
Mutant Accuracy Testing for Assessing the
Implementation of Numerical Algorithms?

Ruining (Ray) Wu1,2 and Ian M. Mitchell1[0000−0001−7053−441X]

1 Department of Computer Science,
The University of British Columbia,

Vancouver, Canada
2 Department of Computer Science,

University of Toronto,
Toronto, Canada

rwu@cs.toronto.edu, ian.mitchell@ubc.ca

http://www.cs.toronto.edu/∼rwu/
http://www.cs.ubc.ca/∼mitchell

Abstract. Despite their widespread use, implementations of numerical
computing algorithms are generally tested manually with fuzzily defined
thresholds determining success or failure. Modern software testing meth-
ods, such as automated regression testing, are difficult to apply because
both test oracles and algorithm output are approximate. Based on the
observation that high accuracy numerical algorithms appear to be fragile
by design to errors in their parameters, we propose to compare the error
of target implementations to mutated versions of themselves with the
expectation that the mutants will suffer degraded accuracy. We test the
idea on Matlab implementations of some basic numerical algorithms,
and find that most mutants are worse while the few which are better
show a distinctive pattern of mutation.

Keywords: mutation testing · numerical algorithms · oracle problem ·
hypothesis testing

1 Introduction

Testing is a well-refined art in most areas of computing; for example, automated
regression and mutation testing are used to ensure that intended code changes do
not introduce bugs and that test suites provide sufficient coverage to detect arti-
ficially introduced bugs respectively. But much of this infrastructure depends on
knowing the correct output for each test; in other words, the test oracle is exact.
Although accurate numerical calculation has been a known challenge since be-
fore modern computers [3] and has been the subject of serious academic research
for more than seventy years (for example, [14]), the state of the art for testing

? This work was supported by National Science and Engineering Research Council
of Canada (NSERC) Discovery Grant #298211 and an Undergraduate Student Re-
search Award (USRA).

http://www.cs.toronto.edu/~rwu/
http://www.cs.ubc.ca/~mitchell


2 R. Wu & I. M. Mitchell

implementations of numerical algorithms is much more manual [12]. A key rea-
son is that approximation is everywhere in numerical computing. Not only are
test oracles approximate, but implementations will generate output containing
error when coded correctly, and different implementations may generate differ-
ent but still correct output. Even the most rigorous categories of testing, such
as convergence rate studies, often involve heuristically enforced thresholds; for
example, is a fourth order accurate Runge-Kutta scheme for numerically solving
initial value ordinary differential equation problems correctly implemented if the
measured convergence rate is 3.95? What about 3.89?

Our goal with the technique described in this paper was to develop a testing
approach for numerical implementations which:
– Eliminated the need for threshold checks to determine correctness, or at least

made the outcome less sensitive to the precise value of that threshold.
– Could be automated to encourage more widespread use of regression testing.

To test a target implementation, we propose to generate a collection of mu-
tant implementations and compare their accuracy against the target, with the
hypothesis that the accuracy of mutants of correct targets will degrade signifi-
cantly, while those of incorrect targets will degrade much less.

We test this idea on Matlab implementations—both correct and with artifi-
cially introduced bugs—of three basic numerical algorithms. Most mutants show
degraded accuracy, most buggy implementations show less fragility, and results
for a given algorithm do not depend strongly on our choice of threshold. Unfor-
tunately, some mutants have better accuracy, some buggy implementations are
more fragile, and different algorithms show quantitatively different responses.
Because of this variability, it is unclear how the technique might be automated;
however, manual inspection of the mutants which demonstrated better accuracy
was enlightening and may prove useful for evaluating the quality of an imple-
mentation.

It should be noted that we focus on software designed to produce numerical
approximations to mathematical problems. Software for symbolic mathematics
(such as the SageMath system, Mathematica, or Maple) is also in widespread use;
however, we believe that such implementations are more amenable to traditional
software testing approaches because approximation plays a smaller role in typical
symbolic mathematics tasks.

2 Background

Numerically approximating the solution of a scientific or other real-world prob-
lem is subject to many types of error, so we first categorize these errors and
identify which we consider in this paper. We then discuss the limitations of or-
acles available for numerical computing problems and the types of testing often
performed on numerical implementations. We conclude the section with a brief
discussion of mutation testing, which is typically used for enterprise software but
which has at least once been repurposed for numerical implementations, albeit
in a manner different than what we propose.



Mutant Accuracy Testing for Numerical Algorithms 3

2.1 Sources of Error in Numerical Computations

Because computer hardware implements only arithmetic and perhaps a few el-
ementary functions, most mathematical tasks on computers involve approxima-
tions of various kinds. Demonstrating the correctness of a numerical approxima-
tion can be divided into two tasks [12]:

– Validation: Determining whether the mathematical models are sufficiently
accurate; in other words, “did you solve the right equations?”

– Verification: Determining whether the implementation produces an accurate
approximation of the solution; in other words, “did you solve the equations
right?”

Here we will explore only verification, but it is worth keeping in mind that
because most real problems involve modeling error, driving implementation error
all the way to zero would be wasted effort.

The field of numerical analysis has for decades focused on the construction of
algorithms for approximating various mathematical models which are accurate,
in the sense that the difference (or error) between the true solution of the equa-
tions and the computed approximation are small. Accuracy can be broken into
two components [5]. Problem conditioning measures the effect on the solution of
perturbing the problem’s parameters. Computational error measures the effect
on the solution of errors made during computation. We again narrow our focus in
this paper to questions of the latter, but we will assume that our target problems
are well-conditioned and the primary sources of error are computational.

Finally, we will distinguish two different categories of computational error.
Roundoff error arises because we use floating point rather than real numbers
to represent values, and at regular intervals during computation results must be
rounded to some finite precision. Truncation (or discretization) error arises when
we terminate what is mathematically an infinite object or process; for example,
represent a continuous function by its value at finitely many points, truncate
a Taylor series after finitely many terms, or stop an infinite recurrence after
finitely many iterations. While finite precision arithmetic could be considered a
form of truncation, we distinguish these two cases because in typical computing
environments the user has very limited ability to choose the precision of the
arithmetic (for example, choosing either single or double precision floating point
numbers), while truncation error can often be tuned more finely with a user
controlled parameter (for example, step size in ODE solvers).

2.2 Oracles

An oracle [7] is a mechanism by which we can determine the correctness of a
test case. When an exact oracle exists, testing computer programs is relatively
straightforward: Run the test case through the program and compare the com-
puted result to the oracle’s answer. While it is impractical in most cases to test
every possible input, with each correct test case our confidence in the program
increases.



4 R. Wu & I. M. Mitchell

Two key challenges arise in testing numerical algorithms. First, an exact or-
acle may not be available. The class of test cases for which analytic solutions are
known can be quite restricted, so testing only within this class may not prop-
erly exercise the implementation. In some cases, including the ones considered
in section 4, we can work around this constraint using the method of manufac-
tured solutions (MMS) (for example, see [10,12,13]). In MMS, we start from an
analytic solution and work backwards to define a problem with that solution; for
example, to test a one dimensional quadrature (numerical integration) routine,
we start with an arbitrary differentiable function f(x) and suitable endpoints

a, b ∈ R. The test problem is defined as
∫ b

a
f ′(x) dx, where f ′(x) is easily found

by analytic differentiation, and the analytic solution is given by f(b) − f(a).
However, even if an analytic solution is known, its constituent elements may not
be finitely computable and/or representable on the computer; for example, if
f(x) in the example above includes a term involving sin(x). Consequently, we
should expect that only approximate oracles are available in practice.

Second, not only do we expect an approximate answer from our implementa-
tion, but we typically do not have a precise a priori bound at the time algorithms
are designed, implemented and tested for either the expected error in the approx-
imation or the desired accuracy.3 The former arises because rigorous quantitative
analysis of even the computational sources of error is complicated enough that it
is rarely done, and the latter because non-computational sources of error (such
as modeling and propagated data error) are often poorly quantified, leading to
decreased certainty about the level of tolerable computational error.

In summary, for much of the numerical computing domain we cannot use
the common approach to testing software implementations which asserts the
presence of a bug if the program’s output on a test case does not exactly match
that of the oracle. Consequently, the practice of testing numerical algorithms
has diverged from the rest of the testing community.

2.3 Testing Numerical Algorithms

A number of approaches have been designed to manage or analyze computational
error. The first is simply to ensure that the algorithm chosen is stable; in other
words, that errors made in early steps of the computation (including in the rep-
resentation of the input data) do not grow dramatically in later steps [1,5]. More
quantitatively, interval arithmetic can be used to bound computational sources
of error; for example, VNODE-LP is a software package for computing solutions
to ordinary differential equations which produces intervals within which the true
solution is known to lie [11]. An alternative quantitative approach focused on es-
timating the effect of roundoff error is the Contrôle et Estimation STochastic des
Arrondis de Calculs (CESTAC) method implemented in the CADNA library [9],

3 These quantities may be known when it comes time to solve a particular problem,
but outside of introductory numerical analysis courses most problems are solved by
calling a library routine or legacy implementation; consequently, those who design,
implement and test such routines should not assume knowledge of these values.



Mutant Accuracy Testing for Numerical Algorithms 5

which essentially repeats the calculation several times under different rounding
regimes and thereby provides a probabilistic estimate of both the approximate
solution and the magnitude of the roundoff error. However, approaches like these
are intended to quantify the computational error incurred during a calculation,
not to demonstrate correct implementation: Even if the error between the ap-
proximation and oracle for all test cases lies within the computed bounds, there
may still be bugs.

In contrast, there has been work in the domain of automatic theorem proving
to formally demonstrate implementation correctness; for example, Gappa is a
tool which makes it easier to construct formal proof obligations which would
demonstrate that for a C implementation of a floating point algorithm the error
would lie within a specified interval; these proof obligations can then be passed
to an automated proof checker for validation [2]. This level of rigour is wonderful
when it can be accomplished, but even Gappa currently requires a careful manual
rewriting of the underlying C code and heuristically chosen hints to guide proof
procedure, while direct use of theorem provers is beyond the capabilities of most
programmers.

While techniques such as those described above bring a pleasing level of
quantitative rigour to implementation analysis, in this paper we will focus on
testing a much more common pattern encountered in numerical software: The
algorithm is designed so that truncation error converges asymptotically toward
zero as some tuning parameter is varied, and then implemented in a floating
point precision sufficiently high that roundoff error will (hopefully) be negligible
compared to other sources of error. For concreteness, we will call the tuning
parameter which controls truncation error “h” and assume that the truncation
error decreases as h does. In many cases the truncation error can be theoretically
bounded as an explicit function of the form O(hp) for some p > 0, in which
case we call p the “order of accuracy” of the approximation algorithm. Four
levels of testing for such numerical algorithms have been defined [13]; in order
of increasing rigor they are:

1. Expert judgment: The algorithm’s output approximation is given to an ex-
pert who is asked to determine whether it is sufficiently correct.

2. Error quantification: The error between the approximation and the oracle is
computed, and then an expert is asked to determine whether it is sufficiently
small.

3. Convergence: The algorithm is run with a sequence of decreasing values of
h, and it is checked that the error is decreasing. This level of testing requires
the program to converge, but not at a particular order of accuracy.

4. Order of accuracy: As with convergence, but the rate of convergence is
checked against the theoretically derived order of accuracy for the algorithm.

While the strongest in this hierarchy, the order of accuracy approach is still
surprisingly dependent on expert judgment in practice: The implementation on
a test case is run for a series of decreasing values of h, the approximate oracle is
used to compute an approximate error for each h, and then the logarithm of the
ratio of the errors for two (typically consecutive) values of h is used to estimate



6 R. Wu & I. M. Mitchell

the experimental order of accuracy. Assuming that more than two values of h are
used, multiple estimates are produced; some can be discarded as being outside
the regime in which the asymptotic truncation error analysis applies, but the
remainder are to be compared to the theoretical order of accuracy. How closely
must they match? Consider these two prescriptions:
– From [10, p.30]: “In general, one should not expect the trend in the observed

order-of-accuracy to match the theoretical order-of-accuracy to more than
two or three significant figures. . . ”

– From [12, p.195]: “Note that only for the simplest scientific computing cases
(e.g., linear elliptic problems) will the observed order of accuracy match the
formal order to more than approximately two significant figures during a
successful order verification test.”

Beyond the fuzziness of such a procedure (which order of accuracy estimates
are compared, how should “significant figures” be mapped into a quantitative
threshold), this process is not easily automated; consequently, regression testing
of even minor code modifications becomes labour intensive and is often skipped.

In this paper we are not advocating that this approach to testing be aban-
doned; in fact, we have long found it highly efficient for identifying and correcting
bugs during initial design and implementation. Instead, we are seeking to add a
subsequent layer of testing once an implementation has satisfied order of accu-
racy convergence tests such as those described above. We will assume a collection
of test cases with approximate oracles such as would be used in these conver-
gence tests, and our goal is not necessarily more rigorous testing, but rather
automating the testing so that regression approaches can be easily applied to
subsequent code modifications.

2.4 Mutation Testing

Mutation Testing (MT) [8] is a testing technique designed to verify the strength
of a test set for some “target” source code once that target passes all of the
tests (in the sense that its outputs match the test oracles’ output). Hundreds
or thousands of “mutant” versions of the target are produced by a source code
generator which systematically introduces source code modifications designed to
simulate bugs that a programmer might accidentally introduce. The mutants are
then run against the same test set, and those whose outputs fail to match the
oracles’ are “killed.” Any mutants which survive represent potential bugs that
would not be detected by the test set. A test set could then be strengthened by
examining any surviving mutants and designing test cases that would kill them.

MT cannot be directly applied to numerical algorithms: We do not have exact
oracles against which to compare for equality, and the standard techniques for
testing numerical algorithms described in section 2.3 are not automated; hence it
is infeasible to scale them to test hundreds or thousands of mutants. A necessary
step in the application of MT to numerical algorithms is therefore a method of
automatically evaluating the correctness of a mutant on a test case.

At first glance, it might appear that Mutation Sensitivity Testing (MST) [6]
would satisfy this objective. Instead of using exact comparisons, the error of the



Mutant Accuracy Testing for Numerical Algorithms 7

mutants’ output relative to the oracle is compared against a specified tolerance,
and the contribution of the paper is an exploration of how the choice of this
tolerance and the type of test cases (random or designed) affected the fraction
of mutants which were killed, with the conclusions that:

– A small number of tests with low tolerance is more effective than a large
number of tests with high tolerance in killing mutants. Unfortunately, higher
accuracy oracles are needed for lower tolerance tests.

– Random and designed tests should be used together for maximum effective-
ness.

However, the authors of [6] did not intend for their approach to be used directly
to verify numerical code; in fact, they considered the target code itself to be the
oracle, and the goal of their study (like traditional MT) was guidance on how to
design effective test suites.

In contrast, our goal is a test criterion which does not rely (or at least is
only weakly dependent on) the choice of parameters. We note that in pursuit of
this goal, we will make a stronger assumption than [6] that we have access to an
approximate but reasonably accurate oracle separate from the target code.

3 Mutant Accuracy Testing

While MT is traditionally used to evaluate the strength of a test suite, here we
propose to use it to evaluate the correctness of a numerical implementation. We
believe that code mutation might yield a useful measure of correctness for nu-
merical algorithms with high orders of accuracy (anything with order of accuracy
p > 1) because such algorithms appear to be fragile to perturbation by design:
They achieve their high order of accuracy by the use of carefully chosen parame-
ters which combine to cancel the lower order terms in the truncation error. If the
code mutation process introduces changes to these parameters, then the lower
order terms should reappear and cause the error in the output approximation to
grow significantly.

3.1 Mutant Generation

MATmute [6] is a freely available mutant generator for Matlab code. Given
a target Matlab function or file, MATmute generates a collection of mutants
by systematically applying mutation operations on source code. The operations
that MATmute performs are the following:

– Statement deletion: A statement is commented out.
– Branch negation: A branch condition is negated, forcing the opposite deci-

sion.
– Constant replacement: A hard-coded constant is replaced with another.
– Operator replacement: A mathematical operator is replaced by another.
– Assignment perturbation: The right hand side of an assignment statement

is multiplied by a constant before the assignment is completed.



8 R. Wu & I. M. Mitchell

For each mutant MATmute generates both a mutant source code file and a
summary of what mutation operation was applied.

For a given test run, any mutants which do not compile or otherwise fail to
generate an intelligible result are removed from consideration. The error for the
remaining “viable” mutants is compared to that of the target, and any which
are bitwise identical are also removed. These “equivalent” mutants are fairly
common because the difference between the target and a given mutant may be
in code that is not executed for a given test case; consequently, they are not
diagnostically useful for that test case. The remaining viable but nonequivalent
mutants and their results are then used to evaluate the target code.

3.2 Mutant Evaluation

We treat the computed error of the approximation produced by a code (either
target or mutant) on a test case as an observation of a random process. For a
given mutant, we define the hypotheses:
– Null hypothesis: The mutant does not produce approximations with larger

error than the target.
– Alternative hypothesis: The mutant produces approximations with larger

error than the target.
For a given mutant, we collect all of the test cases for which it was viable and

non-equivalent to the target code. We can pair the observation of the mutant’s
error for each of these test cases with the observation of the target’s error for the
same test case. We apply a one-sided sign test [15] to the collection of observation
pairs to determine the probability of seeing the observations given that the null
hypothesis holds; in other words, the p-value. We choose the sign test rather than
alternatives like the Wilcoxon signed-rank or paired t-test because it makes the
fewest assumptions about the underlying distributions.

Based on our belief that the accuracy of numerical algorithms is fragile,
we expect that most mutants will produce approximations with larger error.
Therefore, we expect to collect observations that are highly unlikely under the
null hypothesis, and the p-value will be low. We can choose a threshold p-value
pk and declare any mutant i with a lower p-value pi < pk to be killed.

4 Experiments

We describe the conditions under which we tested our approach.

4.1 Reference Numerical Implementations

We chose some frequently used higher order accurate algorithms for common
basic numerical analysis tasks:
– Quadrature (numerical integration) in one dimension: Composite Simpson’s

rule. Panels of equal size are chosen to cover the interval of integration and
h controls the size of these panels.



Mutant Accuracy Testing for Numerical Algorithms 9

Table 1. Sample Implementation Statistics. All algorithms were implemented as Mat-
labm-files.

Algorithm Number of
Name Lines Test Cases Buggy Versions

Composite Simpson’s 4 3 9
Cubic spline 32 3 9

RK4 25 3 22

– Interpolation in one dimension: Complete cubic spline. Abscissae are chosen
equally spaced between the end points of the interpolation, and h controls
the space between abscissae.

– Initial value problem for ordinary differential equation: Runge-Kutta fourth
order (RK4). Constant stepsize is used and h is the step size.

Additional details of the algorithms are included in appendix A. Coincidentally,
the chosen algorithms all have order of accuracy p = 4 (so their error should be
bounded by O(h4)), but our proposed approach does not require knowledge of
the order of accuracy and hence it should apply to any convergent scheme.

Reference implementations of each algorithm were coded by the first author
in Matlab based on descriptions in [1], and then reviewed for correctness by
the second author. Table 1 provides some quantitative measures of the code.

Although versions of all of these algorithms are available in the standard
Matlab libraries, the Matlab versions are much more general and hence in-
clude an enormous amount of code to handle different input and output cases.
This kind of data manipulation code is much more amenable to traditional test-
ing strategies and we wanted to focus on testing the core numerical calculation;
however, due to limitations with MATmute we could not easily generate muta-
tions only in a subset of lines in a routine. Therefore, we chose to code our own
versions which contained only the core numerical calculation.

4.2 Test Cases

MMS was used to design a collection of test cases for each algorithm. For each
test case and value of the tuning parameter h, a scalar measure of error can be
evaluated:

– Composite Simpson’s: Absolute error of the integral.
– Cubic spline: Maximum absolute error of the approximation at the test

points.
– RK4: Absolute error at the end of the time interval.

More details can be found in appendix A.

To further build confidence in the implementations, the convergence rate of
each algorithm on each test case was qualitatively confirmed experimentally as
described in section 2.3.



10 R. Wu & I. M. Mitchell

Table 2. Sample Algorithm Mutation Statistics (reference implementations)

Algorithm Number of Mutants
Name Total Viable Nonequivalent

Composite Simpson’s 184 122 172
Cubic spline 677 213 287

RK4 531 127 218

4.3 Buggy Versions

When proposing a test criterion for code, we must demonstrate both that it
passes correct code and that it fails incorrect or buggy code. For this prelim-
inary exploration, we created buggy versions of our reference implementations
by hand based on our experience with incorrect code generated by students in
introductory numerical analysis classes, examination of mutants of our reference
implementations which did and did not pass the hypothesis test, and careful de-
sign to elicit certain error behaviours. We considered only buggy versions which
would still be convergent, although not necessarily with the designed order of
accuracy, on the basis that non-convergent implementations are easily diagnosed
as buggy.

5 Results

Table 2 provides some statistics about the number and type of mutants pro-
duced by MATmute for each of the reference implementations. The number of
nonequivalent (and in a few cases even viable) mutants does vary slightly de-
pending on the test case. The statistics when using the buggy versions of the
algorithms as target code are similar.

Figure 1 shows the distribution of p-values for mutants of the reference com-
posite Simpson’s target. Other targets produced similar distributions. The red
curve in figure 2 provides similar information in a different form: Threshold
p-values pk against the fraction of mutants which will survive (pi ≥ pk). We ob-
serve that the survival rate is dropping slightly between pk = 0.2 and pk = 0.4,
but is fairly flat across a wide range of thresholds. The remaining black curves
in figure 2 show the corresponding survival rates for mutants of the buggy Simp-
son’s targets. We observe that three of the buggy targets are roughly as fragile
as the reference implementation, in the sense that their mutants are unlikely to
survive, and two of the buggy targets are even more fragile.

Figures 3 and 4 show the corresponding survival rates for the cubic spline
and RK4 implementations.



Mutant Accuracy Testing for Numerical Algorithms 11

0 20 40 60 80 100 120 140

Mutant ID

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g

10
(P

r.
 M

ut
an

t h
as

 s
up

er
io

r 
er

r)

Mutants

Fig. 1. Distribution of p-values for viable, non-equivalent mutants of the reference
implementation of Composite Simpson’s. Mutants are ordered by their p-value from
smallest on the left to largest on the right. Most mutants have p-values very near zero,
and of the rest most are near one. Similar distributions were seen for other target codes
(reference and buggy).



12 R. Wu & I. M. Mitchell

0 0.2 0.4 0.6 0.8
p-value

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

po
rt

io
n 

of
 S

ur
vi

vi
ng

 M
ut

an
ts

Fig. 2. Survival rate for mutants of reference (red) and buggy (black) versions of com-
posite Simpson’s as a function of p-value threshold pk.

0 0.2 0.4 0.6 0.8

p-value

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

po
rt

io
n 

of
 S

ur
vi

vi
ng

 M
ut

an
ts

Fig. 3. Survival rate for mutants of reference (red) and buggy (black) versions of cubic
spline as a function of p-value threshold pk.



Mutant Accuracy Testing for Numerical Algorithms 13

0 0.2 0.4 0.6 0.8
p-value

0

0.05

0.1

0.15

0.2

P
ro

po
rt

io
n 

of
 S

ur
vi

vi
ng

 M
ut

an
ts

Fig. 4. Survival rate for mutants of reference (red) and buggy (black) versions of RK4
as a function of p-value threshold pk.

6 Discussion

While the statistical test proposed in section 3.2 still requires choosing a thresh-
old parameter pk, the results in figures 2, 3 and 4 provide some evidence that
the survival rate is relatively insensitive to the precise value of this parameter.
Unfortunately, this insensitivity does not extend between algorithms, as the sur-
vival rate for the reference code in figure 2 is 5–9% while that in figure 3 is well
below 1%. And even once pk is chosen, the result is a collection of surviving mu-
tants. Consequently, this procedure will not achieve our goal of fully automating
the testing process for numerical algorithms.

However, the process of examining the mutants with low p-value proved
enlightening. In every case, the mutation operation had inadvertently improved
the accuracy of the algorithm, typically by reducing the effective h parameter;
for example, replacing h with 0.9h, h/2 or h2. This increased accuracy is the
numerical equivalent of turning your amplifier up to eleven [4], since the user
could already adjust the input h parameter to achieve the same outcome.

A similar effect is responsible for the two “buggy” versions of composite
Simpson’s which proved more fragile than the reference implementation, in the
sense that the survival rate of mutants was below that of the reference imple-
mentation for all p-value thresholds. In one of these versions the “bug” was to
explicitly reduce h, while in the other an error of size O(h4) was introduced (the
same size as the truncation error expected in the reference implementation). It
is clear that such implementations would not be caught by a standard order of
accuracy criterion, and perhaps debatable whether they should be considered
buggy at all.



14 R. Wu & I. M. Mitchell

7 Conclusions and Future Work

Despite numerical algorithms being an important workload from the earliest
days of computing and over sixty years of study, testing their accuracy is still
often a manual and qualitative process. Based on the observation that numerical
algorithms with higher orders of accuracy are constructed with carefully chosen
parameters to cancel out the lower order truncation errors, we hypothesized that
their accuracy might be fragile to small changes in the source code. At the same
time, tools for automatically generating such small changes in source code have
been developed in the domain of mutation testing. Therefore, we proposed to
measure the error of mutants and a target implementation over a range of test
cases, and use a standard statistical test to estimate the probability of seeing
those errors under the null hypothesis that the mutant is as accurate as the
target.

For a set of representative but small numerical algorithms implemented in
Matlab and mutated with the MATmute tool, the p-values of most mutants
were very small and few mutants had intermediate p-values, at least partially
supporting the fragility hypothesis. Moreover, this evaluation process could be
fully automated. Although we considered only higher order accurate convergent
algorithms, nothing in the evaluation process depends on the order of accuracy,
or even that the algorithm is convergent, providing that a sufficient number of
test cases could be constructed.

Unfortunately, the distinction in this p-value metric between correct reference
implementations and artificially produced buggy versions was algorithm depen-
dent and in some cases lacking; consequently, it does not appear to be directly
usable as an automated test of implementation correctness. However, the process
may still prove useful if mutants with high p-values can be manually inspected.
For our simple reference implementations, it was easy to determine that the mu-
tations in these cases would not reduce (and in many cases would increase) the
accuracy of the output. We hypothesize that if a mutant with low p-value were
found whose apparent accuracy relative to the target implementation could not
be easily explained by code inspection, then there would be strong evidence that
the reference implementation was not achieving its design accuracy (or that the
mutation engine had stumbled onto an interesting alternative algorithm).

It has become clear that our set of toy implementations and artificially gener-
ated bugs is insufficient to properly assess the usefulness of any proposed testing
criterion; consequently, we are currently collecting a sample of numerical rou-
tines from open source software projects and cataloging wild bugs that have
been detected and corrected in them. We plan to make this collection publicly
available in the hope that other researchers will take on the challenge of how to
better automate the testing of numerical algorithms.



Mutant Accuracy Testing for Numerical Algorithms 15

Acknowledgements

The authors would like to thank Kevin Jayamanna for doing related preliminary
work in his undergrad thesis, and Daniel Hook for providing MATmute to the
community.

References

1. Ascher, U.M., Greif, C.: A First Course on Numerical Methods. SIAM (2011)
2. de Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted verification of elementary

functions using Gappa. In: ACM Symposium on Applied Computing. pp. 1318–
1322 (2006). https://doi.org/10.1145/1141277.1141584

3. Grcar, J.: John von Neumann’s analysis of Gaussian elimination and the
origins of modern numerical analysis. SIAM Review 53(4), 607–682 (2011).
https://doi.org/10.1137/080734716

4. Guest, C., McKean, M., Shearer, H., Reiner, R.: This is spinal tap. film (1984),
director: Rob Reiner, producer: Karen Murphy

5. Heath, M.T.: Scientific Computing: An Introductory Survey. SIAM (2018)
6. Hook, D., Kelly, D.: Mutation sensitivity testing. Computing in Science & Engi-

neering 11(6), 40–47 (2009)
7. Howden, W.E.: Theoretical and empirical studies of program testing. In: Proceed-

ings of the 3rd International Conference on Software Engineering. pp. 305–311
(1978)

8. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans-
actions on Software Engineering (4), 371–379 (1982)

9. Jézéquel, F., Chesneaux, J.M.: CADNA: a library for estimating round-off er-
ror propagation. Computer Physics Communications 178(12), 933 – 955 (2008).
https://doi.org/10.1016/j.cpc.2008.02.003

10. Knupp, P., Salari, K.: Verification of computer codes in computational science and
engineering. Chapman & Hall/CRC (2002)

11. Nedialkov, N.S.: VNODE-LP: A validated solver for initial value problems in ordi-
nary differential equations. Tech. Rep. CAS-06-06-NN, Department of Computing
and Software, McMaster University (2006)

12. Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing.
Cambridge University Press (2010)

13. Roy, C.J.: Review of code and solution verification procedures for computational
simulation. Journal of Computational Physics 205(1), 131–156 (2005)

14. Von Neumann, J., Goldstine, H.H.: Numerical inverting of matrices of high order.
Bulletin of the American Mathematical Society 53(11), 1021–1099 (1947)

15. Wikipedia contributors: Sign test — Wikipedia, the free encyclopedia (2019), https:
//en.wikipedia.org/wiki/Sign test, [Online; accessed 30-Apr-2019]

https://doi.org/10.1145/1141277.1141584
https://doi.org/10.1137/080734716
https://doi.org/10.1016/j.cpc.2008.02.003
https://en.wikipedia.org/wiki/Sign_test
https://en.wikipedia.org/wiki/Sign_test


16 R. Wu & I. M. Mitchell

A Numerical Algorithms

Our implementations are based on the descriptions in [1]. In this section we
briefly describe each of the algorithms, the error measurement for that algorithm,
and the test case generation procedure.

A.1 Simpson’s method

The definite integral problem is to evaluate

I =

∫ b

a

f(x) dx

for a specified a, b ∈ R and scalar function f(x).
Simpson’s method is a fourth order accurate method that is used to approx-

imate definite integrals. It is given by:

ISimp =
b− a

6

[
f(a) + 4f

(
b + a

2

)
+ f(b)

]
Composite Simpson’s method involves dividing the domain of integration

into subintervals called “panels, ” applying Simpson’s method to each panel,
and summing the result. Let r, the number of panels, be even. The formula is

Scomp =
h

3

f(a) + 2

r/2−1∑
k=1

f(t2k) + 4

r/2∑
k=1

f(t2k−1) + f(b)


where ti = a + ih, i = {1, 2, ..., r}.

For analysis purposes, we define the error as the absolute value of the differ-
ence between the algorithm’s output and the (floating point approximation of
the) analytic answer. It can be shown that composite Simpson’s method has an
error bound of

‖f (4)‖∞
180

(b− a)h4.

A typical 3-line implementation of composite Simpson’s method in Matlab
generates 180-190 mutants using MATmute, of which roughly 120-130 are viable.

Test cases are generated either using pen-and-paper integration, or by MMS.

A.2 Complete Cubic Spline

A cubic spline is a continuously differentiable, piecewise cubic scalar function
v(x) that interpolates points {(x1, f(x1)), ..., (xn, f(xn))}, meaning that v(xi) =
f(xi). We call the spline “complete” because the derivatives at the endpoints
f ′(x1) and f ′(xn) are also provided, and we choose v(x) such that v′(x1) = f ′(x1)
and v′(xn) = f ′(xn).



Mutant Accuracy Testing for Numerical Algorithms 17

For analysis purposes, we generate a set of test points between the interpo-
lation points, compute the difference between the value of the interpolant and
the value of the original function at these test points, and report the greatest
absolute difference across all test points as the error.

MATmute generates roughly 680-700 mutants from our 30-line implementa-
tion of a complete cubic spline.

For this problem analytic solutions are trivial to construct: We pick a function
f and a set of points {xi}. Then, we use {xi} and {f(xi)} as the input to our
cubic spline algorithm. The exact answers can be obtained directly from the
function f .

A.3 Runge-Kutta schemes

Runge-Kutta methods are used to solve initial value problems for ordinary dif-
ferential equations. This class of problems is defined by:

dx(t)

dt
= f(x, t) such that x(t0) = x0,

where f(x) and x0 are specified. While x(t) may be a vector in general, for our
purposes we considered only scalar cases.

We used the classic fourth order accurate Runge-Kutta method. It is given
by the following set of update formulae:

yn+1 = yn +
1

6
(k1 + k2 + k3 + k4),

k1 = hf(tn, yn),

k2 = hf(tn + h/2, yn + k1/2),

k3 = hf(tn + h/2, yn + k2/2),

k4 = hf(tn + h, yn + k3),

where yn is the approximation at time tn and a fixed stepsize h has been assumed.
For analysis purposes, we define the error in our Runge-Kutta implementa-

tion as the absolute value of the difference between the algorithm’s output and
the analytic answer at a final time.

MATmute generates roughly 480-500 mutants from a typical 4th order Runge-
Kutta implementation.

Test cases are generated by MMS: Starting with a function for x(t), supply

f(x, t) =
dx(t)

dt
and x0 = x(t0)

as the inputs.


	Mutant Accuracy Testing for Assessing the Implementation of Numerical Algorithms

