Lecture 9: Iterative methods CSC 338: Numerical Methods

Ray Wu
University of Toronto

March 22, 2023

Outline

- Motivation and a representative problem
- Stationary methods
- Convergence of stationary methods
- Gradient-based methods (conjugate gradient)

The need for iterative methods

What is wrong with a direct method (LU with partial pivoting)?

- LU may introduce fill-in for sparse matrices, and destroy the sparsity.
- LU can't solve the linear system to an arbitrary degree of accuracy more efficiently.
- LU can't make use of an educated guess of the solution. This arises frequently in time-dependent problems and is known as a warm start.

The representative problem

- We have looked at one-dimensional problems. However, for applications in our real world, we often require two or three dimensional modelling.
- Example two-dimensional PDE (Poisson Equation):

$$
\begin{equation*}
-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=g(x, y) \tag{1}
\end{equation*}
$$

for some given function g.

- Additionally, let us assume that the domain is a square $(x, y \in[0,1])$ and that the boundary values of u on the square is 0 $(u(x, 0)=u(x, 1)=u(0, y)=u(1, y)=0)$.

Discretization

- Poission Equation:

$$
\begin{equation*}
-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=g(x, y) \tag{2}
\end{equation*}
$$

- Discretization with finite differences:

$$
\begin{equation*}
\left(2 u_{i, j}-u_{i-1, j}-u_{i+1, j}\right)+\left(2 u_{i, j}-u_{i, j-1}-u_{i, j+1}\right)=h^{2} g_{i, j} \tag{3}
\end{equation*}
$$

- These are linear equations, and combining them all gives rise to a linear system of equations $A u=b$.
- Notation:
- $u_{i, j}$ is shorthand for $u(i h, j h)$.
- Assumed equal number of gridpoints in both dimensions.

What does the matrix look like?

Figure 1: The matrix arising from the discretization of the two-dimensional problem. $\mathcal{O}\left(n^{2}\right)$ entries are stored $(n=8)$.

Constructing d-dimensional discretizations

- The easiest way to construct these matrices is using the kronecker product
- Denoted as kron(A, B) in Matlab, or \otimes.
- Defined by the following:

$$
\begin{equation*}
A \otimes B=a_{i, j} B \tag{4}
\end{equation*}
$$

- To construct the two dimensional discretization, let T_{2} be the size n matrix that computes the 2nd derivative.
- Then,

$$
\begin{equation*}
A=T_{2} \otimes I_{n}+I_{n} \otimes T_{2} \tag{5}
\end{equation*}
$$

- Three-dimensional case is similar.
- Must be careful about which dimension is which for nonsymmetric problems!

Direct Methods

Figure 2: The Cholesky factor of the matrix arising from the discretization of the two-dimensional problem. $\mathcal{O}\left(n^{3}\right)$ entries are stored ($n=8$).

Digression: algorithmic efficiency

- What is the computational complexity of evaluating a polynomial

$$
\begin{equation*}
p_{n}(x)=\sum c_{i} x^{i} \tag{6}
\end{equation*}
$$

- The simple way that you were taught in math class:
- For each $i=0,1,2, \ldots, n$, calculate x^{i}
- Calculate $c_{i} x^{i}$, then sum together.
- Computational complexity: $\mathcal{O}\left(n^{2}\right)$.
- Consider problem in terms of input size/output size.
- Input size is $n+2$, output size is 1 .
- Computational complexity is lower-bounded by input/output size.

Algorithmic efficiency continued

- The computational complexity is lower-bounded by input size $\mathcal{O}(n)$.
- Naive algorithm is $\mathcal{O}\left(n^{2}\right)$.
- We can consider avoiding computing unnecessary powers of x.
- Consider instead Horner's method

$$
\begin{equation*}
p_{n}(x)=\sum c_{i} x^{i}=c_{0}+x\left(c_{1}+x\left(c_{2}+\cdots+x\left(c_{n-1}+x c_{n}\right)\right)\right) \tag{7}
\end{equation*}
$$

- Computational complexity: n multiplications and n additions, $\mathcal{O}(n)$.
- Optimal because input size is $\mathcal{O}(n)$, and we must read the input.

Another example of algorithmic efficiency

- Matrix Multiplication of two n by n matrices: Naive method from the definition of matrix multiplication is $\mathcal{O}\left(n^{3}\right)$.
- i.e. compute the matrix product as the dot product of the corresponding row and columns, each entry is $\mathcal{O}(n)$ computational complexity to compute and we have n^{2} entries.
- Input size: $2 n^{2}$.
- This means that the straightforward matrix multiplication method is not optimal.
- Strassen algorithm (1969): $\mathcal{O}\left(n^{\log _{2}(7)}\right) \approx \mathcal{O}\left(n^{2.81}\right)$. https://en.wikipedia.org/wiki/Strassen_algorithm
- Open question in theoretical computer science
- Duan, Wu, Zhou (2022): $\mathcal{O}\left(n^{2.37188}\right)$.
https://arxiv.org/pdf/2210.10173.pdf

Going back to our example

- One dimension: n entries, computational complexity is $\mathcal{O}(n)$, optimal.
- Two dimensions: n^{2} entries, computational complexity is $\mathcal{O}\left(n^{4}\right)$.
- Iterative methods can be used to reduce this computational complexity.

Splitting Methods

- Consider a splitting of a matrix $A=M-N$.
- Then, $A x=b$ is equivalent to $M x=N x+b$.
- Fixed-point iteration results in

$$
\begin{equation*}
x_{k+1}=M^{-1}\left(N x_{k}+b\right)=x_{k}+M^{-1}\left(b-A x_{k}\right)=x_{k}+M^{-1} r_{k} \tag{8}
\end{equation*}
$$

- Choice of M leads to different iterative schemes.
- Of course, need to choose M that is easily invertible.

Two simple direct methods

- Jacobi method: choose $M=D$, leading to

$$
\begin{equation*}
x_{k+1}=x_{k}+D^{-1} r_{k} \tag{9}
\end{equation*}
$$

- D is the diagonal matrix with the same diagonal entries as A.
- Gauss-Seidel: choose $M=E$, leading to

$$
\begin{equation*}
x_{k+1}=x_{k}+E^{-1} r_{k} \tag{10}
\end{equation*}
$$

- E is the lower-triangular part of A.
- Note that D and E are both easily invertible.
- The more advanced methods SOR (successive over-relaxation) build upon these methods.

Convergence of stationary methods

- It is useful to consider the general form:

$$
\begin{equation*}
x_{k+1}=x_{k}+M^{-1} r_{k} \tag{11}
\end{equation*}
$$

- At each iteration k the residual is r_{k}, and the error is $A^{-1} r_{k}$.
- Write

$$
\begin{aligned}
x_{k+1} & =M^{-1} b+\left(I-M^{-1} A\right) x_{k} \\
x & =M^{-1} b+\left(I-M^{-1} A\right) x
\end{aligned}
$$

- Take the difference to get

$$
\begin{equation*}
e_{k+1}=\left(I-M^{-1} A\right) e_{k}=T e_{k} \tag{12}
\end{equation*}
$$

- T is called the iteration matrix and the method converges if $\rho(T)<1$.
- ρ denotes the spectral radius
- The rate of convergence is $-\log _{10}(\rho(T))$.

Gradient based methods

- Assume that A is SPD.
- The matrix from Poission's equation satisfies this assumption.
- Solving $A x=b$ is equivalent to minimizing

$$
\begin{equation*}
\phi(x)=\frac{1}{2} x^{T} A x-b^{T} x \tag{13}
\end{equation*}
$$

- Update iterate with $x_{k+1}=x_{k}+\alpha_{k} p_{k}$.
- Gradient descent: Choose $p_{k}=r_{k}$.

Exact Line-search

- How to choose α_{k} ?
- Greedy approach: minimize the function

$$
\begin{equation*}
\phi\left(x_{k}+\alpha_{k} r_{k}\right)=\frac{1}{2}\left(x_{k}+\alpha_{k} r_{k}\right)^{T} A\left(x_{k}+\alpha_{k} r_{k}\right)-b^{T}\left(x_{k}+\alpha_{k} r_{k}\right) \tag{14}
\end{equation*}
$$

- Find the minimizer by differentiating with respect to α and setting to zero. Choose

$$
\begin{equation*}
\alpha_{k}=\frac{r_{k}^{T} r_{k}}{r_{k}^{T} A r_{k}} \tag{15}
\end{equation*}
$$

Issues with Gradient Descent

Gradient Descent in 2D

Figure 3: Convergence of Gradient Descent. Note that the search directions are orthogonal to each other. Figure from https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L4.pdf

Conjugate directions

- What if, once we search a direction, we are done with it forever?
- Conjugate directions: Two vectors p_{j} and p_{k} are A-conjugate if

$$
\begin{equation*}
p_{j}^{T} A p_{k}=0 \tag{16}
\end{equation*}
$$

- Energy norm:

$$
\begin{equation*}
\|x\|_{A}=\sqrt{x^{T} A x} \tag{17}
\end{equation*}
$$

assuming that A is positive definite.

- Choosing conjugate directions allows us to search in one direction and be done with it. Algorithm:
- Find n conjugate directions
- Solve in each direction.

Conjugate gradient

- First search direction: nothing changes.
- Every subsequent direction: enforce A-conjugate condition. Set

$$
\begin{equation*}
p_{k+1}=r_{k+1}+\frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}} p_{k} \tag{18}
\end{equation*}
$$

- The stepsize α_{k} is chosen to be the same as in gradient descent:

$$
\begin{equation*}
\alpha_{k}=\frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}} \tag{19}
\end{equation*}
$$

- We can show that the residuals are all orthogonal to each other.
- We can show that the search directions are all A-orthogonal to each other.

More on Conjugate gradient

- Conjugate gradient is both an iterative method and a direct method, since it is guaranteed to terminate in n iterations.
- Additionally, if the matrix has $m<n$ distinct eigenvalues, then the number of iterations is at most m.
- However, generally we consider Conjugate Gradient to be an iterative method.
- Only $\mathcal{O}(\sqrt{\kappa(A)})$ iterations are required to reduce the error $\left\|e_{k}\right\|_{A}$ by a fixed amount, with an error bound given by

$$
\begin{equation*}
\left\|e_{k}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{k}\left\|e_{0}\right\|_{A} \tag{20}
\end{equation*}
$$

- This is in contrast to gradient descent, where $\mathcal{O}(\kappa(A))$ iterations are required to reduce the norm by a fixed amount.

Computational complexity of conjugate gradient

- Recall that for a one-dimensional problem, the condition number of A increases like $\mathcal{O}\left(n^{2}\right)$.
- The same thing can be shown for a two-dimensional problem. Hence, the number of iterations is $\mathcal{O}(n)$.
- How much does each iteration cost? Computational complexity of matrix-vector multiplication is $\mathcal{O}\left(n^{2}\right)$.
- Improved efficiency.

Final comments on iterative methods

- Conjugate gradient method is for symmetric positive definite matrices. For general matrices
- biconjugate gradient method (bicg)
- generalized mean residual (gmres)
- Preconditioning: computing a matrix P such that $P^{-1} A$ has a reduced condition number.
- Implementation: in these iterative methods (gradient descent, conjugate gradient, biconjugate gradient, generalized mean residual), the matrix itself is not necessary to construct.
- We only use the matrix as an operator to a vector.
- Hence, in certain applications we do not construct the matrix, but rather write a function that takes input x and outputs $A x$.
- Can lead to improved efficiency.

