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Outline

▶ Motivation and a representative problem

▶ Stationary methods

▶ Convergence of stationary methods

▶ Gradient-based methods (conjugate gradient)
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The need for iterative methods

What is wrong with a direct method (LU with partial pivoting)?

▶ LU may introduce �ll-in for sparse matrices, and destroy the sparsity.

▶ LU can't solve the linear system to an arbitrary degree of accuracy
more e�ciently.

▶ LU can't make use of an educated guess of the solution. This arises
frequently in time-dependent problems and is known as a warm start.
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The representative problem

▶ We have looked at one-dimensional problems. However, for
applications in our real world, we often require two or three
dimensional modelling.

▶ Example two-dimensional PDE (Poisson Equation):

−
(
∂2u

∂x2
+

∂2u

∂y2

)
= g(x , y) (1)

for some given function g .

▶ Additionally, let us assume that the domain is a square (x , y ∈ [0, 1])
and that the boundary values of u on the square is 0
(u(x , 0) = u(x , 1) = u(0, y) = u(1, y) = 0).
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Discretization

▶ Poission Equation:

−
(
∂2u

∂x2
+

∂2u

∂y2

)
= g(x , y) (2)

▶ Discretization with �nite di�erences:

(2ui ,j − ui−1,j − ui+1,j) + (2ui ,j − ui ,j−1 − ui ,j+1) = h2gi ,j (3)

▶ These are linear equations, and combining them all gives rise to a
linear system of equations Au = b.

▶ Notation:
▶ ui,j is shorthand for u(ih, jh).
▶ Assumed equal number of gridpoints in both dimensions.
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What does the matrix look like?
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Figure 1: The matrix arising from the discretization of the two-dimensional
problem. O(n2) entries are stored (n = 8).
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Constructing d -dimensional discretizations

▶ The easiest way to construct these matrices is using the kronecker

product

▶ Denoted as kron(A, B) in Matlab, or ⊗.

▶ De�ned by the following:

A⊗ B = ai ,jB. (4)

▶ To construct the two dimensional discretization, let T2 be the size n
matrix that computes the 2nd derivative.

▶ Then,
A = T2 ⊗ In + In ⊗ T2 (5)

▶ Three-dimensional case is similar.

▶ Must be careful about which dimension is which for nonsymmetric
problems!
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Direct Methods
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Figure 2: The Cholesky factor of the matrix arising from the discretization of the
two-dimensional problem. O(n3) entries are stored (n = 8).
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Digression: algorithmic e�ciency

▶ What is the computational complexity of evaluating a polynomial

pn(x) =
∑

cix
i (6)

▶ The simple way that you were taught in math class:
▶ For each i = 0, 1, 2, . . . , n, calculate x i

▶ Calculate cix
i , then sum together.

▶ Computational complexity: O(n2).

▶ Consider problem in terms of input size/output size.

▶ Input size is n + 2, output size is 1.

▶ Computational complexity is lower-bounded by input/output size.

Ray Wu (University of Toronto) Lecture 9: Iterative methods March 22, 2023 9 / 23



Algorithmic e�ciency continued

▶ The computational complexity is lower-bounded by input size O(n).

▶ Naive algorithm is O(n2).

▶ We can consider avoiding computing unnecessary powers of x .

▶ Consider instead Horner's method

pn(x) =
∑

cix
i = c0 + x(c1 + x(c2 + · · ·+ x(cn−1 + xcn))) (7)

▶ Computational complexity: n multiplications and n additions, O(n).

▶ Optimal because input size is O(n), and we must read the input.
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Another example of algorithmic e�ciency

▶ Matrix Multiplication of two n by n matrices: Naive method from the
de�nition of matrix multiplication is O(n3).
▶ i.e. compute the matrix product as the dot product of the

corresponding row and columns, each entry is O(n) computational
complexity to compute and we have n2 entries.

▶ Input size: 2n2.

▶ This means that the straightforward matrix multiplication method is
not optimal.

▶ Strassen algorithm (1969): O(nlog2(7)) ≈ O(n2.81).
https://en.wikipedia.org/wiki/Strassen_algorithm

▶ Open question in theoretical computer science

▶ Duan, Wu, Zhou (2022): O(n2.37188).
https://arxiv.org/pdf/2210.10173.pdf
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Going back to our example

▶ One dimension: n entries, computational complexity is O(n), optimal.

▶ Two dimensions: n2 entries, computational complexity is O(n4).

▶ Iterative methods can be used to reduce this computational
complexity.
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Splitting Methods

▶ Consider a splitting of a matrix A = M − N.

▶ Then, Ax = b is equivalent to Mx = Nx + b.

▶ Fixed-point iteration results in

xk+1 = M−1(Nxk + b) = xk +M−1(b − Axk) = xk +M−1rk (8)

▶ Choice of M leads to di�erent iterative schemes.

▶ Of course, need to choose M that is easily invertible.
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Two simple direct methods

▶ Jacobi method: choose M = D, leading to

xk+1 = xk + D−1rk (9)

▶ D is the diagonal matrix with the same diagonal entries as A.

▶ Gauss-Seidel: choose M = E , leading to

xk+1 = xk + E−1rk (10)

▶ E is the lower-triangular part of A.

▶ Note that D and E are both easily invertible.

▶ The more advanced methods SOR (successive over-relaxation) build
upon these methods.
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Convergence of stationary methods

▶ It is useful to consider the general form:

xk+1 = xk +M−1rk (11)

▶ At each iteration k the residual is rk , and the error is A−1rk .

▶ Write

xk+1 = M−1b + (I −M−1A)xk

x = M−1b + (I −M−1A)x

▶ Take the di�erence to get

ek+1 = (I −M−1A)ek = Tek (12)

▶ T is called the iteration matrix and the method converges if ρ(T ) < 1.

▶ ρ denotes the spectral radius

▶ The rate of convergence is − log10(ρ(T )).
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Gradient based methods

▶ Assume that A is SPD.
▶ The matrix from Poission's equation satis�es this assumption.

▶ Solving Ax = b is equivalent to minimizing

ϕ(x) =
1

2
xTAx − bT x (13)

▶ Update iterate with xk+1 = xk + αkpk .

▶ Gradient descent: Choose pk = rk .
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Exact Line-search

▶ How to choose αk?

▶ Greedy approach: minimize the function

ϕ(xk + αk rk) =
1

2
(xk + αk rk)

TA(xk + αk rk)− bT (xk + αk rk) (14)

▶ Find the minimizer by di�erentiating with respect to α and setting to
zero. Choose

αk =
rTk rk

rTk Ark
(15)
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Issues with Gradient Descent

Figure 3: Convergence of Gradient Descent. Note that the search directions are
orthogonal to each other. Figure from
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L4.pdf

Ray Wu (University of Toronto) Lecture 9: Iterative methods March 22, 2023 18 / 23

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L4.pdf


Conjugate directions

▶ What if, once we search a direction, we are done with it forever?

▶ Conjugate directions: Two vectors pj and pk are A-conjugate if

pTj Apk = 0 (16)

▶ Energy norm:
∥x∥A =

√
xTAx (17)

assuming that A is positive de�nite.

▶ Choosing conjugate directions allows us to search in one direction and
be done with it. Algorithm:
▶ Find n conjugate directions
▶ Solve in each direction.
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Conjugate gradient

▶ First search direction: nothing changes.

▶ Every subsequent direction: enforce A-conjugate condition. Set

pk+1 = rk+1 +
rTk+1rk+1

rTk rk
pk (18)

▶ The stepsize αk is chosen to be the same as in gradient descent:

αk =
rTk rk

pTk Apk
(19)

▶ We can show that the residuals are all orthogonal to each other.

▶ We can show that the search directions are all A-orthogonal to each
other.
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More on Conjugate gradient

▶ Conjugate gradient is both an iterative method and a direct method,
since it is guaranteed to terminate in n iterations.
▶ Additionally, if the matrix has m < n distinct eigenvalues, then the

number of iterations is at most m.

▶ However, generally we consider Conjugate Gradient to be an iterative
method.

▶ Only O(
√

κ(A)) iterations are required to reduce the error ∥ek∥A by a
�xed amount, with an error bound given by

∥ek∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥e0∥A (20)

▶ This is in contrast to gradient descent, where O(κ(A)) iterations are
required to reduce the norm by a �xed amount.
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Computational complexity of conjugate gradient

▶ Recall that for a one-dimensional problem, the condition number of A
increases like O(n2).

▶ The same thing can be shown for a two-dimensional problem. Hence,
the number of iterations is O(n).

▶ How much does each iteration cost? Computational complexity of
matrix-vector multiplication is O(n2).

▶ Improved e�ciency.
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Final comments on iterative methods

▶ Conjugate gradient method is for symmetric positive de�nite matrices.
For general matrices
▶ biconjugate gradient method (bicg)
▶ generalized mean residual (gmres)

▶ Preconditioning: computing a matrix P such that P−1A has a reduced
condition number.

▶ Implementation: in these iterative methods (gradient descent,
conjugate gradient, biconjugate gradient, generalized mean residual),
the matrix itself is not necessary to construct.

▶ We only use the matrix as an operator to a vector.

▶ Hence, in certain applications we do not construct the matrix, but
rather write a function that takes input x and outputs Ax .

▶ Can lead to improved e�ciency.
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