U(y) = ((y)lh(y) . 1)1, and hence U is primitive recursive.

Notation: {z}n is the n-ary function computed by program {z}

Kleene Normal Form Theorem: There is a primitive recursive function U and for each
n ≥ 1 a primitive recursive predicate Tn such that

{z}n(x1, . . . , xn) = U(µyTn(z, ~x, y))

68

Proof: Immediate from the definitions above. Note: The least y is the only y satisfying the
condition Tn(...). Also note that y will not exist if the program doesn’t halt, so {z}n(~x) is
undefined in this case.

Corollary: Every computable function is recursive, and can be obtained using at most one
application of µ.

Universal Functions

Notation: Φn(z, ~x) = {z}n(~x)

Φn is called a universal function, since it codes every computable function of n variables, as
z varies.

Corollary: The universal function Φn is recursive (and hence computable), for n = 1, 2, ...

A program computing Φn is called an interpreter.

The function Φ1 is universal for the set of all unary computable functions. Thus if we define
φi(x) = Φ1(i, x) then

φ0, φ1, ...

is an enumeration of all (partial) unary computable functions. It turns out that it is essential
to include nontotal functions in order to get a computable universal function.

Theorem: There is no computable universal function for the set of all total computable
unary functions.

Proof: Let f0, f1, ..., be a list of all total computable unary functions, in any order, possibly
with repetitions. Let

F (z, x) = fz(x)

We will show that F is not computable. This is because if F were computable, then the
“diagonal” function

D(x) = F (x, x) + 1 = fx(x) + 1

would also be a total computable unary function. But then D must be in the list f0, f1,
That is, D = fe for some e. But then fe(e) = D(e) = fe(e) + 1, a contradiction. Hence F is
not computable.

Exercise 12 Prove that there is no computable universal relation RU(x, y) for all com-
putable unary relations.

Exercise 13 Let A(n, x) = An(x) be Ackermann’s Function (page 59). Define

UP (z, x) = U(min y < (A((z)0, x) + z) T ((z)1, x, y))

where T (z, x, y) is the Kleene T -predicate. (See page 66 for the notation (z)x.) (Compare
the definition of UP with the Kleene Normal Formal Theorem. Use the facts stated about
Ackermann’s function together with results above to prove the following.

69

(a) Prove that UP is a total computable function.

(b) Prove that for each e ∈ N, the unary function ge(x) = UP (e, x) is primitive recursive.

(c) Prove that for each unary primitive recursive function f(x) there is e ∈ N such that
f = ge (where ge is defined in part (b)). Use the Kleene Normal Form Theorem, and the
following strengthening of the Theorem, page 57:

Fact: Every primitive recursive function f(~x) is computable by a RM program P such that
the function CompP(~x) is primitive recursive, where

CompP(~x) is the number coding the computation of P on input ~x

(d) Give a diagonal argument showing that UP is not primitive recursive.

Exercise 14 Use a diagonal argument to prove that

H(x) = µyT (x, x, y)

has no total computable extension. That is, show that if the function BIG(x) is total and
agrees with H(x) whenever H(x) is defined, then BIG(x) is not computable.

Church’s Thesis: Every “algorithmically computable function” is computable (i.e. com-
putable on a RM).

This statement cannot be proved because it is not precise. But it is a strong claim about the
robustness of our formal notion of computable function. In general, if we give an informal
algorithm to compute a function, then we can claim that it is computable, by Church’s
Thesis.

Alonzo Church proclaimed this famous “thesis” in a footnote to a paper in 1936. Actu-
ally, he did not talk about RM’s, but rather claimed that every algorithmically computable
function is definable using the λ-calculus which he had invented. A little later Alan Turing
published his famous paper defining what are now called Turing machines, and argued, more
convincingly than Church, that every algorithmically computable function is computable
on a Turing machine. (Hence “Church’s Thesis” is sometimes called the “Church-Turing
thesis”.) Turing proved that Church’s λ-definable functions coincide with the Turing com-
putable functions. It turns out that both of these coincide with the functions computable on
a RM, which we have shown coincide with the recursive functions. In fact, many other for-
malisms for defining algorithmically computable functions have been given, and all of them
turn out to be equivalent. This robustness is a powerful argument in favour of Church’s
thesis.

70

