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Black-Scholes

The Black-Scholes PDE [Black and Scholes, 1973] framework models many
pricing problems in finance. It is given by

Vτ =
σ2S2

2
VSS + rSVS − rV ≡ L(σ, r)V (1)

S – asset price variable
τ – backward time variable from maturity T (τ = T − t)
σ – volatility of asset price
r – interest rate

Some non-vanilla option pricing problems are obtained by adding terms or
modifying existing terms in Equation (1). Then we have

Vτ =
σ2S2

2
VSS +rSVS−rV +max{L1V ,L2V , 0}+ρmax{V ∗−V , 0} (2)

with Li being linear second order differential operators, and ρ is a large
value (for American options) or zero (European options).
For some problems, first max is replaced with min.
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Hamilton-Jacobi-Bellman (HJB) equations

Hamilton-Jacobi-Bellman (HJB) equations model many nonlinear pricing
problems in finance.
General form of HJB equations in finance:

Vτ = sup
Q,µ

{
a(S , τ,Q)VSS + b(S , τ,Q)VS + c(S , τ,Q)V + d(S , µ)

}
(3)

Q, µ – control variables (µ for American)
aVSS + bVS + cV + d is L(·)V with additional and/or modified terms
The above is for short positions. For long positions, sup is replaced by
inf.
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Example Problems

We study the following nonlinear pricing problems in computational finance
under the Black-Scholes framework

Stock Borrowing Fee problem [Duffie et al., 2002] with American-style
exercise rights [Forsyth and Labahn, 2007]
Uncertain Volatility Models [Avellaneda et al., 1995]
Transaction Cost Models [Leland, 1985]

formulated as HJB equations and as nonlinear PDEs.

We consider the solution of the HJB equations with policy iteration
[Forsyth and Labahn, 2007] which we improve for problems with American
exercise rights.

We derive penalty-like (penalty) iteration algorithms for the solution of the
nonlinear PDEs with max and min terms, inspired by
[Forsyth and Vetzal, 2002, Chen and Christara, 2021].
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Stock Borrowing Fee problem (long position) with American exercise rights

Control problem:

Vτ = sup
µ

inf
Q

{
σ2S2

2
VSS + q3q1(SVS − V ) (4)

+ (1− q3)((rl − rf )SVS − q2V ) + µ
V ∗ − V

ε

}
,

with Q = (q1, q2, q3), q1 ∈ {rl , rb}, q2 ∈ {rl , rb}, q3 ∈ {0, 1}, µ ∈ {0, 1}.
PDE problem:

Vτ =
σ2S2

2
VSS + rb(SVS − V )

+ min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS , 0}+ρmax{V ∗ − V , 0} (5)

Initial condition of PDE (“straddle payoff"):

V (t = 0,S) = max(K − S ,S − K ) (6)

Note that rb > rl > rf ≥ 0
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Uncertain Volatility problem (best case)

Control problem:

Vτ = sup
q∈{σmin,σmax}

{
q2S2

2
VSS + rSVS − rV

}
(7)

PDE problem:

Vτ =
σ2
minS

2

2
VSS + rSVS − rV + max

{
(σ2

max − σ2
min)S2

2
VSS , 0

}
(8)

Initial condition of PDE (“butterfly spread"):

V (t = 0,S) = (S−K1)+−2(S−K )+ +(S−K2)+ where X+ ≡ max(X , 0)
(9)
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Plot of Payoffs
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From left to right: Butterfly Spread payoff, Put payoff, Straddle payoff.
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Transaction Cost problem

Control problem:

Vτ = inf
q∈{−κ,κ}

{(
σ2

2
+ q

)
S2VSS + rSVS − rV

}
(10)

With American exercise rights

Vτ = sup
µ∈{0,1}

inf
q∈{−κ,κ}

{(
σ2

2
+q

)
S2VSS +rSVS −rV +µ

V ∗ − V

ε

}
(11)

PDE problem:

Vτ =
σ2S2

2
VSS + rSVS − rV + min{κS2VSS ,−κS2VSS} (12)

With American exercise rights

Vτ =
σ2S2

2
VSS + rSVS− rV +min{κS2VSS ,−κS2VSS}+ρmax{V ∗−V , 0} (13)

Put (convex) and Butterfly Spread (nonconvex) payoff are used as initial
conditions.
Nonlinearity arising from transaction cost disappears in convex/concave case.
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Discussion on Spatial Grid
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Figure 1: Red: uniform grid. Blue: Nonuniform grid for put and straddle payoffs.
Yellow: Nonuniform grid for Butterfly Spread payoff
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Penalty Matrices and nonlinear discretization

We use penalty matrices to discretize nonlinear terms involving max or min.

Let A denote the matrix that computes the spatial discretization of L. For
penalty it is constant, but for policy iteration it depends on the control Q.

Let T1, T2 denote the tridiagonal matrices used to compute the finite
difference approximations of the first and second derivatives, and let DS

denote a diagonal matrix with the Si (gridpoints) on its diagonal.

When we have an American exercise right, the value function cannot be
less than the payoff. Hence we use the same penalty matrix as in
[Forsyth and Vetzal, 2002] to enforce this restriction:

PA(v) =

{
ρ if v∗ > v

0 otherwise
(14)

The penalty-like matrix for each problem is then computed based on a
maximum of several terms involving T1, T2, and DS . Details to follow.
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Penalty Matrix for Stock Borrowing Fees

We introduce a penalty-like matrix to compute
min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS , 0}.

Let P1 = (rl − rb)(DST1 − I ) and P2 = −(rb − rl + rf )DST1 be the
tridiagonal matrices arising from the discretization of (rl − rb)(SVS − V )
and −(rb − rl + rf )SVS , respectively.

Define the tridiagonal penalty matrix P = P(v j) by

Pi ,: =


0 if [P1v

j ]i ≥ 0 and [P2v
j ]i ≥ 0

[P1]i ,: if [P1v
j ]i < 0 and [P1v

j ]i < [P2v
j ]i

[P2]i ,: if [P2v
j ]i < 0 and [P1v

j ]i ≥ [P2v
j ]i .

(15)

For convenience, we have borrowed the colon notation from matlab.
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Penalty Matrix for Uncertain Volatility

We introduce a penalty matrix to handle the nonlinear term

max

{
(σ2

max − σ2
min)S2

2
VSS , 0

}
(16)

Define the matrix P by

Pi ,: =

{
1
2(σd)[D2

ST2]i ,: if [D2
ST2v

j ]i > 0
0 otherwise,

(17)

where σd = σ2
max − σ2

min.
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Penalty Matrix for Transaction costs

The tridiagonal penalty matrix P = P(v j) to handle the term
min{κS2VSS ,−κS2VSS} in (12) is defined by

Pi ,: =

{
−κ[D2

ST2]i ,: if [D2
ST2v

j ]i > 0
κ[D2

ST2]i ,: otherwise.
(18)

All these matrices are defined in a way consistent with the discretization of
the nonlinear terms involved. We apply a Crank-Nicolson discretization for
timestepping which gives us our algorithms.

When European options are considered, we use a uniform Crank-Nicolson
timestepping throughout. Where American options are considered, we use
a variable CN timestepping proposed in [Forsyth and Vetzal, 2002].

In both cases we use Rannacher smoothing, where the first two timesteps
are split into four half-size fully implicit timesteps for smoothing the initial
conditions sufficiently.
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Double-Penalty Iteration

Algorithm 1 Double-penalty iteration at step j , with θ-timestepping
Works for both European and American; if European set PA = 0
Require: Solve [(I − θ∆τ(A + P(v j))) + PA(v j)]v j = g j + PA(v j)v∗

where g j = (I + (1− θ)∆τ(A + P(v j−1)))v j−1

1: Initialize v j ,0 = v j−1, P j ,0 = P(v j−1), and P j ,0
A = PA(v j−1)

2: for k = 1, . . . ,maxit do
3: Solve [(I − θ∆τ(A + P j ,k−1)) + P j ,k−1

A ]v j ,k = g j + P j ,k−1
A v∗

4: if first stopping criterion satisfied then
5: Break
6: end if
7: Compute P j ,k = P(v j ,k), P j ,k

A = PA(v j ,k)
8: if second stopping criterion satisfied then
9: Break

10: end if
11: end for
12: Set v j = v j ,k
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Improved Policy Iteration

Algorithm 2 Policy Iteration for HJB PDEs at step j , with θ timestepping
Works for both European and American; if European set R = 0
Require: Solve (I − θ∆τAj + R j)v j = g j−1 + R jv∗

where g j−1 = (I + (1− θ)∆τAj−1)v j−1 and R = diag(µi/ε).
subject to Q j

i = arg supQ∈Q̂ [A(Q)v j ]i and µ
j
i = arg supµ∈{0,1}[R(µ)(v∗ − v)]i

1: Initialize v j,0 = v j−1, µj,0 = µj−1, and Q j,0 = Q j−1

2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τAj,k−1 + R j,k−1)v j,k = g j−1 + R j,k−1v∗

4: if first stopping criterion satisfied then
5: Break
6: end if
7: Compute Q j,k

i = arg supQ∈Q̂ [A(Q)v j,k ]i , µj,k
i = arg supµ∈{0,1}[R(µ)(v

∗ − v j,k)]i

8: if second stopping criterion satisfied then
9: Break

10: end if
11: end for
12: Set v j = v j,k , µj = µj,k , and Q j = Q j,k
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Stopping Criteria

The first stopping criterion for both penalty and policy iteration is

max
i
{
|v j ,ki − v j ,k−1

i |
max(scale, |v j ,ki |)

} < tol (19)

The second stopping criterion for penalty iteration is

max
i
{|[P

j ,kv j ,k − P j ,k−1v j ,k ]i |
max(scale, |[P j ,kv j ,k ]i |)

} < tol and P j ,k
A = P j ,k−1

A (20)

Typical values are scale = 1 and tol = 10−6.

Second stopping criterion for policy iteration is

max
i
{|A(Q j ,k)v j ,k − A(Q j ,k−1)v j ,k |

max(scale,A(Q j ,k)v j ,k)
} < tol and µj ,k = µj ,k−1. (21)
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Discussion on convergence

For convergence, there are two things to prove:
the penalty iteration converges
the discretization converges overall to the HJB solution.

We make certain assumptions that are sufficient to carry the proofs but not
necessary to obtain the desired numerical behavior.

We give a brief overview on how we prove the statements:

The first is easy to prove following standard arguments such as
[Chen and Christara, 2021] and [Forsyth and Vetzal, 2002].

The second we follow arguments made in [Barles, 1997] and
[Pooley et al., 2003], where a stable, consistent, monotone scheme ensures
convergence to the viscosity solution.
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Stock Borrowing Fee problem (long position) with American
exercise rights

Common Information Penalty Iters Policy Iters
Nodes Tstep Value Change Rate Total Avg Total Avg
101 40 23.076824 — — 71 1.77 68 1.70
201 82 23.082631 5.81e-03 — 142 1.73 139 1.70
401 166 23.083667 1.04e-03 2.49 277 1.67 273 1.64
801 332 23.083875 2.09e-04 2.31 561 1.69 558 1.68
1601 664 23.083922 4.68e-05 2.16 1127 1.70 1126 1.70
3201 1327 23.083932 1.05e-05 2.16 2237 1.69 2296 1.73

Table 1: Long position of Stock Borrowing Fees problem with straddle payoff,
American exercise rights and variable timesteps; value computed at K ; Penalty
results by Algorithm 1, Policy results by Algorithm 2. Parameters: σ = 0.30,
rb = 0.05, rl = 0.03, rf = 0.004, T = 1.0, K = 100, Smax = 1000
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Uncertain Volatility (best case)

Common Information Penalty Iters Policy Iters
Nodes Tstep Value Change Rate Total Avg Total Avg
101 27 4.888611 — — 36 1.33 36 1.33
201 52 4.883171 -5.44e-03 — 70 1.35 71 1.37
401 102 4.881935 -1.24e-03 2.14 140 1.37 140 1.37
801 202 4.881634 -3.01e-04 2.04 273 1.35 274 1.36
1601 402 4.881560 -7.44e-05 2.02 543 1.35 544 1.35
3201 802 4.881541 -1.82e-05 2.03 1084 1.35 1086 1.35

Table 2: Best Case of Uncertain Volatility problem with butterfly payoff and
constant timesteps; value computed at K ; Penalty results by Algorithm 1, Policy
results by Algorithm 2. Parameters: σmax = 0.25, σmin = 0.15, r = 0.1,
T = 0.25, K1 = 90, K = 100, K2 = 110, Smax = 500.
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Transaction Cost Model (European exercise rights, Put
Payoff)

Common Information Penalty Iters Policy Iters
Nodes Tstep Value Change Rate Total Avg Total Avg
101 102 15.843845 — — 103 1.01 103 1.01
201 202 15.850002 6.16e-03 — 203 1.00 203 1.00
401 402 15.851542 1.54e-03 2.00 403 1.00 403 1.00
801 802 15.851927 3.85e-04 2.00 803 1.00 803 1.00
1601 1602 15.852023 9.63e-05 2.00 1603 1.00 1603 1.00
3201 3202 15.852047 2.41e-05 2.00 3203 1.00 3203 1.00

Table 3: European Transaction Model with Put payoff (linear problem) and
constant timesteps; value computed at K ; Penalty results by Algorithm 1, Policy
results by Algorithm 2. Parameters: σ = 0.65, r = 0.05, T = 1.0, κ = 0.1,
K = 100, Smax = 1000. Exact solution is 15.852055.

Note that, as expected, we only take one iteration per timestep (due to
linearity).
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Transaction Cost Model (European exercise rights, Butterfly
Spread Payoff)

Common Information Penalty Iters Policy Iters
Nodes Tstep Value Change Rate Total Avg Total Avg
101 102 0.126405 — — 121 1.19 121 1.19
201 202 0.125742 -6.63e-04 — 236 1.17 236 1.17
401 402 0.125485 -2.57e-04 1.37 474 1.18 474 1.18
801 802 0.125361 -1.24e-04 1.05 936 1.17 935 1.17
1601 1602 0.125323 -3.83e-05 1.70 1879 1.17 1874 1.17
3201 3202 0.125311 -1.20e-05 1.68 3736 1.17 3719 1.16

Table 4: European Transaction Cost model with Butterfly Spread payoff and
constant timesteps; value computed at K ; Penalty results by Algorithm 1, Policy
results by Algorithm 2. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1,
K = 100, Smax = 1000.
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Transaction Cost Model (American exercise rights, Put
Payoff)

Common Information Penalty Iters Policy Iters
Nodes Tstep Value Change Rate Total Avg Total Avg
101 42 14.671527 — — 66 1.57 66 1.57
201 85 14.677064 5.54e-03 — 136 1.60 134 1.58
401 171 14.678432 1.37e-03 2.02 278 1.63 281 1.64
801 344 14.678768 3.36e-04 2.03 565 1.64 577 1.68
1601 687 14.678851 8.29e-05 2.02 1144 1.67 1146 1.67
3201 1374 14.678872 2.06e-05 2.01 2272 1.65 2287 1.66

Table 5: American Transaction Cost model with Put payoff and variable timesteps;
value computed at K . Penalty results by Algorithm 1, Policy results by Algorithm
2. Parameters: σ = 1.0, r = 0.1, T = 0.25, κ = 0.18, K = 100, Smax = 1000.
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Transaction Cost Model (American exercise rights, Butterfly
Spread Payoff)

Common Information Penalty Iters Policy Iters
Nodes Tstep Value Change Rate Total Avg Total Avg
101 42 8.556308 — — 54 1.20 54 1.20
201 87 8.558431 2.12e-03 — 110 1.24 109 1.22
401 176 8.558946 5.15e-04 2.04 220 1.24 219 1.24
801 353 8.559073 1.27e-04 2.02 433 1.23 427 1.21
1601 704 8.559073 3.12e-05 2.03 868 1.23 853 1.21
3201 1407 8.559112 7.81e-06 2.00 1731 1.23 1720 1.22

Table 6: American Transaction Cost model with Butterfly Spread payoff and
variable timesteps; value computed at 1.1K ; Penalty results by Algorithm 1,
Policy results by Algorithm 2. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1,
K = 100, Smax = 1000.

We do not compute the convergence at K , because the value at that point
remains constant, as it is bound by the constraint arising from American
exercise rights (v j ≥ V ∗) and only has rounding and no discretization error.
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Conclusion

Double-penalty method is similar to [Chen and Christara, 2021] for
pricing valuation adjustments. Here we extend the method to account
for nonlinear terms involving max/min of first and second derivatives.
The improved policy iteration method works well with American
options and variable timestepping.
We have proven the convergence of the individual iterations at a
specified timestep and also the convergence of the discretization
scheme to the viscosity solution. Please see accompanying paper for
the proofs under certain assumptions.
Penalty (PDE) and Policy (HJB) methods take approximately the
same number of iterations.
However, penalty methods avoid the enumeration of all possible cases,
which makes them more efficient than the policy iteration methods.
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