
1

Alternating Direction Implicit methods for Black-Scholes Equations
Ray Wu

1 Introduction
In this project we consider numerically solving two- and three-dimensional Black-Scholes parabolic par-
tial differential equations (PDEs) using finite difference (FD) methods. The main purpose is to contrast
the performance of Alternating Direction Implicit (ADI) methods and Crank-Nicolson (CN) methods in
multiple dimensions as measured by time complexity. A secondary purpose is to present an efficient
implementation of the ADI method.

We will discuss the problem formulation in Section 2, describe the algorithms in Section 3, present nu-
merical results of our algorithms in Section 4, discuss the order of convergence and the runtime in Section
5, and make our conclusions in Section 6.

2 Problem Formulation
Although the focus of the project is on multidimensional Black-Scholes PDEs, we will start by introducing
the one-dimensional Black-Scholes PDE.

V (τ, S)τ = L(V) =
1

2
σ2S2VSS + (r − q)SVS − rV, (1)

where V is the price of the option, S is the price of the underlying asset, τ is backwards time, σ is the
volatility, r is the interest rate, and q is the dividend rate. We start at some time τ = 0 until the end time
τ = T , given some initial conditions V ∗(S) = V (τ = 0, S) known as the payoff. The payoffs most useful
to us will be the call and put, given by

V ∗call(S) = max(S −K, 0) (2)
V ∗put(S) = max(K − S, 0) (3)

The solution of Equation (1) at τ = T gives the Black-Scholes price of the option.

Next, we will consider the d-dimensional European options with no dividend, which are given by

V (τ, Si)τ = L(d)(V) =
1

2

d∑
i,j=1

ρi,jσiσjVSi
VSj

+
d∑
i=1

rSiVSi
− rV, (4)

where Si are the stock prices, σi, ρi,j denote volatility of stock prices and correlation between stock prices
(with ρj,j = 1).

For the problem to be well-posed, we need to have initial conditions, which correspond to the type of
payoff at the option’s maturity. The test problems we use to illustrate our methods are geometric put
and call which are convenient because they can be simplified to one-dimensional option pricing problems
that either have exact solutions or can be solved with efficient algorithms [6]. The payoff functions for
d-dimensional geometric average call and put are given by:

V ∗call(Si) = max((ΠSi)
1/d −K, 0) (5)

V ∗put(Si) = max(K − (ΠSi)
1/d, 0) (6)

December 20, 2021

2

Note that when d = 1, the above definitions simplify to the one-dimensional call and put payoffs.

Geometric average option pricing problems are special because that they are one of the few option pricing
problems that have exact solutions no matter what number of underlying assets (dimensions) we have.
Therefore it is a popular and convenient test problem for many algorithms designed for high-dimensional
PDE problems.

With a geometric average call/put initial condition, the problem (4) can be transformed to a one-dimensional
option pricing problem

V (τ, S)τ =
σ2S2

2
VSS + (r − q)S − rS (7)

where

σ =
1

n

√√√√ d∑
i,j=1

ρi,jσiσj (8)

q =
1

2n

d∑
i=1

σ2
i −

1

2
σ2 (9)

and we can either use the Black-Scholes formula to compute the solution in the case of European options
or use known algorithms such as the penalty method [6] in the case of American options.

3 PDE discretization
Consider the stock prices Si which belong to the semi-infinite domain [0,∞). For convenience, we will
use x, y, and z to represent the (up to) three stock prices S1, S2, and S3 in our problem. For computation
purposes, we truncate the domain to [0, xmax]. Here, we pick S1max = 10K. As is convention, let τ k,
k = 0, . . . , Nτ denote a (possibly non-uniform) partition of the time interval [0, T] in ascending order, and
∆τ k = τ k − τ k−1. Let x0, x1, . . . , xNx denote a (possibly non-uniform) partition of the interval [0, xmax],
and yi, zi defined likewise. In our numerical experiments, we use a uniform timestepping scheme for
European options and a variable timestepping scheme presented in [6] for American options. For spatial
discretization, we use a nonuniform grid in [1] with a more dense grid (more gridpoints are allocated near
the region of interest) for two dimensions and a slightly less dense grid for three dimensions. Finally, let
vkh,i,j denote a computed solution of u(τ k, xh, yi, zj) and vki,j denote a computed solution of u(τ k, xi, yj).
For the purposes of algorithm analysis, we assume that Nx = Ny = Nz which we denote as N .

3.1 Space discretization

We use standard second-order FD for the spatial derivatives, and denote the d-dimensional discretized
operator as a square (N + 1)d matrix L(d) which encompasses the boundary conditions.

Note that L(d) can be decomposed into L(d) = L0 +L1 +L2 + · · ·+Ld, where Lj (j > 0) are the matrices
resulting from just the FD with respect to the j-th spatial variable, sharing equally the−ru (no-derivative)
term and L0 is the matrix resulting from only the cross-derivative discretizations.

December 20, 2021

3

3.2 Crank-Nicolson Method

Let θ ∈ [0, 1]. To solve the solution at time τ k given the solution at τ k−1, the θ-timestepping discretization
solves the linear system

(I − θ∆τ kL(d))vk = (I + (1− θ)∆τ kL(d))vk−1 (10)

where I denotes the identity matrix of size (N + 1)d. When θ = 1, we have the Fully Implicit/Backward
Euler (BE) method, and when θ = 1/2, we have the Crank-Nicolson (CN) method. Although CN is sec-
ond order convergent, it may produce spurious oscillations when applied to non-smooth initial conditions.
On the other hand, BE is more stable, but only first order convergent. To obtain both the accuracy of CN
and the stability of BE, we use the Rannacher smoothing [9] technique which applies BE to the first two
timesteps partitioned into four smaller timesteps, and in the subsequent timesteps uses CN and the usual
stepsize. This results in smooth data for the Crank-Nicolson method, and the use of a few iterations of the
first-order BE method does not affect the overall second order convergence of the CN method.

Solving Equation (10) requires the solution of a Nd×Nd sparse, nonsymmetric linear system with band-
width O(Nd−1) each iteration. Recall that banded LU factorization requires O(nlu) where n is the size
of the matrix, l is the lower bandwidth and u is the upper bandwidth. Banded LU will take O(Nd(d−1)2);
in both the two-dimensional or three-dimensional case MATLAB’s backslash operator eventually resorts
to using a general sparse LU solver with full pivoting [3] which is designed to reduce fill-in.

3.3 ADI and Craig-Sneyd

ADI methods such as [2, 4, 8] minimize the bandwidth of the matrices being solved; If we solve a tridiag-
onal system at each iteration, then the cost reduces from O(Nd(d−1)2) to O(Nd), which is optimal since
we have O(Nd) unknowns.

The original ADI method [5] does not consider mixed derivatives (i.e. vxy). The Craig-Sneyd [2] and more
general ADI methods [8] address this and we will focus on the Modified Craig-Sneyd (MCS) method in
this study.

In the MCS method, we solve the following set of equations/update the following vectors for a d-dimensional
problem, where the restrictions 1/3 ≤ θ, σ = θ, µ = 1/2− θ are imposed upon the parameters to ensure
second order convergence.

Note that for solving the systems of equations, we re-order the entries of the right-hand-side vector so that
the matrix I − θ∆τ kLj is always tridiagonal. This ensures O(Nd) performance per iteration.

3.4 Matricized Craig-Sneyd

This only applies to the two-dimensional case, although a similar process can be used for the three-
dimensional case.

Instead of writing the previous algorithm in vector form, we can take advantage of the special structure of
the matrices L1 and L2. Note that in the default ordering,

L0 = ρDx ⊗Dy (11)
L1 = Lx ⊗ I (12)
L2 = I ⊗ Ly (13)

December 20, 2021

4

Algorithm 1 MCS ADI timestepping in d dimensions
1: Take an explicit step:
2: Y0 = vk−1 + ∆τ k(Lvk−1)
3: Take d implicit corrector steps, one in each dimension:
4: for j = 1, . . . , d do
5: compute g = Yj−1 − θ∆τ kLjvk−1
6: reorder the entries in g such that Lj is tridiagonal
7: Solve the linear system (I − θ∆τ kLj)Yj = Yj−1 − θ∆τ kLjvk−1
8: end for
9: Take two more explicit updates:

10: Ỹ0 = Y0 + σ∆τ kL0(Y2 − vk−1)
11: Ŷ0 = Ỹ0 + µ∆τ kL(Y2 − vk−1)
12: Take d implicit corrector steps in each dimension:
13: for j = 1, . . . , d do
14: compute g = Ỹj−1 − θ∆τ kLjvk−1
15: reorder the entries in g such that Lj is tridiagonal
16: Solve the linear system (I − θ∆τ kLj)Ŷj = g
17: end for
18: reorder Ŷd to the original ordering
19: assign vk to Ŷd

where Dx and Dy are matrices resulting from the discretization of the σxxvx and σyyvy terms, I is the
identity matrix of size N + 1, and Lx, Ly are matrices resulting from the discretization of just the x and
just the y terms, with the no-derivative term (−ru) shared equally between Lx and Ly.

Let V k be an N + 1×N + 1 matrix containing the computed solution at time τ k; so u = vec(U) where
vec denotes the vectorization operator. Then we will use the following useful identity:

(A⊗B)v = vec(BV AT), (14)

where V = vec−1(v) is the inverse of the vectorization operator applied to v.

Then,

L0u = ρDyUD
T
x (15)

L1u = ULTx (16)
L2u = LyU (17)

In addition (after reordering the entries in v appropriately),

I − θ∆τL1 = I ⊗ I − I ⊗ θ∆τLx = I ⊗ (I − θ∆τLx) (18)
I − θ∆τL2 = I ⊗ I − I ⊗ θ∆τLy = I ⊗ (I − θ∆τLy) (19)

Therefore,

(I − θ∆τL1)
−1 = (I ⊗ (I − θ∆τLx))−1 = I−1 ⊗ (I − θ∆τLx)−1 = I ⊗ (I − θ∆τLx)−1 (20)

December 20, 2021

5

and we can apply identity (11) to (17) as well. Note that we never actually compute the inverse of any
matrix, but (17) is used to illustrate how we can avoid solving an O(N2) system and instead solve an
O(N) system. Note that in Algorithm 2, all the update equations only involve multiplying with or solving
linear systems of size N .

Algorithm 2 Matrix-form of Craig-Sneyd ADI timestepping in two dimensions
1: Take an explicit step:
2: Y T

0 = UT + ∆τ k(ρDyUD
T
x + LxU

T + (ULy)
T)

3: Take two implicit corrector steps, one in each dimension
4: Solve the linear system (I − θ∆τ kLx)Y T

1 = Y0 − θ∆τ kLxUT

5: Solve the linear system (I − θ∆τ kLy)Y2 = Y1 − θ∆τ kLyU
6: Take two more explicit updates:
7: Ỹ0 = Y0 + σρ∆τ kDyUD

T
x

8: Ŷ0 = Ỹ0 + µ∆τ k[ρDy(Y2 − U)DT
x + Lx(Y2 − U)T + ((Y2 − U)Ly)

T]
9: Take two implicit corrector steps, one in each dimension

10: Solve the linear system (I − θ∆τ kLx)Ỹ T
1 = Ỹ T

0 − θ∆τ kLxUT

11: Solve the linear system (I − θ∆τ kLy)Uk = Ỹ1 − θ∆τ kLyU

For three and higher dimensions, we cannot use the matrix identity (14) in the same way, however, we can
still take advantage of the special structure of the matrix. The tridiagonal matrix that we solve in lines 7
and 16 in Algorithm 1 can be decomposed as follows:

I − θ∆τ kLj = I ⊗ I ⊗ · · · ⊗ I ⊗ (I − θ∆τ kLx) (21)

Therefore, when solving the linear system

(I − θ∆τ kLj)v = g (22)

for u, we can rearrange the (N + 1)d length vector g into an N + 1 × (N + 1)d−1 matrix G in column
major order. Then instead of solving Equation (22) we only need to solve the N + 1 by N + 1 linear
system

(I − θ∆τ kLx)V = G. (23)

After solving, V can be rearranged into a vector again for explicit updates.

3.5 American options

In contrast to European options, American options can be exercised at any point prior to the expiry date.
Therefore, the Black-Scholes model (4) becomes more complicated and can be written in the form of a
linear complementarity problem (LCP)

((vτ − Lv > 0) ∧ (v = V ∗)) ∨ ((vτ = Lv) ∧ (v − V ∗ > 0)) (24)

which leads to the PDE
vτ = Lv + pmax(V ∗ − v, 0) (25)

for some large value p, typically the reciprocal of any accuracy required.

December 20, 2021

6

The PDE (25) can be solved by the penalty method introduced in [6]. For ADI methods, [7] incorporate
the penalty method into the Craig-Sneyd methods, leading to efficient algorithms for two-dimensional
problems.

The penalty term pmax(V ∗ − v, 0) is discretized as P k(V ∗ − vk). The matrix P k is a diagonal matrix
defined as

P k
i,i =

{
p if vki < V ∗i
0 otherwise.

(26)

For discretization, the other terms in the PDE (25) are discretized in the same way as the previous sec-
tion.

The penalty iteration applied to θ-timestespping is given by Algorithm 3

Algorithm 3 Penalty Iteration for θ-timestepping

1: let vk,0 = vk−1 and compute P k,0 = P (vk−1).
2: for m = 1, . . . do
3: solve (I − θ∆τ kL(d) + P k,m−1vk,m = (I + (1− θ)∆τ kL(d))vk−1 + P k,m−1V ∗.
4: compute P k,m = P (vk,m)

5: if maxj{
|vk,mj −vk,m−1

j |
max{1,|vk,mj |}

} or P k,m−1 = P k,m then
6: break
7: end if
8: end for
9: vk,= vk,m

For ADI methods, the MCS method remains largely unchanged, except Algorithm 3 is incorporated into
the computation of the last term:

Unfortunately, since the penalty matrix is not the result of a kronecker (tensor) product, it is not straightfor-
ward to efficiently solve the linear system in Algorithm 2. However, we can still speed up the computation
by using our more efficient algorithm for the other solves in each timestep.

Finally, we have the matrix form of MCS ADI timestepping for American options in d dimensions:

4 Numerical results
We show numerical results for three algorithms (Crank-Nicolson, Vectorized MCS, and Matrcized MCS)
applied to four problems: European and American Geometric Average Put in two and three dimensions.
This section will first show the European problems in two and three dimensions in Tables 1 - 8, then
show the computed reference values for American problems (using a one-dimensional penalty iteration)
in Tables 9 and 10, and then show the American problems in Tables 11-16.

The tables for European options have 6 columns, showing the number of subintervals, the number of
timesteps taken, the computed value, the signed error, the computed convergence rate, and the time
recorded.

December 20, 2021

7

Algorithm 4 MCS ADI timestepping in d dimensions
1: Take an explicit step:
2: Y0 = vk−1 + ∆τ k(Lvk−1)
3: Take d implicit corrector steps, one in each dimension:
4: for j = 1, . . . , d do
5: compute g = Yj−1 − θ∆τ kLjvk−1
6: reorder the entries in g such that Lj is tridiagonal
7: Solve the linear system (I − θ∆τ kLj)Yj = Yj−1 − θ∆τ kLjvk−1
8: end for
9: Take two more explicit updates:

10: Ỹ0 = Y0 + σ∆τ kL0(Y2 − vk−1)
11: Ŷ0 = Ỹ0 + µ∆τ kL(Y2 − vk−1)
12: Take d implicit corrector steps in each dimension:
13: for j = 1, . . . , d− 1 do
14: compute g = Ỹj−1 − θ∆τ kLjvk−1
15: reorder the entries in g such that Lj is tridiagonal
16: Solve the linear system (I − θ∆τ kLj)Ŷj = g
17: end for
18: compute g = Ỹd−1 − θ∆τ kLdvk−1
19: reorder the entries in g such that Ld is tridiagonal
20: Apply Algorithm 3 to the system (I − θ∆τ kLd)P kvk = g + P kV ∗

21: reorder vk to the original ordering

Algorithm 5 Matrix-form of MCS ADI timestepping for American options in two dimensions
1: Take an explicit step:
2: Y T

0 = UT + ∆τ k(ρDyUD
T
x + LxU

T + (ULy)
T)

3: Take two implicit corrector steps, one in each dimension
4: Solve the linear system (I − θ∆τ kLx)Y T

1 = Y0 − θ∆τ kLxUT

5: Solve the linear system (I − θ∆τ kLy)Y2 = Y1 − θ∆τ kLyU
6: Take two more explicit updates:
7: Ỹ0 = Y0 + σρ∆τ kDyUD

T
x

8: Ŷ0 = Ỹ0 + µ∆τ k[ρDy(Y2 − U)DT
x + Lx(Y2 − U)T + ((Y2 − U)Ly)

T]
9: Take two implicit corrector steps, one in each dimension

10: Solve the linear system (I − θ∆τ kLx)Ỹ T
1 = Ỹ T

0 − θ∆τ kLxUT

11: compute B = Ỹ1 − θ∆τ kLyU
12: Apply the penalty iteration (i.e. Algorithm 3) to the system
13: (I − θ∆τ kL2) + P kvk = b+ P kV ∗

December 20, 2021

8

Algorithm 6 MCS ADI timestepping in d dimensions
1: Take an explicit step:
2: Y0 = vk−1 + ∆τ k(Lvk−1)
3: Take d implicit corrector steps, one in each dimension:
4: for j = 1, . . . , d do
5: compute g = Yj−1 − θ∆τ kLjvk−1
6: compute G according to Equation (23)
7: Solve the linear system (I − θ∆τ kLj)Yj = G
8: end for
9: Take two more explicit updates:

10: Ỹ0 = Y0 + σ∆τ kL0(Y2 − vk−1)
11: Ŷ0 = Ỹ0 + µ∆τ kL(Y2 − vk−1)
12: Take d implicit corrector steps in each dimension:
13: for j = 1, . . . , d− 1 do
14: compute g = Ỹj−1 − θ∆τ kLjvk−1
15: compute G according to Equation (23)
16: Solve the linear system (I − θ∆τ kLj)Ŷj = G
17: end for
18: compute g = Ỹd−1 − θ∆τ kLdvk−1
19: reorder the entries in g such that Ld is tridiagonal
20: Apply Algorithm 3 to the system (I − θ∆τ kLd)P kvk = g + P kV ∗

21: reorder vk to the original ordering

The tables for American options have 7 columns, showing the number of subintervals, the number of
timesteps taken, the number of penalty iterations taken, the computed value, an estimation of the error
using successive differences, an estimation of the rate of convergence using the ratio of the differences,
and the time recorded.

The error and convergence rate is computed point-wise at the expiry date and the strike price, which
is typically near the region of interest in financial applications, since stock prices decreasing to zero or
increasing many multiple times are unlikely occurances.

4.1 Two-Dimensional European Geometric Average Put

N timesteps Value Error Rate time(s)
10 12 8.490342 -1.32e-01 — 5.56e-02
20 22 8.590928 -3.17e-02 2.06 1.86e-01
40 42 8.614176 -8.49e-03 1.90 8.70e-01
80 82 8.620456 -2.21e-03 1.94 5.39e+00

160 162 8.622131 -5.35e-04 2.05 4.55e+01
320 322 8.622530 -1.36e-04 1.98 4.02e+02
640 642 8.622632 -3.37e-05 2.01 4.17e+03

Table 1: Two dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 8.622665388263. Solved with Crank-Nicolson.

December 20, 2021

9

N timesteps Value Error Rate time(s)
10 12 8.502136 -1.21e-01 — 3.30e-02
20 22 8.585842 -3.68e-02 1.71 5.19e-02
40 42 8.613079 -9.59e-03 1.94 1.51e-01
80 82 8.620397 -2.27e-03 2.08 6.82e-01

160 162 8.622116 -5.49e-04 2.05 4.44e+00
320 322 8.622524 -1.41e-04 1.96 3.54e+01
640 642 8.622631 -3.48e-05 2.02 3.06e+02

Table 2: Two dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 8.622665388263. Solved with vectorized Craig-Sneyd.

N timesteps Value Error Rate time(s)
10 12 8.502133 -1.21e-01 — 9.81e-01
20 22 8.585842 -3.68e-02 1.71 8.22e-02
40 42 8.613079 -9.59e-03 1.94 1.19e-01
80 82 8.620397 -2.27e-03 2.08 2.67e-01

160 162 8.622116 -5.49e-04 2.05 1.37e+00
320 322 8.622524 -1.41e-04 1.96 5.07e+00
640 642 8.622631 -3.48e-05 2.02 2.33e+01

1280 1282 8.622657 -8.50e-06 2.03 2.05e+02
2560 2562 8.622663 -2.15e-06 1.99 2.57e+03

Table 3: Two dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 8.622665388263. Solved with matricized Craig-Sneyd.

4.2 Three-Dimensional European Geometric Average Put

N timesteps Value Error Rate time(s)
8 10 7.344038 -3.30e-01 — 8.77e-02
16 18 7.635836 -3.84e-02 3.10 2.48e+00
32 34 7.669053 -5.16e-03 2.89 2.44e+02
64 66 7.673314 -9.00e-04 2.52 1.76e+04

Table 4: Three dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 7.674214. Solved with Crank-Nicolson.

December 20, 2021

10

N timesteps Value Error Rate time(s)
8 10 7.477913 -1.96e-01 — 1.65e-01

16 18 7.644642 -2.96e-02 2.73 2.97e-01
32 34 7.670165 -4.05e-03 2.87 2.22e+00
64 66 7.673582 -6.33e-04 2.68 3.11e+01
128 130 -47.315418 -5.50e+01 -16.41 5.48e+02

Table 5: Three dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 7.674214. Solved with vectorized Craig-Sneyd. θ = 1/2.

N timesteps Value Error Rate time(s)
8 10 7.477653 -1.97e-01 — 1.46e-01

16 18 7.644627 -2.96e-02 2.73 3.16e-01
32 34 7.670165 -4.05e-03 2.87 1.27e+00
64 66 7.673582 -6.33e-04 2.68 1.13e+01
128 130 -43.979294 -5.17e+01 -16.32 1.90e+02

Table 6: Three dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 7.674214. Solved with matricized Craig-Sneyd. θ = 1/2.

We see that when θ = 1/2, we do not have stability in convergence since for N = 128, the value is clearly
wrong, indicating that the method is not stable. However, this contradicts the [8] which states that the
MCS ADI method is stable in three dimensions if θ > 6/13.

Since larger values of θ result in more stability, we attempt to remedy this by increasing θ to 2/3, which
achieves stability of the Craig-Sneyd method. We will use θ = 2/3 for American options in the subsequent
section.

N timesteps Value Error Rate time(s)
8 10 7.485199 -1.89e-01 — 1.88e-01

16 18 7.644765 -2.94e-02 2.68 3.12e-01
32 34 7.670106 -4.11e-03 2.84 2.29e+00
64 66 7.673565 -6.49e-04 2.66 2.99e+01

128 130 7.674071 -1.44e-04 2.17 6.16e+02

Table 7: Three dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 7.674214. Solved with vectorized Craig-Sneyd. θ = 2/3.

December 20, 2021

11

N timesteps Value Error Rate time(s)
8 10 7.484872 -1.89e-01 — 1.89e-01
16 18 7.644748 -2.95e-02 2.68 3.22e-01
32 34 7.670106 -4.11e-03 2.84 1.12e+00
64 66 7.673565 -6.49e-04 2.66 9.87e+00

128 130 7.674071 -1.44e-04 2.17 2.69e+02
256 258 7.674168 -4.67e-05 1.62 4.90e+03

Table 8: Three dimensional European Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Exact solution is 7.674214. Solved with matricized Craig-Sneyd. θ = 2/3.

4.3 Reference values for American option pricing problems

N timesteps Iterations Value Error Rate time(s)
100 39 59 9.4647541515 — — 9.32e-03
200 73 114 9.4684135388 3.66e-03 — 1.60e-02
400 141 226 9.4692758928 8.62e-04 2.09 4.46e-02
800 277 456 9.4694864416 2.11e-04 2.03 1.42e-01

1600 547 912 9.4695394777 5.30e-05 1.99 5.05e-01
3200 1087 1778 9.4695525711 1.31e-05 2.02 1.94e+00
6400 2167 3465 9.4695558064 3.24e-06 2.02 7.06e+00

12800 4326 6943 9.4695566300 8.24e-07 1.97 2.76e+01
25600 8643 14199 9.4695568442 2.14e-07 1.94 1.12e+02

Table 9: One-dimensional American Put problem, with parameters chosen to match the two-dimensional
problem.

N timesteps Iterations Value Error Rate time(s)
100 37 56 8.4046980424 — — 7.55e-03
200 68 107 8.4076796836 2.98e-03 — 1.51e-02
400 132 213 8.4084829388 8.03e-04 1.89 4.17e-02
800 257 426 8.4086725800 1.90e-04 2.08 1.33e-01

1600 507 851 8.4087203268 4.77e-05 1.99 4.71e-01
3200 1006 1665 8.4087321856 1.19e-05 2.01 1.83e+00
6400 2004 3230 8.4087351562 2.97e-06 2.00 6.58e+00

12800 3999 6482 8.4087359061 7.50e-07 1.99 2.60e+01
25600 7989 13173 8.4087360994 1.93e-07 1.96 1.04e+02

Table 10: One-dimensional American Put problem, with parameters chosen to match the three-
dimensional problem.

December 20, 2021

12

4.4 Two-Dimensional American Geometric Average Put

N timesteps Iterations Value Difference Rate time(s)
10 27 30 9.255044 — — 3.50e-02
20 62 75 9.415944 -1.61e-01 — 1.45e-01
40 134 191 9.455322 -3.94e-02 2.03 1.38e+00
80 274 460 9.465989 -1.07e-02 1.88 1.54e+01
160 552 1053 9.468645 -2.66e-03 2.01 2.84e+02

Table 11: Two-Dimensional American Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Solved with Crank-Nicolson.

N timesteps Iterations Value Difference Rate time(s)
10 27 34 9.229663 — — 1.44e-02
20 62 84 9.404770 -1.75e-01 — 4.64e-02
40 134 218 9.449318 -4.45e-02 1.97 3.01e-01
80 274 500 9.462960 -1.36e-02 1.71 2.32e+00
160 552 1105 9.467121 -4.16e-03 1.71 1.90e+01
320 1102 2221 9.468552 -1.43e-03 1.54 1.57e+02

Table 12: Two-Dimensional American Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Solved with Craig-Sneyd.

N timesteps Iterations Value Difference Rate time(s)
10 27 34 9.229664 — — 2.28e-02
20 62 84 9.404770 -1.75e-01 — 5.07e-02
40 134 218 9.449318 -4.45e-02 1.97 1.93e-01
80 274 501 9.462960 -1.36e-02 1.71 1.34e+00
160 552 1107 9.467121 -4.16e-03 1.71 1.10e+01
320 1102 2222 9.468552 -1.43e-03 1.54 8.48e+01

Table 13: Two-Dimensional American Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Solved with Matricized Craig-Sneyd.

4.5 Three-Dimensional American Geometric Average Put

Nx timesteps Iterations Value Error Rate time(s)
8 10 13 8.229706 — — 8.66e-02

16 18 30 8.369964 -1.40e-01 — 2.69e+00
32 34 66 8.395212 -2.52e-02 2.47 3.42e+02
64 66 131 8.403383 -8.17e-03 1.63 3.81e+04

Table 14: Three dimensional American Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Solved with Crank-Nicolson.

December 20, 2021

13

N timesteps Iterations Value Error Rate time(s)
8 10 27 8.230826 — — 5.96e-02

16 18 57 8.355286 -1.24e-01 — 1.83e-01
32 34 122 8.387251 -3.20e-02 1.96 2.37e+00
64 66 226 8.399088 -1.18e-02 1.43 3.59e+01

128 130 448 8.404125 -5.04e-03 1.23 7.71e+02

Table 15: Three dimensional American Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Solved with vectorized Craig-Sneyd. θ = 2/3.

N timesteps Iterations Value Error Rate time(s)
8 10 35 8.231054 — — 7.24e-02

16 18 70 8.355287 -1.24e-01 — 1.30e-01
32 34 143 8.387251 -3.20e-02 1.96 1.56e+00
64 66 274 8.399088 -1.18e-02 1.43 2.29e+01

128 130 539 8.404125 -5.04e-03 1.23 5.69e+02

Table 16: Three dimensional American Geometric Average Put problem, σi = 0.4, ρ = 0.2, Ki = 100,
Simax = 1000, r = 0.1. Solved with matricized Craig-Sneyd. θ = 2/3.

5 Convergence and runtime analysis
We will now analyze the convergence and runtime of our algorithms. Recall that both MCS and CN
are supposed to be second order accurate, and this is shown in Figure 1. For two and three dimensional
European options, it is clear that the convergence is second order. For American options, it is known from
[6] that the penalty method for the one-dimensional problem does not exhibit second order convergence
unless variable timesteps are used. We adapted the variable timestep method to the two-dimensional
problem to help fix the rate of convergence. However, more work is required for it to work with three
dimensions so we left that as future work.

In Figure 2 we show the time complexity of our methods. Note that we expect that the runtime is O(N)
for the solving of a linear system in each timestep in the MCS method for two dimensions, however, we
still have to operate on O(N2) number of inputs so the runtime is expected to be O(N3) since we are
taking O(N) timesteps. For the CN method, the solving of a banded linear system is O(N4), however
matlab’s backslash operator uses LU with full pivoting which reduces fill-in and therefore reduces the
runtime of the solving of the linear system. However, we still see that CN is significantly slower than the
ADI methods for a two-dimensional European option.

For the two-dimensional American option, we see that the runtime of the CN seems to be O(N4) and the
ADI method is O(N3) as expected.

For three-dimensional problems, we expect the runtime of CN to be O(N7) per iteration for the banded
solve, therefore the total runtime is O(N8). We also expect the runtime of the ADI method to be O(N3)
per solve, which leads to O(N4) total runtime for the ADI method. From the bottom half of Figure 2 it
seems that both the European and the American problems have approximately the expected runtime. As
mentioned before, the use of an ADI method improves the time complexity per iteration fromO(Nd(d−1)2)

December 20, 2021

14

10 20 40 80 160 320 640 1280 2560

10 -6

10 -4

10 -2

MCS

CN

2nd order convergence

(a) Two-dimensional European option
10 20 40 80 160 320

10 -4

10 -2

MCS

CN

2nd order convergence

(b) Two-dimensional American option

8 16 32 64 128 256

10 -4

10 -3

10 -2

10 -1
MCS

CN

2nd order convergence

(c) Three-dimensional European option
8 16 32 64 128

10 -4

10 -3

10 -2

10 -1
MCS

CN

2nd order convergence

(d) Three-dimensional American option

Figure 1: Convergence study for European (left) and American (right) options, in both two (top) and
three (bottom) dimensions.

December 20, 2021

15

10 20 40 80 160 320 640 1280 2560

10 0

10 5

MCS

MCS (vec)

CN

O(n
3

)

O(n
4

)

(a) Runtime of two-dimensional European option
10 20 40 80 160 320

10 0

10 2

10 4
MCS

MCS (vec)

CN

O(n
3

)

O(n
4

)

(b) Runtime of two-dimensional American option

8 16 32 64 128 256

10 0

10 5

10 10
MCS

MCS (vec)

CN

O(n
4

)

O(n
8

)

(c) Runtime of three-dimensional European option
8 16 32 64 128

10 0

10 5

MCS

MCS (vec)

CN

O(n
4

)

O(n
8

)

(d) Runtime of three-dimensional American option

Figure 2: Runtime analysis for European (left) and American (right) options, in both two (top) and three
(bottom) dimensions.

to O(Nd) (assuming that a banded solver is used) by reducing the bandwidth to the minimum required.
Our experimental results support this theory, although with the use of a general sparse LU solver and other
expensive operations such as computing some dense matrix-matrix products the experimental results don’t
agree entirely with the theory, as is expected.

6 Conclusions
We see that the ADI method is a powerful tool which allows us to minimize the complexity of computing
the solution at the next timestep. The time complexity of the MCS ADI method is linear in the number
of unknowns that we are required to solve, which is asymptotically optimal and cannot be reduced fur-
ther. We also see that when solving the linear systems, we can exploit the structure of the matrix (it is
block diagonal with identical tridiagonal blocks) to reduce the runtime significantly in the case of Euro-
pean options. In the case of American options, the penalty matrix destroys the block-diagonal structure
with identical blocks, so we cannot avoid solving a “full size” matrix. Finally, we see that the variable
timestepping method introduced in [6] doesn’t extend that well to two-dimensions when using ADI meth-
ods and do not work in three-dimensions. Additionally, our understanding of the methods according to [8]
is incomplete, since according to the analysis in the papers θ ≥ 6/13 is required for stability of the MCS
ADI method in three dimensions, however we do not see stability with θ = 1/2 and need to increase θ to
2/3 to see stability with the three-dimensional problem.

December 20, 2021

16

References
[1] N. CLARKE AND K. PARROTT, Multigrid for American option pricing with stochastic volatility,

Applied Mathematical Finance, 6 (1999), pp. 177–195.

[2] I. J. CRAIG AND A. D. SNEYD, An alternating-direction implicit scheme for parabolic equations
with mixed derivatives, Computers & Mathematics with Applications, 16 (1988), pp. 341–350.

[3] T. A. DAVIS, Algorithm 832: UMFPACK v4. 3—an unsymmetric-pattern multifrontal method, ACM
Transactions on Mathematical Software (TOMS), 30 (2004), pp. 196–199.

[4] J. DOUGLAS AND H. H. RACHFORD, On the numerical solution of heat conduction problems in two
and three space variables, Transactions of the American mathematical Society, 82 (1956), pp. 421–
439.

[5] J. DOUGLAS, JR, On the numerical integration of ∂2u/∂x2 +∂2u/∂y2 = ∂u/∂t by implicit methods,
Journal of the society for industrial and applied mathematics, 3 (1955), pp. 42–65.

[6] P. FORSYTH AND K. VETZAL, Quadratic convergence for valuing American options using a penalty
method, SIAM J. Sci. Comput., 23 (2002), pp. 2095–2122.

[7] V. HEIDARPOUR-DEHKORDI AND C. CHRISTARA, Spread option pricing using ADI methods, Inter-
national J. Numerical Analysis and Modelling, 15 (2018), pp. 353–369.

[8] K. IN’T HOUT AND B. WELFERT, Stability of ADI schemes applied to convection–diffusion equa-
tions with mixed derivative terms, Applied numerical mathematics, 57 (2007), pp. 19–35.

[9] R. RANNACHER, Finite element solution of diffusion problems with irregular data, Numerische Math-
ematik, 43 (1984), pp. 309–327.

December 20, 2021

	Introduction
	Problem Formulation
	PDE discretization
	Space discretization
	Crank-Nicolson Method
	ADI and Craig-Sneyd
	Matricized Craig-Sneyd
	American options

	Numerical results
	Two-Dimensional European Geometric Average Put
	Three-Dimensional European Geometric Average Put
	Reference values for American option pricing problems
	Two-Dimensional American Geometric Average Put
	Three-Dimensional American Geometric Average Put

	Convergence and runtime analysis
	Conclusions

