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@ Overview
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Black-Scholes

The Black-Scholes PDE [Black and Scholes, 1973] framework models many
pricing problems in finance. It is given by

0252

2

V, = Vss +rSVs — rV = L(o,r)V (1)

@ S — asset price variable

@ 7 — backward time variable from maturity T (1 =T — t)

@ o — volatility of asset price

@ r —interest rate
Some non-vanilla option pricing problems are obtained by adding terms or
modifying existing terms in Equation (1). Then we have
252
2
with £; being linear second order differential operators, and p is a large
value (for American options) or zero (European options).
For some problems, first max is replaced with min.

V, = 22 Vsg+rSVs —rV +max{ L1V, L2V, 0} + pmax{V* — V,0} (2)
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Hamilton-Jacobi-Bellman (HJB) equations

Hamilton-Jacobi-Bellman (HJB) equations model many nonlinear pricing
problems in finance.

General form of HJB equations in finance:

V, = sup{a(S,T, Q)Vss + b(S,7,Q)Vs + ¢(S,7,Q)V + d(S,,u)} (3)
Q.1
e Q, pu — control variables (u for American)

@ aVss + bVs + cV + d is L(-)V with additional and/or modified terms

@ The above is for short positions. For long positions, sup is replaced by
inf.
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Example Problems

We study the following nonlinear pricing problems in computational finance
under the Black-Scholes framework

@ Stock Borrowing Fee problem [Duffie et al., 2002] with American-style
exercise rights [Forsyth and Labahn, 2007]

@ Uncertain Volatility Models [Avellaneda et al., 1995]
@ Transaction Cost Models [Leland, 1985]

formulated as HJB equations and as nonlinear PDEs.

We consider the solution of the HJB equations with policy iteration
[Forsyth and Labahn, 2007] which we improve for problems with American
exercise rights.

We derive penalty-like (penalty) iteration algorithms for the solution of the
nonlinear PDEs with max and min terms, inspired by
[Forsyth and Vetzal, 2002, Chen and Christara, 2021].
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@ Problem Descriptions
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Stock Borrowing Fee problem (long position) with American exercise rights

Control problem:

0252
vV, = supigf 5 Vss + q3q1(SVs — V) (4)
m

V-V
+ (1 —a3)((rn—rF)SVs — V) + ; },

with @ = (q1,92,93), g1 € {r, b}, 92 € {r,rp}, g3 € {0, 1}, p € {0,1}.
PDE problem:

V, = 02252 Vss + rp(SVs — V)
+ min{(rn = rp)(SVs = V), =(rs — 11+ rr)SVs, 0} +pmax{V* — V, 0} (5)
Initial condition of PDE (“straddle payoff"):
V(t=0,5)=max(K -5,5 — K) (6)

Note that r, > 1 > rF >0
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Uncertain Volatility problem (best case)

Control problem:

q252
V.= sup {2v55+r5V5—rV} (1)
qE{JmimUmax}
PDE problem:
2. 52 max ~ Tin)S”
V: = Umg‘ Vss +rSVs —rV + max{ Fmax 20'“'”) Vss,o} (8)

Initial condition of PDE (“butterfly spread"):

V(t=0,5)=(S—Ki)"—2(S—K)"+(5— Kz)" where X™ = max(X,0)
(9)
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Plot of Payoffs
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From left to right: Butterfly Spread payoff, Put payoff, Straddle payoff.
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Transaction Cost problem

Control problem:

2
V, = inf {(0 + q> $2Vss + rSVs — rV} (10)
qge{—k,k} 2

With American exercise rights

2 V-V
V. = sup inf {<U +q> S52Vss +rSVs —rV +pu } (11)

pe{o,1y as{—rx} [\ 2 €
PDE problem:
0'252 . 2 2
V, = > Vss + rSVs — rV + min{k5°Vss, —kS“Vss } (12)
With American exercise rights
2¢g2
v. =2 Vss +rSVs —rV 4+min{kS?Vss, —kS?Vss} + pmax{V* — V,0} (13)

Put (convex) and Butterfly Spread (nonconvex) payoff are used as initial
conditions.

Nonlinearity arising from transaction cost disappears in convex/concave case.
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@ Numerical Methods
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Discussion on Spatial Grid
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Figure 1: Red: uniform grid. Blue: Nonuniform grid for put and straddle payoffs.
Yellow: Nonuniform grid for Butterfly Spread payoff
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Penalty Matrices and nonlinear discretization

We use penalty matrices to discretize nonlinear terms involving max or min.

Let A denote the matrix that computes the spatial discretization of L. For
penalty it is constant, but for policy iteration it depends on the control Q.
Let Ty, T denote the tridiagonal matrices used to compute the finite

difference approximations of the first and second derivatives, and let Dg
denote a diagonal matrix with the S; (gridpoints) on its diagonal.

When we have an American exercise right, the value function cannot be
less than the payoff. Hence we use the same penalty matrix as in
[Forsyth and Vetzal, 2002] to enforce this restriction:

p ifvi>v
P = 14
Av) {O otherwise (14)

The penalty-like matrix for each problem is then computed based on a
maximum of several terms involving Ty, T,, and Ds. Details to follow.
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Penalty Matrix for Stock Borrowing Fees

We introduce a penalty-like matrix to compute

min{(r/ — rb)(SVS — V), —(rb —n+ rf)SVS,O}.

Let Py = (r—rp)(DsTy — 1) and P, = —(rp, — r; + rf)Ds Ty be the
tridiagonal matrices arising from the discretization of (r; — rp)(SVs — V)

and —(rp — r; + rr)SVs, respectively.

Define the tridiagonal penalty matrix P = P(v/) by

0 if [Plvj],-EOand [ngj]fZO
Pi. =< [Pi];. if [P1v/]; < 0 and [P1V]; < [PaVY]; (15)
[Pg];’: if [szj]i < 0 and [Plvj],- > [ngj];.

For convenience, we have borrowed the colon notation from matlab.
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Penalty Matrix for Uncertain Volatility

We introduce a penalty matrix to handle the nonlinear term

2 _ 52382
max { (Umax 2Um|n) VSS, 0} (16)

Define the matrix P by

i —

p. _ 2(0q)[D2To);. if [DETovY]; >0
0 otherwise,

where 04 = 02, — 02, .
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Penalty Matrix for Transaction costs

The tridiagonal penalty matrix P = P(v/) to handle the term
min{xkS?Vss, —kS5%Vss} in (12) is defined by
—k[D2Ty);. if [D2Tav/]; >0
P — "l s 2l if [DsTavi > (18)
k[DETy]i. otherwise.

All these matrices are defined in a way consistent with the discretization of
the nonlinear terms involved. We apply a Crank-Nicolson discretization for
timestepping which gives us our algorithms.

When European options are considered, we use a uniform Crank-Nicolson
timestepping throughout. Where American options are considered, we use
a variable CN timestepping proposed in [Forsyth and Vetzal, 2002].

In both cases we use Rannacher smoothing, where the first two timesteps
are split into four half-size fully implicit timesteps for smoothing the initial
conditions sufficiently.
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Double-Penalty Iteration

Algorithm 1 Double-penalty iteration at step j, with 6-timestepping
Works for both European and American; if European set P4 =0
Require: Solve [(I — OAT(A + P(W))) + Pa(V)]V/ = g/ + Pa(V)v*
where g/ = (I + (1 — 0)AT(A+ P(v/71)))w !
1 Initialize v/ = v/=1, Pi0 = P(vi=1), and P5% = Ps(v/ 1)
2. for k=1,..., maxit do

3. Solve [(/ — OAT(A 4 PIk=1)) 4 PLK Y yik — gi 4 plitys
4: if first stopping criterion satisfied then

5: Break

6: endif .

7. Compute Pk = P(vik), PLX = Py(vikK)

8:  if second stopping criterion satlsfled then

9 Break

10  endif

11: end for

12: Set v/ = ok
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Improved Policy lteration

Algorithm 2 Policy Iteration for HJB PDEs at step j, with 6 timestepping
Works for both European and American; if European set R =0
Require: Solve (I — 0ATA + RI)v = g/=1 + Riv*
where g1 = (I + (1 — 0)ATA~ )/t and R = diag(ui/e€).
subject to Q = arg sup e o[A(Q)v J); and i} = argsupue{0 BIR()(v* = v)];
. Initialize v/0 = /=1, (0 = ;=1 and Q0 = Q1
2: for k = 1,...,max1t do
Solve (I — OATAK=L  RIK=L) ik = gi=1 4 Rik=1x
if first stopping criterion satisfied then

3

4

5: Break
6: endif
.

8

9

Compute Q% = argsupgoc o [A(Q)V];, k= argsup,,c 0,131 [R()(v" — v
if second stopping criterion satisfied then
Break
10  endif
11: end for
12: Set Vj = vj’k, /Lj = ;Lj’k, and QJ = Qj’k 18/32



Stopping Criteria

The first stopping criterion for both penalty and policy iteration is

jk k=1
vt = v
max —
i " max(scale, |v!’

} < tol (19)

)

The second stopping criterion for penalty iteration is

’[Pjvkvjvk — Pf’kflvjvk]ll
max ——
i~ max(scale, |[P/kviK];])

} < tol and Pf;\’k = PJA;’kfl (20)

Typical values are scale = 1 and to/ = 107°.

Second stopping criterion for policy iteration is

AWK — A(QAT) K|

max(scale, A(QJ-k)vi:k)

max{ } < tol and gk = Rt (21)
1
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Discussion on convergence

For convergence, there are two things to prove:
@ the penalty iteration converges
o the discretization converges overall to the HJB solution.

We make certain assumptions that are sufficient to carry the proofs but not
necessary to obtain the desired numerical behavior.

We give a brief overview on how we prove the statements:

The first is easy to prove following standard arguments such as
[Chen and Christara, 2021] and [Forsyth and Vetzal, 2002].

The second we follow arguments made in [Barles, 1997] and

[Pooley et al., 2003], where a stable, consistent, monotone scheme ensures
convergence to the viscosity solution.
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@ Numerical Results
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Stock Borrowing Fee problem (long position) with American

exercise rights

Common Information Penalty Iters | Policy lters

Nodes | Tstep Value Change | Rate | Total | Avg | Total | Avg
101 40 23.076824 — — 71 1.77 | 68 1.70
201 82 23.082631 | 5.81e-03 | — 142 | 1.73 | 139 | 1.70

401 166 | 23.083667 | 1.04e-03 | 2.49 | 277 | 1.67 | 273 | 1.64
801 332 | 23.083875 | 2.09e-04 | 2.31 | 561 | 1.69 | 558 | 1.68
1601 664 | 23.083922 | 4.68e-05 | 2.16 | 1127 | 1.70 | 1126 | 1.70
3201 | 1327 | 23.083932 | 1.05e-05 | 2.16 | 2237 | 1.69 | 2296 | 1.73

Table 1: Long position of Stock Borrowing Fees problem with straddle payoff,
American exercise rights and variable timesteps; value computed at K; Penalty
results by Algorithm 1, Policy results by Algorithm 2. Parameters: o = 0.30,
r, = 0.05,  =0.03, rr =0.004, T = 1.0, K = 100, Spax = 1000
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Uncertain Volatility (best case)

Common Information Penalty Iters | Policy Iters

Nodes | Tstep Value Change | Rate | Total | Avg | Total | Avg
101 27 | 4.888611 — — 36 133 | 36 | 1.33

201 52 4883171 | -5.44e-03 | — 70 1.35 71 1.37

401 102 | 4.881935 | -1.24e-03 | 2.14 140 | 1.37 | 140 | 1.37

801 202 | 4.881634 | -3.01e-04 | 2.04 | 273 | 1.35 | 274 | 1.36

1601 402 | 4.881560 | -7.44e-05 | 2.02 | 543 | 1.35 | 544 | 1.35
3201 802 | 4.881541 | -1.82e-05 | 2.03 | 1084 | 1.35 | 1086 | 1.35

Table 2: Best Case of Uncertain Volatility problem with butterfly payoff and
constant timesteps; value computed at K; Penalty results by Algorithm 1, Policy
results by Algorithm 2. Parameters: 0max = 0.25, 0min = 0.15, r = 0.1,
T =0.25 K1 =90, K =100, K, = 110, Spax = 500.
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Transaction Cost Model (European exercise rights, Put

Payoff)

Common Information Penalty Iters | Policy lters

Nodes | Tstep Value Change | Rate | Total | Avg | Total | Avg
101 102 15.843845 — — 103 | 1.01 103 | 1.01
201 202 | 15.850002 | 6.16e-03 | — 203 | 1.00 | 203 | 1.00

401 402 | 15.851542 | 1.54e-03 | 2.00 | 403 | 1.00 | 403 | 1.00
801 802 | 15.851927 | 3.85e-04 | 2.00 | 803 | 1.00 | 803 | 1.00
1601 | 1602 | 15.852023 | 9.63e-05 | 2.00 | 1603 | 1.00 | 1603 | 1.00
3201 | 3202 | 15.852047 | 2.41e-05 | 2.00 | 3203 | 1.00 | 3203 | 1.00

Table 3: European Transaction Model with Put payoff (linear problem) and
constant timesteps; value computed at K; Penalty results by Algorithm 1, Policy
results by Algorithm 2. Parameters: ¢ = 0.65, r =0.05, T = 1.0, K = 0.1,

K =100, Smax = 1000. Exact solution is 15.852055.

Note that, as expected, we only take one iteration per timestep (due to
linearity).
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Transaction Cost Model (European exercise rights, Butterfly

Spread Payof)

Common Information Penalty Iters | Policy Iters

Nodes | Tstep Value Change | Rate | Total | Avg | Total | Avg
101 102 | 0.126405 — — 121 | 119 | 121 | 1.19
201 202 | 0.125742 | -6.63e-04 | — 236 | 1.17 | 236 | 1.17

401 402 | 0.125485 | -2.57e-04 | 1.37 | 474 | 1.18 | 474 | 1.18
801 802 | 0.125361 | -1.24e-04 | 1.05 | 936 | 1.17 | 935 | 1.17
1601 | 1602 | 0.125323 | -3.83e-05 | 1.70 | 1879 | 1.17 | 1874 | 1.17
3201 | 3202 | 0.125311 | -1.20e-05 | 1.68 | 3736 | 1.17 | 3719 | 1.16

Table 4: European Transaction Cost model with Butterfly Spread payoff and
constant timesteps; value computed at K; Penalty results by Algorithm 1, Policy
results by Algorithm 2. Parameters: 0 = 0.65, r =0.05, T =1, k = 0.1,

K =100, Smax = 1000.
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Transaction Cost Model (American exercise rights, Put

Payoff)

Common Information Penalty Iters | Policy lters

Nodes | Tstep Value Change | Rate | Total | Avg | Total | Avg
101 42 14.671527 — — 66 157 | 66 1.57
201 85 14.677064 | 5.54e-03 | — 136 | 1.60 | 134 | 1.58

401 171 | 14.678432 | 1.37e-03 | 2.02 | 278 | 1.63 | 281 | 1.64
801 344 | 14.678768 | 3.36e-04 | 2.03 | 565 | 1.64 | 577 | 1.68
1601 687 | 14.678851 | 8.29e-05 | 2.02 | 1144 | 1.67 | 1146 | 1.67
3201 | 1374 | 14.678872 | 2.06e-05 | 2.01 | 2272 | 1.65 | 2287 | 1.66

Table 5: American Transaction Cost model with Put payoff and variable timesteps;
value computed at K. Penalty results by Algorithm 1, Policy results by Algorithm
2. Parameters: 0 = 1.0, r = 0.1, T = 0.25, xk = 0.18, K = 100, Sax = 1000.
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Transaction Cost Model (American exercise rights, Butterfly

Spread Payof)

Common Information Penalty Iters | Policy lters

Nodes | Tstep Value Change | Rate | Total | Avg | Total | Avg
101 42 8.556308 — — 54 1.20 54 1.20
201 87 8.558431 | 2.12e-03 | — 110 | 1.24 | 109 | 1.22

401 176 | 8.558946 | 5.15e-04 | 2.04 | 220 | 1.24 | 219 | 1.24
801 353 | 8.559073 | 1.27e-04 | 2.02 | 433 | 1.23 | 427 | 1.21
1601 704 | 8.559073 | 3.12e-05 | 2.03 | 868 | 1.23 | 853 | 1.21
3201 | 1407 | 8.559112 | 7.81e-06 | 2.00 | 1731 | 1.23 | 1720 | 1.22

Table 6: American Transaction Cost model with Butterfly Spread payoff and
variable timesteps; value computed at 1.1K; Penalty results by Algorithm 1,
Policy results by Algorithm 2. Parameters: 0 = 0.65, r =0.05, T =1, x = 0.1,
K =100, Spax = 1000.

We do not compute the convergence at K, because the value at that point
remains constant, as it is bound by the constraint arising from American
exercise rights (v > V*) and only has rounding and no discretization error.
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@ Conclusion
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Conclusion

@ Double-penalty method is similar to [Chen and Christara, 2021] for
pricing valuation adjustments. Here we extend the method to account
for nonlinear terms involving max/min of first and second derivatives.

@ The improved policy iteration method works well with American
options and variable timestepping.

@ We have proven the convergence of the individual iterations at a
specified timestep and also the convergence of the discretization
scheme to the viscosity solution. Please see accompanying paper for
the proofs under certain assumptions.

@ Penalty (PDE) and Policy (HJB) methods take approximately the
same number of iterations.

@ However, penalty methods avoid the enumeration of all possible cases,
which makes them more efficient than the policy iteration methods.
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