
MIDTERM TEST — SOLUTIONS Winter 2023

Question 1. [3 MARKS]

Show that if Q is an orthogonal matrix then Q−1 = QT .

Solution:
List out the columns of Q as the vectors q1, q2, . . . , qn.
Then, the rows of QT are given by qT1 , q

T
2 , . . . , q

T
n .

Then, compute A = QTQ. The entries of Aij are given by qTi qj .
Since the columns are all vectors that are orthogonal to each other and are unit vectors, qTi qj = 1 iff i = j.
Hence, A is the identity matrix and Q−1 = QT .

Question 2. [13 MARKS]

Let h be a small number and let x be around 1. Consider the following function:

f(x) =

√
x+ h−

√
x− h

2h
(1)

Part (a) [3 MARKS]

Explain, in plain language, what f computes.

Solution:
f computes a second-order (O(h2)) approximation to the first derivative of the function y =

√
x.

Part (b) [2 MARKS]

Clearly describe two issues when computing f in floating-point.

Solution:
The two issues from computing f in floating-point are:

• Cancellation error from computing
√
x+ h−

√
x− h

• Magnification of error by dividing by a small number 2h.

Part (c) [5 MARKS]

Show how to resolve both, by computing a different, but mathematically equivalent expression.

Solution:
We use the conjugation trick to eliminate the cancellation in the numerator.

f(x) =

√
x+ h−

√
x− h

2h

=

(√
x+ h−

√
x− h

2h

)(√
x+ h+

√
x− h√

x+ h+
√
x− h

)
=

(x+ h)− (x− h)

2h(
√
x+ h+

√
x− h)

=
2h

2h(
√
x+ h+

√
x− h)

=
1√

x+ h+
√
x− h
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Part (d) [3 MARKS]

What is the limit of the second formula as h → 0? How are the limit and f related?

Solution:
To compute the limit, sub 0 in for h:

lim
h→0

1√
x+ h+

√
x− h

=
1

2
√
x

(2)

The limit is the first derivative of
√
x. So it is an exact expression for what f was intended to calculate.

Question 3. [11 MARKS]

Consider solving the equation
f(x) = exp(−x)− x = 0 (3)

A bracket on the unique root x∗ would be [1/2, 2].

Part (a) [3 MARKS]

How many iterations does it take for bisection method to achieve an absolute accuracy of 10−6 from the bracket?

Solution:
The size of the initial bracket is 3/2.
Each iteration of bisection method reduces the interval to a half of the size on the previous iteration.
Hence, after k iterations, the size of the bracket is given by

sz =
3

2

1

2k
. (4)

If we want the size of the bracket to be reduced to 10−6, then we have

10−6 =
3

2k+1
(5)

or
k = ⌈log2(3× 106)− 1⌉ = 21. (6)

Part (b) [5 MARKS]

Consider the fixed-point iteration
g(x) = exp(−x) (7)

Show that |g′(x)| < 1 on [1/2, 2]. What is ρ?

Solution:
|g′(x)| = | − exp(−x)| = exp(−x). Since this is a decreasing function, the maximum occurs at g′(1/2) = 0.6065,
which is less than 1.

Part (c) [3 MARKS]

Write out Newton’s method for f(x) and express it as a fixed-point iteration g2.

Solution:

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

exp(−xk)− xk
− exp(−xk)− 1

= xk +
exp(−xk)− xk
exp(−xk) + 1

≡ g2(x). (8)
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Question 4. [12 MARKS]

Consider the matrix A:

A =

[
10 7
7 5

]
(9)

You may use without proof the fact that

λ1(A), λ2(A) =
15±

√
221

2
(10)

and the fact that A can be orthogonally diagonalized:

A = QTDQ (11)

where Q is an orthogonal matrix and

D =

[
λ1 0
0 λ2

]
(12)

Part (a) [4 MARKS]

Show that A is symmetric positive definite.

Solution:
Since A can be orthogonally diagonalized, we can write xTAx = xTQTDQx.
For any nonzero x, y = Qx is also nonzero, and hence yTDy = λ1y

2
1 + λ2y

2
2 is a positive combination of positive

numbers.

For zero x, xTAx is obviously zero. Therefore A is SPD.

Part (b) [2 MARKS]

What is ∥A∥? What is ∥A−1∥?

Solution:
The maximum stretching factor occurs for a vector x satisfying Qx = [1, 0]T , and the maximum stretching factor of
the inverse occurs for the vector x satisfying Qx = [0, 1]T . Hence, ∥A∥ = λ1 and ∥A−1∥ = λ2

Part (c) [2 MARKS]

What is the condition number of A?

Solution:
Use the formula given in class and the previous calculations:

κ(A) = ∥A∥∥A−1∥ =
λ1

λ2
=

15 +
√
221

15−
√
221

≈ 2.23× 102 (13)

Part (d) [4 MARKS]

Describe how you would use the Cholesky factorization to solve the linear system Ax = b for an arbitrary b.

Solution:
Knowing the Cholesky decomposition allows us to write the linear system as RRTx = b for a lower triangular
matrix R.
Then, we first solve the lower triangular system Ry = b with forward substitution.
Next, we solve the upper triangular system RTx = y with backward substitution.
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Question 5. [3 MARKS]

Consider the following system of overdetermined equations:
10 2 14
7 6 19
5 8 21
1 3 7


x1x2
x3

 =


1
2
3
4

 (14)

Describe how you would solve this system of linear equations and justify why.

Solution:
Check the columns for linear dependence: 

10
7
5
1

+ 2


2
6
8
3

 =


14
19
21
7

 . (15)

Hence, the matrix is rank-deficient, and the most appropriate method is to use truncated SVD, where we calculate
the SVD of the matrix and drop the singular values that are zero or close to zero.
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