
Penalty Methods in Financial Option Pricing

Ray Wu and Christina C. Christara

University of Toronto
Department of Computer Science

July 14, 2020

1 / 35



Outline

Overview

Borrow-Lend
Policy Iteration
Penalty Iteration
Numerical Results

Stock Borrowing Fees
Policy Iteration
Penalty Iteration
Numerical Results

Stock Borrowing Fees with American Early Exercise
Policy Iteration
Double Penalty Iteration
Numerical Results

Summary & Conclusions

2 / 35



Overview

The Black-Scholes PDE [Black, Fischer and Scholes, Myron, 1973] framework models
many pricing problems in finance.
Black-Scholes equation for European options is given by

Vτ =
σ2S2

2
VSS + rSVS − rV ≡ L(r)V (1)

S – asset price variable

τ – backward time variable from maturity T (τ = T − t)

σ – volatility of asset price

r – interest rate

Some non-vanilla option pricing problems are obtained by adding terms or modifying
existing terms in Equation (1).
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Overview

Hamilton-Jacobi-Bellman (HJB) equations model many nonlinear pricing problems in
finance.
General form of HJB equations in finance:

Vτ = sup
Q

{
a(S , τ,Q)VSS + b(S , τ,Q)VS + c(S , τ,Q)V + d(S , τ,Q)

}
(2)

Q – control variables

aVSS + bVS + cV + d is L(·)V with additional and/or modified terms

The above is for short positions. For long positions, sup is replaced by inf.
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Overview

We study the following nonlinear pricing problems in computational finance under the
Black-Scholes framework

Unequal Borrowing/Lending rates [Bergman, Yaacov Z, 1995]

Above problem with stock borrowing fees
[Duffie, Darrell and Garleanu, Nicolae and Pedersen, Lasse Heje, 2002]

Stock Borrowing Fee problem (above) with American-style exercise rights
[Forsyth and Labahn, 2007]

formulated as HJB equations and as nonlinear PDEs.

We consider the solution of the HJB equations with policy iteration
[Forsyth and Labahn, 2007]

We derive penalty-like (penalty) iteration algorithms for the solution of the nonlinear
PDEs, inspired by [Forsyth and Vetzal, 2002, Y. Chen and C. Christara, 2020].

We only consider short position except for Stock Borrowing Fee problem with American
options in the interest of brevity.
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Parameters

Table 1 gives the parameters and their values used in our problems.

Note that not all parameters are used in all problems.

Variable name Symbol Value
End time T 1

Space Truncation Boundary Smax 1000
Strike price K 100
Volatility σ 0.30

Borrowing interest rate rb 0.05
Lending interest rate rl 0.03
Stock Borrowing fee rf 0.004

Payoff function V ∗(S) abs(S − K)
American penalty parameter ρ = ε−1 106

Table 1: Parameters used in our problems
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Borrow-Lend

Control problem [Forsyth and Labahn, 2007] is

Vτ = sup
q∈{rl ,rb}

{
σ2S2

2
VSS + qSVS − qV

}
≡ sup

q∈{rl ,rb}
{L(q)} . (3)

We write it as the nonlinear PDE

Vτ =
σ2S2

2
VSS + rbSVS − rbV + (rb − rl) max (V − SVS , 0) (4)

≡ L(rb) + (rb − rl) max (V − SVS , 0)

We use Crank-Nicolson-Rannacher timestepping and centered finite differences for time
and space discretization.

For spatial discretization, we use a nonuniform grid from
[Clarke, Nigel and Parrott, Kevin, 1999]. The grid is sufficiently smooth, so second-order
convergence is not affected.

We let A denote the matrix that computes the spatial discretization of
a(S , τ,Q)VSS + b(S , τ,Q)VS + c(S , τ,Q)V , in this case L(q).

We solve (3) with a policy iteration algorithm and (4) with a penalty iteration algorithm.
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Discretization of HJB Equation

Discretization of Equation (2) leads us to solve, at each timestep j , the following system
of equations for v j , the algorithm’s approximation to the solution V (τ j , ·)

(I − θ∆τAj(Q))v j = (I + (1− θ)∆τAj−1)v j−1 + θ∆τD j(Q) + (1− θ)∆τD j−1 (5)

subject to the maximization condition

Qi = arg sup
Q∈Q̂

[Aj(Q)v j + D j(Q)]i (6)

where A is the discretization of the terms involving a, b, and c in Equation (2) (boundary
conditions are taken into account), and D(Q) is the vector of values of d .

Here, d is 0 but it is nonzero for American options.

Discretization of other HJB equations is very similar.

The only difference is the functions a, b, c, and d , which are used in the definition of A
and D.
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A Policy Iteration algorithm for Borrow-Lend

Algorithm 1 Policy iteration for Borrow-Lend at step j with θ timestepping
[Forsyth and Labahn, 2007]

Require: Solve (I − θ∆τAj(Q))v j = g j

subject to Qi = arg supQ∈Q̂ [Aj(Q)v j ]i
where g j = (I + (1− θ)∆τAj−1)v j−1

1: Initialize v j,0 = v j−1 and Q j,0 = Q j−1

2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τAj(Q j,k−1))v j,k = g j

4: Compute Q j,k
i = arg supQ∈Q̂ [Aj(Q)v j,k ]i

5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v j = v j,k

10: Set Q j = Q j,k

This algorithm requires a matrix-vector product in line 4 for each admissable control.

We compare this with the penalty methods that we introduce.
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Penalty matrix definition

We use a penalty matrix to discretize the term (rb − rl) max(V − SVS , 0) in Equation (4).

Let DS denote a diagonal matrix with Si (gridpoints) on its diagonal.

Let T1 denote the matrix that discretizes VS with finite differences.

Thus, SVS is discretized as DST1.

We define the penalty matrix P = P(v) as a diagonal matrix with entries defined by

Pii =

{
rb − rl if vi > [DST1v ]i

0 otherwise.
(7)

Then the term (rb − rl) max(V − SVS , 0) is discretized as (P − PDST1)v .

P is not treated fully implicitly as in [Forsyth and Vetzal, 2002], but in the same nature
as A (Crank-Nicolson).
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Diagonal Penalty Iteration Algorithm for Borrow-Lend

Algorithm 2 Diagonal penalty iteration for the Borrow-Lend problem at step j , with θ-
timestepping

Require: Solve (I − θ∆τ(A + P j − P jDST1))v j = g j

where g j = (I + (1− θ)∆τ(A + P j−1 − P j−1DST1))v j−1

1: Initialize v j,0 = v j−1 and P j,0 = P(v j−1)
2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τ(A + P j,k−1))v j,k = g j − θ∆τP j,k−1DST1v

j,k−1

4: Compute P j,k = P(v j,k)
5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v j = v j,k

The nonlinearity arises between P j(v j) and v j .
We approximate P j with P j,k−1 and v j with v j,k for the V component, but v j,k−1 for the
SVS component.
In other words, the penalty matrix P is delayed by 1 iteration.

12 / 35



Tridiagonal Penalty Iteration Algorithm for Borrow-Lend

Algorithm 3 Tridiagonal penalty iteration for the Borrow-Lend problem at step j , with
θ-timestepping

Require: Solve (I − θ∆τ(A + P j − P jDST1))v j = g j

where g j = (I + (1− θ)∆τ(A + P j−1 − P j−1DST1))v j−1

1: Initialize v j,0 = v j−1 and P j,0 = P(v j−1)
2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τ(A + P j,k−1 − P j,k−1DST1))v j,k = g j

4: Compute P j,k = P(v j,k)
5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v j = v j,k

The difference from the diagonal penalty iteration is that the term SVS is applied to the
same iteration step.
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Stopping Criterion

The stopping criteron in Algorithm 1 is

(Q j,k−1 = Q j,k) or (max
i

|v j,k
i − v j,k−1

i |
max(1, |v j,k

i |)
≤ tol). (8)

The stopping criterion in Algorithm 2 is

max
i

|v j,k
i − v j,k−1

i |
max(1, |v j,k

i |)
≤ tol , (9)

while the stopping criterion in Algorithm 3 is

(P j,k−1 = P j,k) or (max
i

|v j,k
i − v j,k−1

i |
max(1, |v j,k

i |)
≤ tol). (10)

Note that, in Algorithm 3, if the equality of the penalty matrices is satisfied, the other
part will automatically be satisfied on the next iteration.
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Numerical results (comparing choice of grid)

Nodes Tstep Iter Value Change Rate Pred
100 102 102 23.723409 0.00e+00 0.00 0.000000
200 202 202 23.985540 2.62e-01 0.00 0.000000
400 402 402 24.049544 6.40e-02 2.03 24.070221
800 802 802 24.065266 1.57e-02 2.03 24.070385

Table 2: Borrow-Lend problem solved with Policy Iteration, uniform grid

Nodes Tstep Iter Value Change Rate Pred
100 102 102 24.057902 0.00e+00 0.00 0.000000
200 202 203 24.067267 9.36e-03 0.00 0.000000
400 402 406 24.069607 2.34e-03 2.00 24.070386
800 802 809 24.070191 5.85e-04 2.00 24.070386

Table 3: Borrow-Lend problem solved with Policy Iteration, nonuniform grid

Note that nonuniform grid reduces the change by a factor of around 25, subsequently we
will use nonuniform grids.
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Numerical results (penalty methods)

Nodes Tstep Iter Value Change Rate Pred
100 102 307 24.057902 0.00e+00 0.00 0.000000
200 202 484 24.067267 9.36e-03 0.00 0.000000
400 402 864 24.069607 2.34e-03 2.00 24.070386
800 802 1650 24.070191 5.85e-04 2.00 24.070386

Table 4: Borrow-Lend problem solved with diagonal penalty iteration

Nodes Tstep Iter Value Change Rate Pred
100 102 103 24.057902 0.00e+00 0.00 0.000000
200 202 204 24.067267 9.36e-03 0.00 0.000000
400 402 406 24.069607 2.34e-03 2.00 24.070386
800 802 809 24.070191 5.85e-04 2.00 24.070386

Table 5: Borrow-Lend problem solved with tridiagonal penalty iteration

Diagonal policy iteration doubles the iteration count; subsequently we will have
tridiagonal treatment of any penalty terms.
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Stock Borrowing Fees

Control problem:

Vτ = sup
Q

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1 − q3)((rl − rf )SVS − q2V )

}
(11)

with Q = (q1, q2, q3), q1 ∈ {rl , rb}, q2 ∈ {rl , rb}, q3 ∈ {0, 1}, so 8 cases.

Nonlinear PDE:

Vτ =
σ2S2

2
VSS + rl(SVS − V ) + max{(rb − rl)(SVS − V ),−rf SVS , 0} (12)

≡ L(rl) + max{(rb − rl)(SVS − V ),−rf SVS , 0}

Space and time discretization remain the same as in Borrow-Lend problem.

Algorithms are very similar as well.
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Policy Iteration

The policy iteration algorithm is very similar to Algorithm 1. In fact, the steps are exactly
the same other than the maximization step, which has a different implementation due to
the different number of controls.

However, we still have to enumerate all the possible combinations (8 in this case) to find
the maximum for each component.

"Curse of Dimensionality": As the number of controls increase, the number of
combinations that need to be enumerated increases exponentially – when American
options are considered, the number doubles again.
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Penalty Matrix Definition

The penalty matrix is very similar to the one for Borrow-Lend, however, there is a max
over 3 terms we need to consider, since the term of interest is now

max{(rb − rl)(SVS − V ),−rf SVS , 0} (13)

Let now A, P1 and P2 the tridiagonal matrices arising from the discretization of L(rl)V ,
(rb − rl)(SVS − V ) and −rf SVS , respectively.

Note that P1 = (rb − rl)(DST1 − I ) and P2 = −rfDST1.

Define the tridiagonal penalty matrix P = P(v j) by

Pi,: =


0 if [P1v

j ]i ≤ 0 and [P2v
j ]i ≤ 0

[P1]i,: if [P1v
j ]i > 0 and [P1v

j ]i > [P2v
j ]i

[P2]i,: if [P2v
j ]i > 0 and [P1v

j ]i ≤ [P2v
j ]i ,

(14)

For convenience, we have borrowed the colon notation from matlab.
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Tridiagonal Penalty Iteration

Due to the better performance of Algorithm 3 compared to Algorithm 2, we have only a
tridiagonal penalty iteration.

Algorithm 4 Tridiagonal penalty iteration for the Stock Borrowing Fees problem at step j ,
with θ-timestepping

Require: Solve (I − θ∆τ(A + P(v j)))v j = g j

where g j = (I + (1− θ)∆τ(A + P(v j−1)))v j−1

1: Initialize v j,0 = v j−1 and P j,0 = P(v j−1)
2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τ(A + P j,k−1))v j,k = g j

4: Compute P j,k = P(v j,k)
5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v j = v j,k
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Numerical results

Nodes Tstep Iter Value Change Rate Pred
100 102 113 24.121945 0.00e+00 0.00 0.000000
200 202 223 24.131388 9.44e-03 0.00 0.000000
400 402 444 24.133747 2.36e-03 2.00 24.134533
800 802 882 24.134336 5.89e-04 2.00 24.134532

Table 6: Stock Borrowing Fee problem solved with Policy Iteration

Nodes Tstep Iter Value Change Rate Pred
100 102 113 24.121945 0.00e+00 0.00 0.000000
200 202 222 24.131388 9.44e-03 0.00 0.000000
400 402 443 24.133747 2.36e-03 2.00 24.134533
800 802 882 24.134336 5.89e-04 2.00 24.134532

Table 7: Stock Borrowing Fee problem solved with Penalty Iteration
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Stock Borrowing Fees with American Early Exercise

HJB PDE:

Vτ = sup
{µ,Q}

{
σ2S2

2
VSS + q3(q1SVS − q1V )

+ (1− q3)((rl − rf )SVS − q2V ) + µ
V ∗ − V

ε

}
(15)

with Q = (q1, q2, q3), q1 ∈ {rl , rb}, q2 ∈ {rl , rb}, q3 ∈ {0, 1}, µ ∈ {0, 1}, so 16 cases.

Penalized PDE:

Vτ =
σ2S2

2
VSS + rl(SVS − V )

+ max{(rb − rl)(SVS − V ),−rf SVS , 0}
+ ρmax{V ∗ − V , 0} (16)

where ρ = 1/ε is a large positive parameter.
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Long positions

The long position of (15) is more interesting, in part because by replacing one of the sup
by inf, we have an HJBI.

HJBI PDE:

Vτ = sup
µ

inf
Q

{
σ2S2

2
VSS + q3(q1SVS − q1V )

+ (1− q3)((rl − rf )SVS − q2V ) + µ
V ∗ − V

ε

}
(17)

with Q = (q1, q2, q3), q1 ∈ {rl , rb}, q2 ∈ {rl , rb}, q3 ∈ {0, 1}, µ ∈ {0, 1}.

Claimed to be more difficult.
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Policy iteration

Same as the previous two cases; not much to discuss for short option. Long option is
more interesting.

We compute the sup inf by first computing the inf twice over q1, q2, q3 with µ = 0 and
µ = 1, and then compute the sup over the inf.
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Penalty Matrices

There are two penalty matrices that we use here.

The first is the penalty matrix resulting from the nonlinear terms from the stock
borrowing fee problem. Here, we use the same P as defined in (14).

However, we also consider the long position, we note that the PDE is

Vτ =
σ2S2

2
VSS + rb(SVS − V )

+ min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS , 0}+ ρmax{V ∗ − V , 0} (18)

The definitions do not change significantly (other than coefficients). Notably, since the
max is replaced by min, all of the inequalities switch.

The other penalty matrix PA is for American options, introduced in
[Forsyth and Vetzal, 2002]:

[PA(v)]ii =

{
ρ if v∗ > v

0 otherwise
(19)

PA is treated fully implicitly
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Double Penalty Iteration

Algorithm 5 Double Penalty Iteration for the American Stock Borrowing Fees problem at
step j , with θ-timestepping

Require: Solve [(I − θ∆τ(A + P(v j))) + PA(v j)]v j = g j + PA(v j)v∗

where g j = (I + (1− θ)∆τ(A + P(v j−1)))v j−1

1: Initialize v j,0 = v j−1 and P j,0 = P(v j−1)
2: for k = 1, . . . ,maxit do
3: Solve [(I − θ∆τ(A + P j,k−1)) + P j,k−1

A ]v j,k = g j + PA(v j,k−1)v∗

4: Compute P j,k = P(v j,k), P j,k
A = PA(v j,k)

5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v j = v j,k
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Double Penalty Iteration (continued)

Note that in Algorithm 5 on the previous slide,

P is multiplied with the θ∆τ with A.

PA is not multiplied with the θ∆τ .

We can show the diagonal dominance of the linear system under certain conditions.

Additionally, the stopping criterion used is(
(P j,k−1 = P j,k) and (P j,k−1

A = P j,k
A )

)
or (max

i

|v j,k
i − v j,k−1

i |
max(1, |v j,k

i |)
≤ tol). (20)
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Numerical results

Nodes Tstep Iter Value Change Rate Pred
100 102 136 24.312760 0.00e+00 0.00 0.000000
200 202 271 24.323903 1.11e-02 0.00 0.000000
400 402 542 24.326884 2.98e-03 1.90 24.327972
800 802 1091 24.327704 8.20e-04 1.86 24.328015

Table 8: American Stock Borrowing Fee problem solved with Policy Iteration

Nodes Tstep Iter Value Change Rate Pred
100 102 137 24.312489 0.00e+00 0.00 0.000000
200 202 273 24.323818 1.13e-02 0.00 0.000000
400 402 545 24.326851 3.03e-03 1.90 24.327959
800 802 1091 24.327690 8.39e-04 1.85 24.328011

Table 9: American Stock Borrowing Fee problem solved with Double Penalty method
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Numerical results (Long positions)

Nodes Tstep Iter Value Change Rate Pred
100 102 137 23.069091 0.00e+00 0.00 0.000000
200 202 273 23.079792 1.07e-02 0.00 0.000000
400 402 543 23.082725 2.93e-03 1.87 23.083833
800 802 1075 23.083561 8.36e-04 1.81 23.083894

Table 10: American Stock Borrowing Fee problem solved with Policy Iteration

Nodes Tstep Iter Value Change Rate Pred
100 102 136 23.068281 0.00e+00 0.00 0.000000
200 202 268 23.079231 1.10e-02 0.00 0.000000
400 402 533 23.082250 3.02e-03 1.86 23.083399
800 802 1058 23.083114 8.64e-04 1.80 23.083461

Table 11: American Stock Borrowing Fee problem solved with Double Penalty method
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Summary & Conclusions

We have seen three different problems with algorithms that use the discrete
penalty-like iteration.

Double Penalty method is similar to [Y. Chen and C. Christara, 2020] for valuation
adjustments.
We can treat different penalty terms separately:

American penalty term is treated fully implicitly
Penalty term for nonlinearity in Borrow-Lend or Stock Borrowing Fee is treated the
same as Crank-Nicolson – ensures second order convergence.
It is comparatively difficult to do this with HJB PDEs

Diagonal Dominance of matrices in (double) penalty methods for Borrow-Lend
(Algorithms 3 & 2), Stock Borrowing Fees (Algorithm 4), and Stock Borrowing Fees
with American options (Algorithm 5) have all been proved – could lead to
monotonicity and convergence – but there is no space here.

Penalty (PDE) and Policy (HJB) methods require approximately the same number
of iterations.
Penalty methods avoid enumeration of all possible cases in the maximization step of
policy iteration

This is especially useful as the number of controls increase.
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