Question 1. [3 MARKS]

Show that if Q is an orthogonal matrix then $Q^{-1}=Q^{T}$.

Solution:

List out the columns of Q as the vectors $q_{1}, q_{2}, \ldots, q_{n}$.
Then, the rows of Q^{T} are given by $q_{1}^{T}, q_{2}^{T}, \ldots, q_{n}^{T}$.
Then, compute $A=Q^{T} Q$. The entries of $A_{i j}$ are given by $q_{i}^{T} q_{j}$.
Since the columns are all vectors that are orthogonal to each other and are unit vectors, $q_{i}^{T} q_{j}=1$ iff $i=j$. Hence, A is the identity matrix and $Q^{-1}=Q^{T}$.

Question 2. [13 marks]

Let h be a small number and let x be around 1 . Consider the following function:

$$
\begin{equation*}
f(x)=\frac{\sqrt{x+h}-\sqrt{x-h}}{2 h} \tag{1}
\end{equation*}
$$

Part (a) [3 MARKS]
Explain, in plain language, what f computes.

Solution:

f computes a second-order $\left(\mathcal{O}\left(h^{2}\right)\right)$ approximation to the first derivative of the function $y=\sqrt{x}$.
Part (b) [2 MARKS]
Clearly describe two issues when computing f in floating-point.

Solution:

The two issues from computing f in floating-point are:

- Cancellation error from computing $\sqrt{x+h}-\sqrt{x-h}$
- Magnification of error by dividing by a small number $2 h$.

Part (c) [5 MARKS]
Show how to resolve both, by computing a different, but mathematically equivalent expression.

Solution:

We use the conjugation trick to eliminate the cancellation in the numerator.

$$
\begin{aligned}
f(x) & =\frac{\sqrt{x+h}-\sqrt{x-h}}{2 h} \\
& =\left(\frac{\sqrt{x+h}-\sqrt{x-h}}{2 h}\right)\left(\frac{\sqrt{x+h}+\sqrt{x-h}}{\sqrt{x+h}+\sqrt{x-h}}\right) \\
& =\frac{(x+h)-(x-h)}{2 h(\sqrt{x+h}+\sqrt{x-h})} \\
& =\frac{2 h}{2 h(\sqrt{x+h}+\sqrt{x-h})} \\
& =\frac{1}{\sqrt{x+h}+\sqrt{x-h}}
\end{aligned}
$$

Part (d) [3 MARKS]

What is the limit of the second formula as $h \rightarrow 0$? How are the limit and f related?

Solution:

To compute the limit, sub 0 in for h :

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x-h}}=\frac{1}{2 \sqrt{x}} \tag{2}
\end{equation*}
$$

The limit is the first derivative of \sqrt{x}. So it is an exact expression for what f was intended to calculate.
Question 3. [11 mARKS]
Consider solving the equation

$$
\begin{equation*}
f(x)=\exp (-x)-x=0 \tag{3}
\end{equation*}
$$

A bracket on the unique root x^{*} would be $[1 / 2,2]$.
Part (a) [3 MARKS]
How many iterations does it take for bisection method to achieve an absolute accuracy of 10^{-6} from the bracket?

Solution:

The size of the initial bracket is $3 / 2$.
Each iteration of bisection method reduces the interval to a half of the size on the previous iteration.
Hence, after k iterations, the size of the bracket is given by

$$
\begin{equation*}
\mathrm{sz}=\frac{3}{2} \frac{1}{2^{k}} . \tag{4}
\end{equation*}
$$

If we want the size of the bracket to be reduced to 10^{-6}, then we have

$$
\begin{equation*}
10^{-6}=\frac{3}{2^{k+1}} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
k=\left\lceil\log _{2}\left(3 \times 10^{6}\right)-1\right\rceil=21 . \tag{6}
\end{equation*}
$$

Part (b) [5 MARKS]
Consider the fixed-point iteration

$$
\begin{equation*}
g(x)=\exp (-x) \tag{7}
\end{equation*}
$$

Show that $\left|g^{\prime}(x)\right|<1$ on $[1 / 2,2]$. What is ρ ?

Solution:

$\left|g^{\prime}(x)\right|=|-\exp (-x)|=\exp (-x)$. Since this is a decreasing function, the maximum occurs at $g^{\prime}(1 / 2)=0.6065$, which is less than 1.

Part (c) [3 MARKS]
Write out Newton's method for $f(x)$ and express it as a fixed-point iteration g_{2}.

Solution:

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=x_{k}-\frac{\exp \left(-x_{k}\right)-x_{k}}{-\exp \left(-x_{k}\right)-1}=x_{k}+\frac{\exp \left(-x_{k}\right)-x_{k}}{\exp \left(-x_{k}\right)+1} \equiv g_{2}(x) . \tag{8}
\end{equation*}
$$

Question 4. [12 marks]

Consider the matrix A :

$$
A=\left[\begin{array}{cc}
10 & 7 \tag{9}\\
7 & 5
\end{array}\right]
$$

You may use without proof the fact that

$$
\begin{equation*}
\lambda_{1}(A), \lambda_{2}(A)=\frac{15 \pm \sqrt{221}}{2} \tag{10}
\end{equation*}
$$

and the fact that A can be orthogonally diagonalized:

$$
\begin{equation*}
A=Q^{T} D Q \tag{11}
\end{equation*}
$$

where Q is an orthogonal matrix and

$$
D=\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{12}\\
0 & \lambda_{2}
\end{array}\right]
$$

Part (a) [4 MARKS]
Show that A is symmetric positive definite.

Solution:

Since A can be orthogonally diagonalized, we can write $x^{T} A x=x^{T} Q^{T} D Q x$.
For any nonzero $x, y=Q x$ is also nonzero, and hence $y^{T} D y=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}$ is a positive combination of positive numbers.
For zero $x, x^{T} A x$ is obviously zero. Therefore A is SPD.
Part (b) [2 MARKS]
What is $\|A\|$? What is $\left\|A^{-1}\right\|$?

Solution:

The maximum stretching factor occurs for a vector x satisfying $Q x=[1,0]^{T}$, and the maximum stretching factor of the inverse occurs for the vector x satisfying $Q x=[0,1]^{T}$. Hence, $\|A\|=\lambda_{1}$ and $\left\|A^{-1}\right\|=\lambda_{2}$

Part (c) [2 MARKS]
What is the condition number of A ?

Solution:

Use the formula given in class and the previous calculations:

$$
\begin{equation*}
\kappa(A)=\|A\|\left\|A^{-1}\right\|=\frac{\lambda_{1}}{\lambda_{2}}=\frac{15+\sqrt{221}}{15-\sqrt{221}} \approx 2.23 \times 10^{2} \tag{13}
\end{equation*}
$$

Part (d) [4 MARKS]

Describe how you would use the Cholesky factorization to solve the linear system $A x=b$ for an arbitrary b.

Solution:

Knowing the Cholesky decomposition allows us to write the linear system as $R R^{T} x=b$ for a lower triangular matrix R.
Then, we first solve the lower triangular system $R y=b$ with forward substitution.
Next, we solve the upper triangular system $R^{T} x=y$ with backward substitution.

Question 5. [3 MARKs]

Consider the following system of overdetermined equations:

$$
\left[\begin{array}{ccc}
10 & 2 & 14 \tag{14}\\
7 & 6 & 19 \\
5 & 8 & 21 \\
1 & 3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Describe how you would solve this system of linear equations and justify why.

Solution:

Check the columns for linear dependence:

$$
\left[\begin{array}{c}
10 \tag{15}\\
7 \\
5 \\
1
\end{array}\right]+2\left[\begin{array}{l}
2 \\
6 \\
8 \\
3
\end{array}\right]=\left[\begin{array}{c}
14 \\
19 \\
21 \\
7
\end{array}\right] .
$$

Hence, the matrix is rank-deficient, and the most appropriate method is to use truncated SVD, where we calculate the SVD of the matrix and drop the singular values that are zero or close to zero.

