1. What is the computational complexity (as a function of n) of solving a matrix A of size $n \times n$, where
(a) A is diagonal?
(b) A is triangular?
(c) The general case?
2. Given two nonsingular matrices T and A such that the matrix $T A$ has an LU factorization $T A=L U$, describe an efficient algorithm for solving the system of linear equations

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

3. Let

$$
A=\left[\begin{array}{ll}
3 & 4 \tag{2}\\
5 & 7
\end{array}\right]
$$

You may use, without proof, the fact that the eigenvalues λ_{1}, λ_{2} of A are equal to $5 \pm \sqrt{24}$. Unless otherwise specified, assume the Euclidean/2 norm is being discussed.
(a) What is the Frobenius norm of A ?
(b) Is A singular or nonsingular? What are the eigenvalues of A^{-1}, if it exists?
(c) Which vector x causes the greatest increase in the length of the vector $A x$? What is the operator norm of A ?
(d) Which vector x causes the greatest increase in the length of the vector $A^{-1} x$? What is the operator norm of A^{-1} ?
(e) What is the condition number of A ?
(f) How can you generalize part (e) to arbitrary matrices where you know the eigenvalues?

