1. Find the Newton iteration for each of the following systems:
(a)

$$
\begin{aligned}
x^{2}+x y^{3} & =9 \\
3 x^{2} y-y^{2} & =4
\end{aligned}
$$

(b)

$$
\begin{array}{r}
x+y-2 x y=0 \\
x^{2}+y^{2}-2 x+2 y=1
\end{array}
$$

(c)

$$
\begin{aligned}
& x^{3}-y^{2}=0 \\
& x+x^{2} y=2
\end{aligned}
$$

2. Consider the following optimization problem

$$
\begin{equation*}
\min \phi(x)=\frac{1}{2} x^{T} D x \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{2}$ and $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$
Surely, you will agree that the minimum is trivial to find and occurs at $x=0$. However, the purpose of this question is to get you familiar with the dynamics of gradident descent.
(a) Show that the gradient of $\phi(x)$ is given by

$$
\nabla \phi=\left[\begin{array}{c}
x_{1}  \tag{2}\\
4 x_{2}
\end{array}\right]
$$

and derive the gradient update.
(b) Normally, we do not do exact linesearch, but only a weak linesearch. (Can you think of why?) However, for simple functions such as the one above, we can find a formula for exact linesearch.
Suppose $x=[1,2]^{T}$. Then, what value of $\alpha$ minimizes $\phi\left(x_{k}-\alpha p_{k}\right)$ ?
(c) What direction is $x_{k+1}=x_{k}-\alpha p_{k}$ in?

