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Overview

▶ Motivation, method introduction, theoretical considerations.

▶ Black-Scholes equation, European options, American options.

▶ Solution methods, ADI methods, penalty method, etc.

▶ Smoothing techniques, continuity and smoothness of initial conditions.

▶ Convergence rates, computational savings of the sparse grid method.

▶ Numerical examples.

▶ Conclusions and future work.
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Motivation: The Curse of Dimensionality

Why are we interested in solving high-dimensional PDEs?
▶ Many examples, but we are speci�cally interested in pricing multi-asset

options accurately.
▶ Some options can have hundreds of underlying assets, each asset giving rise

to a spatial dimension.
▶ Consideration of risk factors also give rise to additional spatial dimensions.

Curse of Dimensionality

The curse of dimensionality refers to the problem that the complexity of the
numerical method scales exponentially with the dimension. With N gridpoints per
dimension, there are Nd unknowns in total. Finite Di�erence Methods (FDMs)
and Finite Element Methods (FEMs) on full grids su�er from this problem.

Dimensions 1 2 3 4
Execution Time < 0.01 sec 0.1 sec 15 sec 28 min

Accuracy 1.57× 10−2 3.15× 10−3 1.44× 10−4 9.24× 10−4

Unknowns 64 642 643 644

Table 1: Exponential increase in runtime of an ADI method as dimensions increase
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Sparse Grids

Sparse grids, originally introduced by [Smolyak, 1963] are a method of mitigating
the curse of dimensionality when discretizing a d -dimensional rectangular domain.

Instead of a discretization on the full grid, the sparse grid method chooses a
subset of points on the full grid for spatial discretization.

▶ the standard sparse grid method alleviates the curse of dimensionality to
some extent

▶ energy-based sparse grid method claims to overcome it entirely

Types of sparse grid PDE methods include

▶ Hierarchical Sparse Grid Finite Element Method [Balder and Zenger, 1996],
concept originally introduced in [Yserentant, 1986].

▶ Sparse Grid Combination Method [Griebel et al., 1992]
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The Combination Method

The combination method avoids the hierarchical discretizations, and instead
combines solutions on smaller, anisotropic full grids still based on a tensor product
formulation.

Figure 1: Tabular arrangement of full grids in two dimensions; highlighted grids
correspond to the grids selected for the combination method. The number of unknowns
on an d dimensional domain is reduced from O(nd ) to O(n(log n)d−1).
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Computing the solution with the combination method

Let ui,j (ui,j,k) denote the numerical solution computed on the grid with level i in
the x variable and level j in the y variable (and level k in the z variable).

Each increase in level doubles the number of gridpoints in that dimension.

In two dimensions, the combination method solution is computed by

ucq,q =
∑

i+j=q+1

ui,j −
∑
i+j=q

ui,j . (1)

Using asymptotic error expansions, it can be shown that the error terms involving
x and y on the grids that are largest in the respective dimensions cancel out.

In three dimensions, the combination method solution is computed by

ucq,q,q =
∑

i+j+k=q+2

ui,j,k − 2
∑

i+j+k=q+1

ui,j,k +
∑

i+j+k=q

ui,j,k , (2)

and the error analysis is similar.
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Discussion between Hierarchical and Combination Methods

Both the hierarchical and the combination method have similar properties in terms
of theoretical e�ciency, however, in terms of implementation there are some
di�erences, with the following advantages for the combination method:

▶ The combination method is based on existing standard PDE solvers (which
can be based on a tensor product formulation), which allows us to solve the
Black-Scholes equation on the original grid with untransformed variables.
▶ Solving the Black-Scholes equation with the hierarchical �nite element method

typically requires us to transform it and remove derivatives of a certain order,
which causes the numerical quality of the solution to decrease.

▶ If this transformation is not applied, then the �nite element matrix is dense,
and would take a long time to construct and solve.

▶ The combination method does not involve any transformations between a
nodal basis and hierarchical basis.

▶ All subproblems of the combination method can be solved in parallel.

On the other hand, the hierarchical sparse grid method has less smoothness
requirements on the solution.
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Black-Scholes equation

The Black-Scholes equation for pricing �nancial options is given by

Vτ = LV ≡ 1

2
σ2S2VSS + (r − q)SVS − rV . (3)

Note that subscripts denote partial derivatives, and

▶ S denotes the stock price,

▶ τ denotes the reverse time counted from expiry T (τ = T − t, t is forward
time),

▶ σ denotes the volatility of the stock,

▶ r denotes the risk-free interest rate,

▶ q denotes the rate of dividend yield,

▶ V denotes the unknown option price we are solving for.

We are interested in the option values at τ = T . Payo� functions denoted by
V ∗(S) correspond to initial conditions:

▶ Call Payo�: V (0, S) = V ∗
call(S) = max(S − K , 0),

▶ Put Payo�: V (0, S) = V ∗
put(S) = max(K − S , 0).

8 / 30



Multidimensional Black-Scholes PDEs

In d dimensions, the Black-Scholes PDE is given by

Vτ = LV ≡ 1

2

d∑
i,j=1

ρi,jσiσjSiSjVSi ,Sj
+

d∑
i=1

(r − qi )SiVSi
− rV . (4)

where
▶ Si , σi , qi denote the price, volatility, and dividend yield of the i-th stock.
▶ ρi,j denotes the correlation between stocks Si and Sj .

Many di�erent payo�s, but we use Geometric Average Put, given by

V (0, S1, S2, . . . ,Sd) = max(K −
( d∏

i=1

Si

)1/d

, 0) (5)

It is useful because it is equivalent to a corresponding one-dimensional problem,
with r unchanged, and adjusted parameters σ̂ and q̂ given by

σ̂ =
1

d

√√√√ d∑
i=1

ρi,jσiσj , q̂ =
1

d

d∑
i=1

(qi +
1

2
σ2
i )−

1

2
σ̂2, (6)

which has a known solution formula.
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American options

Due to the early exercise right, the American option satis�es a linear
complementarity problem (LCP)

Vτ − LV ≥ 0 and V = V ∗ or (7)

Vτ = LV and V ≥ V ∗

which is replaced by the nonlinear PDE

Vτ = LV + ρmax(V ∗ − V , 0) (8)

with ρ being the reciprocal of the desired accuracy ϵ for solving with a penalty
iteration algorithm (i.e. [Forsyth and Vetzal, 2002]).
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Numerical methods

We use the following numerical methods:

▶ Second order accurate methods for discretizing time and space derivatives.
▶ centered �nite di�erences on a nonuniform grid for space variables
▶ Crank-Nicolson-Rannacher (CNR) or Modi�ed Craig-Sneyd (MCS) ADI

[Wyns et al., 2016] for timestepping.

▶ In the numerical solution of multi-dimensional PDEs, a lexicographical
ordering of the unknowns leads to a banded matrix. Solving these matrices
with a direct method will lead to substantial �ll-in.
▶ biconjugate gradient method with iLU preconditioner for CNR.

▶ ADI methods avoid banded matrices by rearranging the entries in each
dimension and solving d subproblems, each being a tridiagonal matrix that
can be solved in linear time.

▶ MCS ADI method requires 2d solves of tridiagonal matrices.
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Convergence Rate for Sparse Grid methods

For full grid methods, the rate of convergence is computed based on a re�nement
of the step size 2h to h, i.e.

c = log2

(
error2h
errorh

)
= log2

(
errorNd

error(2N)d

)
= d

log(errorNd /error(2N)d )

log((2N)d/Nd)
. (9)

For sparse grids, no such uniform h exists, due to the multilevel nature of the
method. Instead, we de�ne the rate of convergence based on the number of
unknowns.

To keep consistency with existing de�nitions, on a full grid we generalize this to
M1 and M2 entries, where M1 and M2 do not necessarily share a common factor
on di�erent levels, we have

c = d
log(errorM1

/errorM2
)

log(M2/M1)
. (10)
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Theoretical e�ciency of the Sparse Grid method

The sparse grid method allows us to use fewer degrees of freedom and can attain
comparable error with the full grid method. This allows us to extrapolate to a
�ner resolution and outperform the full grid method.
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Figure 2: Plot of accuracy vs degrees of freedom for various option pricing problems.
Left: Two-dim European geometric average put. Right: Three-dim European power put.
The full grid method has a rate of convergence of 2.
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Smoothing

The initial conditions for geometric average put are non-smooth, as there is a cusp
at the curve where (

∏
Si )

1/d = K , hence, smoothing techniques are required to
maintain the order of convergence of the discretization method, especially when
we solve with the combination method.

We implement the smoothing techniques developed in [Kreiss et al., 1970] in
multiple dimensions. These smoothing techniques restore the order of
convergence, but require us to use uniform grids.

A complete discussion is beyond the scope of this talk; some derivations can be
found in [Christara and Leung, 2018] and a multidimensional example which we
followed can be found in [Düring and Heuer, 2015].
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Parameters for Black-Scholes equations

We use the following table of parameters. For some problems, we adjust the value
of the strike K to ensure that the computed values of di�erent problems are on a
roughly similar scale. This only a�ects the scale and not the accuracy of the
solution.

Description Symbol value
Volatility of Si σi 0.4

Correlation of Si with Sj ρi,j 0.2
truncation of domain Smax 8K

interest rate r 0.10
time of expiry T 1.0

strike K 100.0

Table 2: Table of parameters for option pricing problems with multiple underlyings.

15 / 30



European options � ADI method full grid

q nS nτ value error rate time (s)
1 81 10 7.956965184 -6.66e-01 � 1.33e-02
2 289 18 8.572781256 -4.99e-02 3.74 1.77e-02
3 1089 34 8.608731714 -1.39e-02 1.84 2.94e-02
4 4225 66 8.618665573 -4.00e-03 1.80 5.25e-02
5 16641 130 8.621504479 -1.16e-03 1.78 2.51e-01
6 66049 258 8.622372493 -2.93e-04 1.99 1.55e+00
7 263169 514 8.622589224 -7.62e-05 1.94 1.04e+01
8 1050625 1026 8.622646406 -1.90e-05 2.00 6.57e+01
9 4198401 2050 8.622660611 -4.78e-06 1.99 7.48e+02

Table 3: Two-dimensional European geometric put option; MCS ADI; full grid;
nonuniform grid.
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European options � ADI method sparse grid � no smoothing

q nS nτ value error rate time (s)
2 289 18 8.565056906 -5.76e-02 � 7.23e-01
3 1411 102 8.623991582 1.33e-03 4.76 5.26e-01
4 4421 330 8.611445333 -1.12e-02 -3.74 6.20e-01
5 11975 910 8.626333795 3.67e-03 2.24 6.42e-01
6 30153 2322 8.621898509 -7.67e-04 3.39 9.63e-01
7 72651 5654 8.622190480 -4.75e-04 1.09 1.33e+00
8 169933 13338 8.622676246 1.09e-05 8.89 2.97e+00
9 389071 30750 8.622686045 2.07e-05 -1.55 9.15e+00
10 876497 69666 8.622686950 2.16e-05 -0.11 3.37e+01
11 1949651 155686 8.622667262 1.87e-06 6.11 1.42e+02
12 4292565 344106 8.622670664 5.28e-06 -2.62 6.12e+02

Table 4: Two-dimensional European geometric put option; MCS ADI; sparse grid;
nonuniform grid; no smoothing; parallel computation of subproblems.
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European options � ADI method sparse grid � smoothing

q nS nτ value error rate time (s)
2 289 18 10.319867703 1.70e+00 � 1.31e-01
3 1411 102 9.028073043 4.05e-01 1.81 1.64e-01
4 4421 330 8.719565958 9.69e-02 2.51 2.53e-01
5 11975 910 8.646111475 2.34e-02 2.85 4.06e-01
6 30153 2322 8.628351788 5.69e-03 3.07 7.75e-01
7 72651 5654 8.624043473 1.38e-03 3.22 1.68e+00
8 169933 13338 8.622998872 3.33e-04 3.34 4.24e+00
9 389071 30750 8.622746163 8.08e-05 3.42 1.21e+01
10 876497 69666 8.622684888 1.95e-05 3.50 3.96e+01
11 1949651 155686 8.622670093 4.71e-06 3.56 1.47e+02
12 4292565 344106 8.622666516 1.13e-06 3.62 6.14e+02

Table 5: Two-dimensional European geometric put option; MCS ADI; sparse grid;
uniform grid; smoothing from [Kreiss et al., 1970]; parallel computation of subproblems.
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Comparison of methods � two-dim European geometric put
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Figure 3: Two-dimensional European geometric put option: Comparison of accuracy vs
computational time for MCS ADI, on full and sparse grids.
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American options - preface

▶ To compute the numerical solution of American options, we used the penalty
method introduced in [Forsyth and Vetzal, 2002].

▶ A straightforward approach of applying the penalty method (with uniform
timesteps) leads to a deteriorated order of convergence. Although the order
of accuracy in space remains O(∆x2), the order of accuracy in time is
O(∆τ3/2).

▶ Some ways of correcting this issue:
▶ [Forsyth and Vetzal, 2002] variable timestepping algorithm
▶ [Reisinger and Whitley, 2014] quadratic transformation of the time points (i.e.

t̃i = t2i on t = [0, 1]).

▶ We have used the quadratic transformation with CNR timestepping for
American options.
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Smooth Initial condition � Power put options

The power put option is de�ned with the payo� function

V ∗(S1,S2, . . . ,Sd) = max(K −
∑

Si/d , 0)
p (11)

where p = 1, 2, 3, . . . .

The payo� function V ∗ is continuous in Cp−1.

Power put initial conditions may not need smoothing; appropriate choices of p can
be used to test smoothness requirements in PDE solvers.

We solve the European power put option with p = 2 and American power put
option with p = 3. These are the minimum choices of p for the combination
method to work ideally (i.e. with monotone convergence).

Unlike geometric put options, power put options do not have analytical solutions;
hence, we test for self-convergence with successive di�erences. We note that the
sparse grid method and the full grid methods are in agreement.
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Two-dimensional European power put option

q nS nτ value di�erence rate time (s)
1 81 10 1.232509678 � � 1.55e-03
2 289 18 1.270141301 3.76e-02 � 2.75e-03
3 1089 34 1.273231529 3.09e-03 3.61 6.31e-03
4 4225 66 1.273652425 4.21e-04 2.88 2.27e-02
5 16641 130 1.273746086 9.37e-05 2.17 1.78e-01
6 66049 258 1.273772945 2.69e-05 1.80 1.36e+00
7 263169 514 1.273779639 6.69e-06 2.00 9.65e+00
8 1050625 1026 1.273781411 1.77e-06 1.92 6.51e+01
9 4198401 2050 1.273781853 4.42e-07 2.00 7.85e+02

Table 6: Two-dimensional European power put option (p = 2); MCS ADI; full grid;
nonuniform grid.
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Two-dimensional European power put option

q nS nτ value di�erence rate time (s)
2 289 18 1.270141301 � � 4.77e-02
3 1411 102 1.273102768 2.96e-03 � 4.59e-02
4 4421 330 1.273577276 4.75e-04 2.97 1.10e-01
5 11975 910 1.273714911 1.38e-04 2.39 1.19e-01
6 30153 2322 1.273762184 4.73e-05 2.27 2.00e-01
7 72651 5654 1.273776321 1.41e-05 2.71 5.01e-01
8 169933 13338 1.273780426 4.11e-06 2.87 1.71e+00
9 389071 30750 1.273781570 1.14e-06 3.07 6.56e+00
10 876497 69666 1.273781885 3.15e-07 3.15 2.59e+01
11 1949651 155686 1.273781971 8.59e-08 3.23 1.10e+02

Table 7: Two-dimensional European power put option (p = 2); MCS ADI; sparse grid;
nonuniform grid; parallel computation of subproblems.
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Comparison of methods � two-dim European Power Put
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Figure 4: Two-dimensional European power put option (p = 2). Comparison of accuracy
vs computational time for MCS ADI on full and sparse grids.
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Two-dimensional American power put option

q nS nτ pen. its value di�erence rate time (s)
1 81 10 13 4.626237994 � � 2.60e-03
2 289 18 21 3.730721263 -8.96e-01 � 1.25e-02
3 1089 34 48 3.623769742 -1.07e-01 3.07 1.98e-01
4 4225 66 114 3.600040823 -2.37e-02 2.17 2.14e+00
5 16641 130 247 3.593702710 -6.34e-03 1.90 2.20e+01
6 66049 258 515 3.591970948 -1.73e-03 1.87 2.56e+02
7 263169 514 1027 3.591537960 -4.33e-04 2.00 2.48e+03

Table 8: Two-dimensional American power put option (p = 3); CNR; full grid;
nonuniform grid.
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Two-dimensional American power put option

q nS nτ pen. its value di�erence rate time (s)
2 289 18 21 3.730721263 � � 7.24e-02
3 1411 102 120 3.617977520 -1.13e-01 � 1.23e-01
4 4421 330 402 3.600797572 -1.72e-02 3.05 2.78e-01
5 11975 910 1165 3.593501819 -7.30e-03 1.66 8.76e-01
6 30153 2322 3042 3.592030868 -1.47e-03 3.40 3.51e+00
7 72651 5654 7526 3.591583572 -4.47e-04 2.67 1.57e+01
8 169933 13338 17861 3.591447883 -1.36e-04 2.77 8.11e+01
9 389071 30750 41490 3.591409706 -3.82e-05 3.04 4.26e+02
10 876497 69666 94928 3.591396103 -1.36e-05 2.53 2.58e+03

Table 9: Two-dimensional American power put option (p = 3); CNR; sparse grid;
nonuniform grid; parallel computation of subproblems.
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Comparison of methods � two-dim American power put
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Figure 5: Two-dimensional American power put option with p = 3. Comparison of
accuracy vs computational time for CNR on full and sparse grids.
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Three dimensional European power put

q nS nτ biCG its value di�erence rate time (s)
1 729 10 24 19.035216628 � � 9.08e-01
2 4913 18 62 18.100412803 -9.35e-01 � 3.34e-01
3 35937 34 160 17.759704363 -3.41e-01 1.46 3.64e+00
4 274625 66 580 17.674501714 -8.52e-02 2.00 1.42e+02
5 2146689 130 2001 17.645251968 -2.92e-02 1.54 2.69e+03
6 16974593 258 5859 17.636077651 -9.17e-03 1.67 1.87e+04

Table 10: Three-dim European power put option (p = 4); CNR method; full grid.

q nS nτ biCG its value di�erence rate time (s)
4 145418 660 6278 17.7009716 � � 2.00e+00
5 507075 2470 20609 17.6495116 -5.15e-02 � 1.06e+01
6 1563327 7998 58686 17.6368118 -1.27e-02 3.64 7.02e+01
7 4456254 23644 150443 17.6339621 -2.85e-03 4.20 4.11e+02
8 12032192 65664 345579 17.6331050 -8.57e-04 3.58 2.11e+03
9 31222853 174250 738635 17.6327880 -3.17e-04 3.09 1.04e+04

Table 11: Three-dim European power put option (p = 4); CNR method; sparse grid;
parallel computation of subproblems.
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Comparison of methods � three-dim European power put
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Figure 6: Three dimensional European power put option (p = 4), solved by CNR on full
and sparse grids.
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Conclusions & Future work

The sparse grid method

▶ Is a powerful extrapolation-like technique for the numerical solution of
multi-dimensional PDEs.

▶ It allows us to compute solutions accurate to a degree that would be
prohibited by the full grid method due to memory and time limitations.

▶ The combination formulation is applicable to variable coe�cient PDEs with
all derivative terms, unlike the hierarchical �nite element method.

▶ The combination formulation allows straightforward parallelization of the
subproblems.

▶ Using smoothing techniques derived in [Kreiss et al., 1970], we can ensure
consistency of the order of convergence. However, this restricts us to use
uniform grids, which is not ideal for many option pricing problems.

We are currently working on smoothing techniques for nonuniform grids.
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