
CSC 2549 project: FEPR implementation
Ray Wu

rwu@cs.toronto.edu
Department of Computer Science, University of Toronto

Toronto, Ontario, Canada

ABSTRACT
We present an implementation of the Fast Energy Projection for
Real-Time Simulation of Deformable objects, featuring two mass-
spring models: one of a tetrahedron and one of the Stanford bunny.

1 INTRODUCTION
In traditional applications of numerical integration, issues such as
accuracy and order of convergence (among others) are of paramount
importance. However, in interactive applications such as computer
games, the most pertinent concern is that the computed result must
be able to be displayed to the user. Modern applications such as
computer games or interactive physics typically require a rate of
30fps or 60fps which leaves about 33 or 17 ms of time for each
update to finish. Therefore, the primary concern of any integrator
is its stability (an unstable result cannot be shown to the user)
and speed (lagging degrades the user experience) in solving for
the next update. For stabilty purposes, most applications rely on
dissipative integrators such as Backwards Euler. However, as the
description "dissipative integrator" states, the stability comes at a
cost of numerical damping; energy in the system is removed when
it shouldn’t be, leading to unrealistic simulations. Additionally, due
to the impracticality of computing a timestep to satisfy stability
restrictions, there is always the risk of a timestep that is too large for
a less stable integrator such as Linearized Backwards Euler which
lead to instabilities in the form of a numerical explosion.

The authors of [1] present a novel projection scheme which takes
the computed result of any integrator and projects the result back
onto a space where conservation of energy is maintained, subject
to some constraints on momentum and angular momentum. By
projecting the computed result back onto a manifold where energy
is preserved, the most serious issues of excessive damping and
numerical explosions are avoided.

2 DESCRIPTION OF THE ALGORITHM
FEPR is intended to be an add-on to process the computed re-
sult of any integrator. In our example, we implement FEPR as an
add-on to a linearly implicit integrator (Linearized Backwards Eu-
ler). We introduce the variables and important quantities. We rep-
resent the position and velocity of each point as the vectors 𝑥
and 𝑣 respectively. The total energy of our system is defined as
𝐻 (𝑥, 𝑣) = 𝐸 (𝑥) + 1

2𝑣
𝑇𝑀𝑣 which is the sum of potential and kinetic

energies. We also define the total linear momentum 𝑃 (𝑣) = ∑
𝑚𝑖𝑣𝑖

and the total angular momentum 𝐿(𝑥, 𝑣) = ∑
𝑥𝑖 ×𝑚𝑖𝑣𝑖 . Given some

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

timestep ℎ, FEPR projects the result of our linearly implicit inte-
grator onto the constant energy manifold by solving the following
optimization problem:

min
𝑥,𝑣,𝑠,𝑡

1
2 ∥𝑥 − 𝑥𝑛+1∥2𝑀 + ℎ2

2 ∥𝑣 − 𝑣𝑛+1∥2𝑀 + 𝜖

2 (𝑠
2 + 𝑡2) (1)

subj. to 𝐻 (𝑥, 𝑣) = 𝐻 (𝑥𝑛, 𝑣𝑛)
𝑃 (𝑣) = 𝑃 (𝑣𝑛+1) + 𝑠 (𝑃 (𝑣𝑛) − 𝑃 (𝑣𝑛+1))
𝐿(𝑥, 𝑣) = 𝐿(𝑥𝑛+1, 𝑣𝑛+1) + 𝑡 (𝐿(𝑥𝑛, 𝑣𝑛) − 𝐿(𝑥𝑛+1, 𝑣𝑛+1))

Note that when 𝐴 is positive-definite, ∥𝑥 ∥𝐴 is the 𝐴-norm or
energy norm of the vector 𝑥 , defined by

√
𝑥𝑇𝐴𝑥 .

The above set of equation and constraints (in plain words) state
that the FEPR algorithm computes a state 𝑥 and 𝑣 that is as close to
the result of the integrator as possible, subject to the constraints
that energy must be maintained, and that the linear and angular
momenta must be an affine combination of the momenta at the
current and previous timesteps. Note that since our simulation is in
three-dimensional space, 𝑃 and 𝐿 have outputs in R3. Additionally,
the parameters 𝑠 and 𝑡 are regularized to coerce them to be close to
zero (we do not want large shifts in linear or angular momentum)

In [1], the authors choose 𝜖 = 10−3 and we keep this choice for
our implementations.

Like what the authors do in their paper, in our presentation of
the algorithm we simplify the notation. Let 𝑞 be defined as the
stacked state vector: 𝑞 = [𝑥, 𝑣, 𝑠, 𝑡]. Additionally, define 𝐷 to be a
diagonal matrix of the same size as 𝑞, with the diagonal elements
being from the diagonal elements of𝑀 , ℎ2𝑀 , and 𝜖 , 𝜖 . Additionally,
we define a vector-valued function 𝑐 (𝑞) = [𝑐1, 𝑐2, . . . , 𝑐7] which is
zero when the constraints are satisified: i.e.

𝑐1 (𝑞) = 𝐻 (𝑥, 𝑣) − 𝐻 (𝑥𝑛, 𝑣𝑛)
𝑐2,3,4 (𝑞) = 𝑃 (𝑣) − 𝑃 (𝑣𝑛+1) − 𝑠 (𝑃 (𝑣𝑛) − 𝑃 (𝑣𝑛+1))
𝑐5,6,7 (𝑞) = 𝐿(𝑥, 𝑣) − 𝐿(𝑥𝑛+1, 𝑣𝑛+1) − 𝑡 (𝐿(𝑥𝑛, 𝑣𝑛) − 𝐿(𝑥𝑛+1, 𝑣𝑛+1))

Then, our problem simplifies to

min
𝑞

1
2 ∥𝑞 − 𝑞𝑛+1 |2𝐷 (2)

subj. to 𝑐 (𝑞) = 0.

To solve this problem, the authors used an iterative method.
The authors’ first attempt to solve the problem is a sequential
quadratic programming approach, but each iterate required solving
a dense system of equations that is proportional to the number
of unknowns (i.e. particles or finite elements in our simulation)
so the speed was unacceptably slow. To resolve this, the authors
then attempted to use a quasi-Newton approach, but the number
of iterations took excessively long to converge. Finally, the authors

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Ray Wu

settled on a modification of the problem:

𝑞 (𝑘+1) = argmin𝑞
1
2 ∥𝑞 − 𝑞 (𝑘) |2𝐷

subj to 𝑐 (𝑞 (𝑘) ) + ∇𝑐 (𝑞 (𝑘) )𝑇 (𝑞 − 𝑞 (𝑘) ) = 0

As the authors explain, each iterate no longer minimizes the
𝐷-norm distance to the computed result of the integrator but to the
previous timestep. Visual tests by the authors indicate that this is
not a big problem.

As with the previous problem formulations (for conciseness
reasons, they are not reproduced here), the authors solve their
modified problem using Newton’s method for convex optimization
with constraints, which leads to a sequence of iterates that converge
to the optimal solution. This leads to the rise of Lagrangemultipliers,
and the Karush-Kuhn-Tucker (KKT) conditions lead to the following
linear system:[

𝐷 ∇𝑐 (𝑞 (𝑘) )
∇𝑐 (𝑞 (𝑘) )𝑇 0

] [
𝑞 (𝑘+1) − 𝑞 (𝑘)

_ (𝑘+1)

]
= −

[
0

𝑐 (𝑞 (𝑘) )

]
(3)

Next, we present the algorithm to solve the modified problem.
(1) The result of the base integrator 𝑥𝑛+1, 𝑣𝑛+1 is computed. Set

𝑠 and 𝑡 equal to zero.
(2) Initialize the first guess 𝑞 (𝑘) = 𝑞𝑛+1.
(3) We compute 𝑐 and check that it is sufficiently small (i.e.

∥𝑐 (𝑞 (𝑘) )∥1 ≤ 10−7).
(4) We solve the linear system (3) for 𝑞 (𝑘+1) and _ (𝑘+1) . Since 𝐷

is constant and the matrix is symmetric, we can use the Schur
Complement Lemma to solve for the Lagrange multiplier
_ (𝑘+1) efficiently:

(a) Compute the Schur complement: 𝑆 = ∇𝑐 (𝑞 (𝑘) )𝑇𝐷−1𝑐 (𝑞 (𝑘) )
(b) Check that 𝑆 is full rank. If not, regularize it with 𝑆 +10−7𝐼 ,

where 𝐼 is the 7x7 identity matrix.
(c) Solve the linear system 𝑆_ (𝑘+1) = 𝑐 (𝑞 (𝑘) ).
(d) Obtain the new iterate as𝑞 (𝑘+1) = 𝑞 (𝑘)−𝐷−1∇𝑐 (𝑞 (𝑘) )_ (𝑘+1) .
Note that in practice, since we never actually use the matrix
𝐷 itself but only its inverse, we compute and store its inverse.
This is easy because 𝐷 is diagonal, so its inverse is just the
reciprocal of each entry.

(5) return to step (3).

3 RESULTS
We will proceed to show the difference in results between the
Linearly Implicit Euler with and without FEPR. Since FEPR uses a
quasi-Newton iteration, we would expect a very fast convergence.
We also would expect that FEPR preserves the total energy of a
simulated system, unlike the Linearly Implicit Euler without FEPR.
We show two mass-spring examples, one of a tetrahedron and the
other of a bunny.

3.1 Tetrahedron
It is difficult to determine visually the differences between FEPR
and no FEPR, because the tetrahedron’s deformation is not obvious
in video. Therefore, we will just show a graph of the energy levels to
show the energy-preserving nature of FEPR. We see that in Figure
1, the integration method with FEPR (blue) keeps the same energy
level throughout the integration period (FEPR is only activated

after a mouse drag, as otherwise the object will just stay in rest
position forever), whereas we see oscillations in the energy level of
the integration method with no FEPR (red line) due to stretching.

1 2 3 4

timestep 10
4

2.45 10
1

3.74 10
1

7.44 10
2

to
ta

l 
e

n
e

rg
y

tetrahedron with FEPR

tetrahedron without FEPR

Figure 1: Energy levels of Tetrahedron

3.2 Bunny
For the visual differences in the bunny, please see the accompanying
video, where it is clear that FEPR preserves the swaying motion
in the bunny’s ears after the user drags it and without FEPR the
bunny’s ears slowly return to their original (rest) position. For the
energy levels, please see Figure 2. The animation with FEPR is more
lively and the energy levels are preserved, whereas without FEPR
the energy level decays back down near the original rest state of
6.04 × 105. The dissipative nature of Linearized Backwards Euler
plays the key role in damping the energy level when we don’t use
the FEPR method.

200 400 600 800 1000

timestep

6.04 10
56.58 10
5

1.20 10
6

3.86 10
6

to
ta

l 
e

n
e

rg
y

bunny with FEPR

bunny without FEPR

Figure 2: Energy levels of Bunny

3.3 FEPR Iterations per timestep
Based on the theory of convex optimization, quasi-Newton has
superlinear convergence and should not take many iterations to



CSC 2549 project: FEPR implementation Conference’17, July 2017, Washington, DC, USA

stabilize. Based on our numerical results, the tetrahedron could take
many FEPR iterations to stabilize – sometimes up to 100. However,
the model is very simple, and thus may not be a representative case.
For the more realistic bunny, FEPR only takes several iterations to
converge. In my simulation I found that it takes less than 6 iterations
to converge, which is to be expected from a quasi-Newton method.

4 CONCLUSION
In conclusion, we have seen how the FEPR projectionmethod allows
us to keep the energy level constant during time-integration, so that
numerical damping and numerical explosions can both be avoided.
One of the drawbacks of the project is that I wish I had done the
application of the FEPR method to the finite element armadillo
with Linearized Backwards Euler, which as we saw in assigment
three exploded unless the user was very careful with dragging. The
authors of FEPR claim to be able to preserve stability (see their
hippo animation, Figure 11 and Figure 12) and it would have been
nice to reproduce this result.

REFERENCES
[1] Dimitar Dinev, Tiantian Liu, Jing Li, Bernhard Thomaszewski, and Ladislav Kavan.

2018. FEPR: Fast energy projection for real-time simulation of deformable objects.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–12.

A FORMULATION OF THE MASS-SPRING
SYSTEM

Here, we briefly discuss the modelling of the mass-spring system
and computing the gradient of the constraint function 𝑐 .

In our mass-spring system, the bunny is represented by point-
masses each with mass 1 (hence, could be ignored), and the spring
connecting them all have the same strain constant but different
rest lengths. The bunny’s surface is defined by the triangle shapes
forming on the boundary.

To take the gradient of 𝑐 , we need to consider the gradient of
each component of 𝑐 (energy, momentum, angular momentum)
with respect to the state variables 𝑥 , 𝑣 , 𝑠 , 𝑡 .

• For the energy, first we note that the kinetic energy depends
only on 𝑣 and the potential energy only depends on 𝑥 . We
have library functions (the files we implemented in assign-
ment 2: dV...dq) to take the derivative of the potential energy
with respect to 𝑥 . For the derivative with respect to 𝑣 , only
the kinetic energy depends on 𝑣 so we have from our basic
formulas𝑀𝑣 as our derivative.

• For the linear momentum constraint, it does not depend on
𝑥 or 𝑡 so those blocks of the Jacobian are zero. The gradient
of the linear momentum with respect to each of the 𝑣𝑖 ’s is
an identity matrix of size 3, which fills in that 3𝑚 × 3 block.
The gradient of the momentum constraint with respect to 𝑠
is −(𝑃 (𝑣𝑛) − 𝑃 (𝑣𝑛+1)).

• For the angular momentum constraint, it does not depend on
𝑠 and its derivative with respect to 𝑡 is analogous to the linear
momemtum with respect to 𝑠: −(𝐿(𝑥𝑛, 𝑣𝑛) − 𝐿(𝑥𝑛+1, 𝑣𝑛+1)).
For the derivative with respect to 𝑣 , note that 𝐿(𝑥𝑖 , 𝑣𝑖 ) is
defined as 𝑥𝑖 × 𝑣𝑖 . Therefore, we can represent this as a
matrix-vector multiplication operaton 𝐿(𝑥𝑖 , 𝑣𝑖 ) = [𝑋 𝑖 ] × 𝑣𝑖

where [𝑋 𝑖 ], as is convention in the course for rigid bodies,

is the cross product matrix. Then we can take the gradient
as we do normally with our matrix-vector identites. Note an
important detail that while the vectors 𝑥 and 𝑣 are vertical in
our simulation, in the gradient 𝑐 they become horizontal, and
so we should take the transpose (or the negative, since the
transpose of the cross-product matrix is the negative) of the
cross-product matrix when assigning the derivative of that
block. For the partial derivative with respect to 𝑥 , we note
that the cross product is anticommutative (𝑎 × 𝑏 = −𝑏 × 𝑎)
so the gradient is −[𝑉 𝑖 ].

Note that we have fixed points in our simulation (the tetrahe-
dron’s first vertex is fixed, as are the vertices around the bunny’s
feet), therefore we have to keep track of two vectors: a full vec-
tor containing all the points and a smaller vector containing only
the vertices which are free to move. When computing the energy
and momenta, we need to compute from the full vector. However,
when computing partial derivatives, we only need to compute those
partial derivatives with respect to the points that can move freely.

B RUNNING THE CODE
To run the code, download the repository for assignment 2 (use
git clone –recursive), and unzip the *.cpp files to the src/
directory (except for main.cpp which replaces the main.cpp file
in the root directory), and unzip the *.h files to the include/
directory. Compiling instructions are the same as the assignment.

To run the code, open a console and run ./<filename> a b
where filename is the compiled file, a is tet for the tetrahedron,
anything else for the bunny, and b is no_fepr for no use of FEPR,
and anything else for FEPR.


	Abstract
	1 Introduction
	2 Description of the Algorithm
	3 Results
	3.1 Tetrahedron
	3.2 Bunny
	3.3 FEPR Iterations per timestep

	4 Conclusion
	References
	A Formulation of the Mass-Spring system
	B Running the code

