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Abstract

The generalized-alpha method is a current favourite of the computer graphics community for
solving structural dynamics problems due to its nice algorithmic damping properties: It avoids
damping of the low-frequency nodes, while damping the high-frequency nodes. In this work,
we define a second order theta-method and introduce a set of problems where it outperforms
the generalized alpha method both in terms of algorithmic damping and by other metrics that
we define. From our results, we show the benefits of this method, and point out areas where
our new method may be used as a suitable replacement for the generalized alpha method.

1 Introduction

Physics-based graphics simulation of nonrigid materials involves applying a finite-element discretiza-
tion, where we regard physical bodies as collections of point-masses in space, and applying the laws
of physics (i.e. ~F = M~x′′) to calculate their positions over time, usually with some sort of differential
equation solver. Specifically, in this paper, we focus on physical systems of the form

Mx′′ +Dx′ +Kx = F (t, x, x′) (1)

where M is the mass matrix, D is the damping matrix (such as friction or linear air resistance),
and K is the stiffness matrix (such as spring stiffness for linear spring). F is a vector function of
applied forces, dependent on time, position, and velocity. Typically, the solution curve x = x(t) is a
complex exponential function, which means that the physical motion of these systems are oscillatory
in nature.

This work focuses on physics-based simulation of flexible soft objects, whose motion is char-
acterized by a high degree of stiffness, meaning that they have a wide range of frequency modes:
both rapid and slow oscillations exist in their motion. Stiffness of a differential equation system
makes numerical integration computationally difficult. In particular, it is necessary to use implicit
methods, such as the trapezoidal rule (TR) or the family of backwards differentiation formulas
(BDF) methods to allow us to take large timesteps. Using explicit methods would force us to take
very small time steps to maintain stability. Although implicit methods allow us to take larger
timesteps, a key drawback is that we are required to solve nonlinear systems at every timestep,
which is computationally expensive. To make matters worse, these systems potentially have high
condition number which makes obtaining their solution difficult. Another issue that we run into
is algorithmic damping, which is a phenomenon that results in a loss of energy in the computer
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animation of the physical system, when in reality there is none according to the laws of physics.
However this doesn’t apply to all implicit methods, since the TR, being an implicit method, does
not exhibit any algorithmic damping. Additionally, this phenomenon is not restricted to implicit
methods, since Runge-Kutta (RK) schemes also exhibit this phenomenon.

We analyze and compare the generalized-α method (a one-step multivalue method) and a 2nd
order θ-method (an implicit method) that combines BDF-2 and TR. In this work, we compare
these algorithms based on the total number of iterations required in solving nonlinear systems, the
progression of condition number over time, and the resultant artificial damping. We want our ideal
algorithm to have visually correct behaviour, fewer total iterations, lower condition number, and
a reasonable degree of damping in the high-frequency modes, but very little in the low-frequency
modes.

2 Methodology

This section describes the methodology used in the research of this paper. It describes the nonlin-
ear solvers used, formulates the two algorithms that are being investigated, states the metrics of
comparison of the algorithms, and defines the example problems that were designed.

2.1 Nonlinear Solver

Since implicit methods require us to solve nonlinear equations, we cannot avoid a discussion of
nonlinear solvers. The purpose of the nonlinear solver is to solve an equation f(x) = 0 for x that
we define based on the implicit method we are using to find the next value.

There are many solvers for nonlinear equations out there. Due to the continuity of the motion
of the physical system, we decided to use Newton’s method for nonlinear systems: given a function
f(x) : Rn → Rn and an initial guess x0, we do the following iteration:

xk+1 = xk − J−1(xk)f(xk) (2)

until the sequence converges to a value x that satisfies ‖f(x)‖ ≤ ε for some tolerance ε, or after a
maximum number of iterations has been reached. For our initial guess, we choose the last value
that we have in the sequence: If we are defining a nonlinear function to solve for vk+1, then our
initial guess is chosen to be vk. We believe this to be a reasonable choice due to the continuity of
physical motion. In addition to this usual definition, we define a failure to be one of the following
events:

• No decrease in the objective value is observed after three iterations (i.e. the values ‖f(x3)‖,
‖f(x2)‖, ‖f(x1)‖ are all greater than ‖f(x0)‖), or

• The algorithm has failed to converge within the maximum number of iterations.

These events occur when this subproblem is so ill-conditioned that finding a solution is not compu-
tationally feasible. A failure will cause us to disregard the output from the current step, and take
two equally spaced sub-steps to get us to the next step. This is the approach that is used in [2].
For example, if our stepsize is 0.1, and we try the Newton method and observe a failure, then we
change our step size temporarily to 0.05 and repeat this process twice. After we have passed this
step, we revert our step size to 0.1.
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2.1.1 Jacobian Matrix

The matrix J we used in our iteration is numerically generated from a three-point rule. We choose
our stencil width h to be

√
ε‖x‖∞, where ε is machine epsilon. On double precision systems, ε is

approximately 10−16.

2.2 Generalized Alpha

Generalized-α [3] is currently a favourite of the graphics community. It is a generalization of the
algorithms defined in [4], [6], and [7], hence its name. In addition to a damping parameter ρ∞. The
algorithm accepts initial conditions x0 and v0. We define a0 = M−1(F (t0, x0, v0) − Dv0 −Kx0).
Let h be the step size. The update equations are as follows:

xn+1 = xn + hvn +
1

2
h2((1− 2β)an + 2βan+1) (3)

vn+1 = vn + h((1− γ)an + γan+1) (4)

Man+1−αm +Dvn+1−αf
+Kxn+1−αf

= F (tn+1−αf
) (5)

Where we define the following:

an+1−αm = (1− αm)an+1 + αman (6)

vn+1−αf
= (1− αf )vn+1 + αfvn (7)

xn+1−αf
= (1− αf )xn+1 + αfxn (8)

tn+1−αf
= (1− αf )tn+1 + αf tn (9)

When we implement this algorithm, we first substitute eqns (6), (7), (8), (9) into eqn (5) and then
we substitute eqns (3) and (4) into (5). This makes eqn (5) a nonlinear equation for an+1, and once
we solve this, we can easily get vn+1 and xn+1 using eqns (3) and (4) respectively.

One of the good properties about generalized-α is that it supposedly damps high frequency
modes while avoiding damping on low-frequency modes. This property is one that we will be
investigating in this paper.

The four parameters of this algorithm are γ, β, αm, αf , and they can be defined in terms of
one parameter ρ∞ as follows:

γ =
1

2
− αm + αf β =

1

4
(1− αm + αf )2 αf =

ρ∞
ρ∞ + 1

αm =
2ρ∞ − 1

ρ∞ + 1

Alternative parametrizations lead to the Newmark[6], Hilber-Hughes-Taylor[4], or Wood-Bossack-
Zienkiewicz[7] algorithms. However, the above are, in some sense, an optimal choice of parameters.
According to [3] and the analysis in [5], the choice of γ ensures that the algorithm is 2nd order
accurate, and the remaining parameters are chosen to maximize the damping in high-frequency
and minimize the damping in low frequency modes[3]. This set of parameters will be what we
investigate in this work.

The user-defined high-frequency damping, denoted as ρ∞ ∈ [0, 1] is typically chosen to be
between 0.6 and 0.9, although sometimes we use values as low as 0.3. It is important to note that
when ρ∞ = 1, we have no algorithmic damping, whereas for the θ-method discussed later, θ = 0
(and not 1) corresponds to the case of no algorithmic damping.
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2.3 Second-order theta-method

A θ-method is defined by a convex combination of two different integration rules: denote wn+1 and
vn+1 as the values from the two integration schemes. Our update step is

yn+1 = θwn+1 + (1− θ)vn+1 (10)

In general, θ-methods are a relatively unexamined area for these kinds of structural dynamics
problems. In this paper we examine a 2nd-order θ-method involving TR and BDF-2 as discussed
in [1]. Let h be the step-size, as before, and let θ ∈ [0, 1] be a damping parameter. Our 2nd-order
θ-method has the following update formula:

yn+1 = yn + (1− θ)
(
h

2

)
[y′n + y′n+1] +

(
θ

3

)
[yn − yn−1 + 2hy′n+1] (11)

and, applying eqn (11) to xn+1 and vn+1 we have the following system of equations:[
xn+1

vn+1

]
=

[
xn + (1− θ)(h2 )(vn + vn+1) + ( θ3 )(xn − xn−1 + 2hvn+1)

vn + (1− θ)(h2 )(an + an+1) + ( θ3 )(vn − vn−1 + 2han+1)

]
(12)

where a can be written in terms of x and v by rearranging eqn (1)

an = M−1(F (tn, xn, vn)−Dvn −Kxn) (13)

When we implement this, we apply the substitution of eqn (13) into eqn (12) (for an+1 and an),
and then (12) becomes a nonlinear system for xn+1 and vn+1. To solve this, we substitute the
expression for xn+1 into the equation for vn+1 and a nonlinear equation for vn+1 results. After
solving it, we can get xn+1 and then an+1 easily with eqns (12) and (13)

This θ-method, like the generalized-α method, is 2nd order accurate (since BDF-2 and TR both
are 2nd order accurate). However, θ, unlike ρ∞, goes from 0 to 1 rather than from 1 to 0 when
damping increases: no damping occurs when θ is chosen to be 0 and increasing θ increases the
damping. Additionally, the scale of the damping is different: the θ-method has a linear scaling of
the algorithmic damping but the generalized-α method has a nonlinear scale of damping, as we see
from [1]. However, we do not know the properties of high vs. low frequency damping, and this is
the primary direction of our research.

2.3.1 Arriving at the second point

The θ-method involving BDF-2 requires two previous data points, since BDF-2 is a linear multistep
method (LMM). Therefore, it is not possible to start the integration given the initial conditions.
There are two possible schemes to arrive at the 2nd data point:

• TR

• First-order θ-method.

Note that the second method actually contains the first for a certain choice of θ (θ = 0.5). The
advantage of using the first scheme is that we retain 2nd order accuracy, however, there is no
numerical damping which may cause problems if the problem has a high condition number. The
second scheme avoids this problem by allowing us to control the algorithmic damping, however, an
important drawback is that it is not 2nd order accurate. This is not a problem for the first step,
since the overall order of accuracy is not affected by one step. See the section below regarding
substepping for more a more detailed discussion.
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2.3.2 Substepping

Substepping is not an issue in generalized-α (we can choose whatever step size we want at every
step), however, in our θ-method we run into the problem of needing two previous data points, and
if we are changing the step size, the previous data point is not readily available. This is, in fact, a
general problem with LMMs. There are algorithms to do BDF-like methods with unevenly spaced
data points, but in this work we focus on the same two schemes as we did at the first step. See
the above section for a discussion of their advantages and disadvantages. However, what is notably
different from that section is that if the first order θ-method is applied too many times, we do have
a problem since overall 2nd order accuracy is not preserved. In the 2nd-order θ-method, we substep
by using a 1st-order θ-method on the half step (to get from vn to vn+1/2), then, we use a 2nd order
θ method to get from vn and vn+1/2 to vn+1, as these points are evenly spaced.

2.3.3 First-order theta-method

This first-order θ-method is used when we do not have two previous data points, or choose not to
use them. It combines the BE (BDF-1) and TR integration schemes. Our update formula is as
follows: [

xn+1

vn+1

]
=

[
xn + h((1− θ)vn + θvn+1)
vn + h((1− θ)an + θan+1)

]
(14)

We solve this system in similar fashion to the θ-method involving BDF-2: first we substitute
expressions for x and a into the formula for v, solve that, and get formulas for x and a. We consider
choices of θ between 0.5 and 1.0, with 0.5 giving us no algorithmic damping (trapezoid rule) and
1.0 giving us considerable damping (since it becomes BE). Note that since BE is actually the same
as a first-order BDF, it has much more algorithmic damping than BDF-2, so care should be taken
to ensure that the damping value for this method isn’t simply that of the 2nd order theta method
plus 0.5. In this paper, we choose the damping value to be 0.5 + θ

50 , where θ is the damping
parameter for the 2nd order θ-method. The objective of this is to still have some damping while
mostly retaining 2nd order accuracy.

2.4 Methods of Comparisons

We are most interested to see how much damping our θ-method gives to the high-frequency modes,
while maintaining the same damping for low-frequency modes as generalized-α, for a set of param-
eters (θ′, ρ′∞). We are also interested in seeing if our θ-method requires fewer Newton iterations, or
if it is better-conditioned than generalized-α. It is hypothesized that fewer Newton iterations are
required when the problem is less stiff (see Problem 3 and 4 below). Of course, we also need to
make sure that the visual results of the algorithm is correct.

The purpose of our comparisons is as follows: the comparision of Newton iterations is a metric
for the runtime of the algorithm, since the bulk of the work is from solving the nonlinear equations.
Visual correctness is used to compare the correctness of the algorithm, since the purpose of the
algorithm is to generate a visually correct animation. And finally, the condition number is used to
judge the stability of the algorithm.

Our priority is on the comparison for visual correctness; this is the most important aspect.
If on a certain problem, one algorithm gives the incorrect output while another gives the correct
behaviour, then we do not need to look further; the condition number and Newton iterations are
meaningless and do not need to be looked at, as the one that gave the correct answer is clearly
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superior. Only when both algorithms give visually similar output, do we care about issues such as
numerical damping and condition number.

2.5 Example Problems

We have four example problems, and they range in difficulty from trivial to fairly difficult, in terms
of the relative stiffness of the problem.

2.5.1 Problem 1: Harmonic Oscillator

This problem is described by the differential equation x′′+x = 0. The initial data is x0 = 1, x′0 = 0.
No algorithm should have any difficulties with this problem: it represents a mass attached on a
wall with a linear spring, with no surface friction or air resistance. The solution of this 2nd order
differential equation is x(t) = c1 sin(t) + c2 cos(t), but this simple problem allows us to demonstrate
the effects of our damping parameters on the solution curve.

We will also look at fully decoupled systems that are similar to Problem 1 (i.e. Mx′′ +Kx = 0
with M and D being diagonal matrices) in order to gain a better understanding of the high and
low frequency damping properties of generalized-α and the 2nd order θ-method.

2.5.2 Problem 2: Pendulum

This problem is described by the differential equation x′′ = −g sin(x). For simplicity, we will choose
g = 1.0 instead of g = 9.81. The initial data is x0 = 1, x′0 = 0

With this problem comes the introduction of nonlinear forces, so it makes sense to compare the
total number of iteration counts. However, the system is 1x1 so condition number plots do not need
to be looked at. Also, in this example there are no high frequency modes. So this is purely a test
of the nonlinear solver.

2.5.3 Problem 3: Stiff Pendulum (Polar Coordinates)

This problem is described by the following differential equation (r0 = 1):[
r

θ

]′′
=

[
−ε−2(r − r0) + r−3θ2 + g cos(θ)

−gr−1 sin(θ)

]
(15)

The initial data is an O(ε) perturbation of r(0) = 1, r′(0) = 1√
2
, θ(0) = π

4 , θ′(0) = − 1√
2

This problem has a parameter ε, which is used to control the stiffness of the problem. We intend
to vary the stiffness (ε is in a range of [10−1, 10−5]) to see the effect it has on our θ-method and
generalized-α, in terms of condition number and Newton iteration count.

There are two modes, radius and angle of deviation. There are high oscillations in the radius
mode (at a frequency corresponding to ε) and low oscillations in the angle mode (which is indepen-
dent of ε), so we can compare the damping properties on the high-frequency modes, after fixing a
certain level of damping on the low-frequencies.
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Table 1: Summary of results for generalized-α-method

Test Example Visual Correctness Newton Iterations Condition Number
Problem 1 Yes Not needed Not needed
Problem 2 (x0 = 1) Yes 50001 Not needed
Problem 2 (x0 = 2) Yes 50001 Not needed
Problem 3 (ε = 10−3) Somewhat 2243 Low
Problem 3 (ε = 10−4) No N/A N/A
Problem 3 (ε = 10−2) Yes 1302 Low
Problem 4 (ε = 10−3) No N/A N/A
Problem 4 (ε = 10−4) No N/A N/A
Problem 4 (ε = 10−4)* No N/A N/A
Problem 4 (ε = 10−2) No N/A N/A
Problem 4 (ε = 10−2)* Yes 2640 Low

2.5.4 Problem 4: Stiff Pendulum (Cartesian Coordinates)

This problem is the exact same as problem 3, however, instead of polar coordinates, we have
cartesian coordinates. Let ~q = [q1, q2]T . The differential equation is:

~q′′ = −ε2(r(~q)− r0)∇r(~q)− g cos(θ(~q))∇r(θ) + gr(~q) sin(θ(~q))∇(θ(q)) (16)

where ∇r(~q) =
1

r
~q, and ∇θ(~q) =

1

r2
(q2, q1)T

The initial data is an O(ε) perturbation of ~q(0) = 1√
2
(1, 1)T . ~q′(0) = (1, 0)T . We do not believe

that this change of coordinates will affect the damping, however, we do believe that a high degree
of coupling is a more strenuous test on the conditioning and number of Newton iterations.

3 Results

Only results for the pair of parameters (ρ∞ = 0.6, θ = 0.07) are shown below and analyzed.
Alternate sets of parameters with similar levels of damping can be found, and the results are
roughly equivalent. Some other pairs of parameters with roughly equivalent numerical damping
levels include (ρ∞ = 0.9, θ = 0.001), (ρ∞ = 0.3, θ = 0.45), (ρ∞ = 0.5, θ = 0.15). They were found
experimentally on the test equation x′′ + x = 0 for the maximum damping step size by fixing ρ∞
and modifying θ such that the decay rate is similar based on observation.

The results are summerized in Table 1 for generalized-α and Table 2 for 2nd order θ method.
We can see that the 2nd order θ algorithm is not worse than the generalized-α algorithm for any
of the problems. We will compare the solution curves from the specific examples to gain a better
understanding of the two algorithms under our comparison. Note that cases that have been marked
with * are those where the stepsize has been adjusted from 0.05 to 0.02 in Problems 3 and 4.

3.1 Problem 1: Harmonic Oscillator

This problem is defined by the second-order differential equation x′′ +Kx = 0, where K is a 2× 2
diagonal matrix with diagonal entries 1, 100. The initial conditions are x0 = (1, 1)T , x′0 = (0, 0)T .
There are two decoupled modes here, and the second one oscillates at 10 times the rate of the first.
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Table 2: Summary of results for 2nd-order θ-method

Test Example Visual Correctness Newton Iterations Condition Number
Problem 1 Yes Not needed Not needed
Problem 2 (x0 = 1) Yes 69295 Not needed
Problem 2 (x0 = 2) Yes 87052 Not needed
Problem 3 (ε = 10−3) Yes 1946 Low
Problem 3 (ε = 10−4) Yes N/A N/A
Problem 3 (ε = 10−2) Yes 1940 Low
Problem 4 (ε = 10−3) Yes N/A N/A
Problem 4 (ε = 10−4) No N/A N/A
Problem 4 (ε = 10−4)* Yes N/A N/A
Problem 4 (ε = 10−2) No N/A N/A
Problem 4 (ε = 10−2)* Yes 2534 Low

Figure 1: Low-Frequency damping of harmonic oscillator
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Figure 2: High-Frequency damping of harmonic oscillator

Figure 1 is the plot of the low-frequency mode. The solution curve from generalized-α is in blue,
and that of 2nd order θ is in orange and overlays it. It can be seen that the orange just barely
covers the blue, which indicates that the low-frequency damping is roughly equivalent. When we
look at Figure 2, we see that for the high-frequency domain, the algorithmic damping is far more
pronounced in the 2nd order θ-method compared to generalized-α, which is the behaviour that we
would like to see.

The condition number remains constant throughout due to linearity. Linearity is also the reason
why there is no need to look at the number of Newton iterations: it is n, where n is the number of
steps we integrated, since Newton iterations solve linear systems exactly in 1 iteration.

3.2 Problem 2: Simple Pendulum

This is for a simple pendulum described by the differential equation x′′ = −g sin(x) with initial
conditions x0 = 1, x′0 = 0. There are no high-frequency modes. The purpose of this problem is
only to compare the nonlinear equations of the 2nd order θ-method vs. the generalized-α method
in terms of the Newton iterations.

For approximately the same levels of damping, we see that the 2nd-order θ-method has 69295
nonlinear iterations to the 50001 used by generalized-α. It appears that the equation that generalized-
α has set up is very close to linear, and we also examined x0 much larger than 1: we set x0 = 2
and keep the other parameters the same:

Our results are that the 2nd order θ-method uses 87052 iterations compared to the same 50001
iterations used by generalized-α. So, 2nd order θ-method uses 39% and 74% more iterations re-
spectively. It seems that generalized-θ is better, but this is far from the full story as we will show
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Figure 3: Problem 3, θ-method with ε = 10−3, stepsize h = 0.05

in our more complex problems. There is no need to compare condition number plots, as we have a
1x1 system.

3.3 Problem 3: Stiff Pendulum (Polar Coordinates)

This is a pendulum with loosely coupled polar coordinates. A representative case is when we
choose our stiffness to be ε = 10−3, and stepsize to be h = 0.05. Our θ-method does significantly
better than the generalized-α method, because the generalized-α method is not representative of
the what we expect to see according to the laws of physics in the high frequency domain. However,
qualitatively correct behaviour is retained in the low frequency domain. As can be seen in Figure 3
below, the theta-method highly resembles what we should see: the low frequency doesn’t dampen
while the high frequency mode dampens away and converges to 1. However, the generalized-α
algorithm doesn’t do so well (see Figure 4) in view of the sporadic changes in the radius (e.g.
extending to ±6, which should not be possible, since the radius should never be negative). So, we
conclude that the θ-method is superior for this problem. Such a failure in the generalized-α method
means that the step-size taken is too large. So, we need to pick a smaller step size if we wanted
to use this algorithm. Additionally, the 2nd order θ-method uses fewer nonlinear iterations (1946
to 2243, only 87% of the iterations that generalized-α does). Also, note that generalized-α has a
large increase in the condition number progression in Figure 5, almost to 6.0×104, which is another
reason to prefer the 2nd order θ-method.
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Figure 4: Problem 3, α-method with ε = 10−3, stepsize h = 0.05

Figure 5: Problem 3 condition number, with ε = 10−3, stepsize h = 0.05

11



Figure 6: Problem 3, θ-method with ε = 10−2, stepsize h = 0.05

3.3.1 Changing epsilon to 10−4

When we increase the difficulty of the problem, our θ-method successfully solves the problem (the
plot looks very similar to the plot with the original problem), but the generalized-α method fails
because the algorithm constantly subdivides with no end. This also attests to the superiority of
the 2nd order θ-method.

3.3.2 Changing epsilon to 10−2

When we decrease the difficulty of our original problem, we see that both algorithms integrate this
successfully. Note that the generalized-α algorithm outperforms the 2nd order θ method in terms
of Newton iterations. See Tables 1 and 2 for number of Newton iterations, and Figures 6, 7, 8 for
the solution curves and condition number plots.

3.4 Problem 4: Stiff Pendulum (Cartesian Coordinates)

This is the same as problem 3, reformulated as cartesian coordinates. The parameters of the
experiment remain the same. We see that initially, generalized-α gives correct behaviour (See
Figure 10), but after about one period, the algorithm loses stability. The 2nd-order θ-method, on
the other hand, maintains correct behaviour throughout as can be seen in Figure 9. Therefore, we
can see that the 2nd order θ-method is superior. We do not need to compare the condition number
plots, since generalized-α doesn’t exhibit correct behaviour.
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Figure 7: Problem 3, α-method with ε = 10−2, stepsize h = 0.05

Figure 8: Problem 3 condition number, with ε = 10−2, stepsize h = 0.05
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Figure 9: Problem 4, θ-method with ε = 10−3, stepsize h = 0.05

Figure 10: Problem 4, α-method with ε = 10−3, stepsize h = 0.05
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Figure 11: Problem 4, θ-method with ε = 10−4, stepsize h = 0.05

3.4.1 Changing epsilon to 10−4

Neither the generalized-α method nor the θ method retains visually correct behaviour. See Figures
11 and 12 for the solution curves. Hence, we reduce the step-size to 0.02 and compare the algorithms
again, when we can see that the θ-method is superior: the generalized-α method does not work for
this step size. The solution curve for the θ-method in Figure 13 is visually very similar as before in
Figure 9.

3.4.2 Changing epsilon to 10−2

It seems that the damping for generalized-α on this problem is excessive, as can be seen from the
solution curves for x1 and x2 in Figure 16. In comparison, our θ-method retains visually correct
behaviour in Figure 15. Changing the step-size to 0.02 makes the problem sufficiently easy that
both plots look fine, and the condition number is sufficiently low (< 10). See Figures 17, 18, 19 for
the solution curves and condition numbers.

4 Discussion

Our preliminary results show that the θ-method is superior to the generalized-α method on these
problems that we have designed. In particular, we note that the θ method is superior for highly stiff
problems, since it is the only algorithm that retains visually correct behaviour. However, when both
algorithms work, we do see that sometimes the generalized-α algorithm has less Newton iterations
compared to the 2nd order θ algorithm. We discuss some possible future directions of research
below.
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Figure 12: Problem 4, α-method with ε = 10−4, stepsize h = 0.05

Figure 13: Problem 4, θ-method with ε = 10−4, stepsize h = 0.02
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Figure 14: Problem 4, α-method with ε = 10−4, stepsize h = 0.02

Figure 15: Problem 4, θ-method with ε = 10−2, stepsize h = 0.05
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Figure 16: Problem 4, α-method with ε = 10−2, stepsize h = 0.05

Figure 17: Problem 4, θ-method with ε = 10−2, stepsize h = 0.02

18



Figure 18: Problem 4, α-method with ε = 10−2, stepsize h = 0.02

Figure 19: Problem 4 condition number, with ε = 10−2, stepsize h = 0.02
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4.1 Future Research

• First, and most importantly, it remains to be seen if the 2nd order θ method keeps its advan-
tage over generalized-α methods on highly conditioned, large-scale problems in the animation
industry.

• It will also be of interest to see if the generalized-α algorithm uses less Newton iterations
compared to the second-order θ algorithm for well-conditioned problems.

• Substepping: Since the TR is unsatisfactory due to the lack of algorithmic damping, and a
first-order θ method is also lacking due to the overall loss of accuracy, are there 2nd-order
methods with controllable algorithmic damping for the first substep? This requires an stencil
taking on the values at {ti−1, ti, ti+1/2}

5 Conclusion

In conclusion, we see that for the small problems that we have designed, our new algorithm is not
worse than the generalized-α method. We see that our second-order θ method never fails unless
if generalized-α also does so for our complex pendulum either in cartesian or polar coordinates.
It seems that our second-order θ method would be a good replacement for generalized-α in these
situations. Additionally, our method accepts the same set of parameters (excluding the damping
constant, which is on a different scale) and returns the same values, so this new algorithm can be
easily incorporated into existing implementations.
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