Lecture 9: Iterative methods CSC 338: Numerical Methods

Ray Wu

University of Toronto

March 22, 2023

Outline

- Motivation and a representative problem
- Stationary methods
- Convergence of stationary methods
- Gradient-based methods (conjugate gradient)

What is wrong with a direct method (LU with partial pivoting)?

- ► LU may introduce fill-in for sparse matrices, and destroy the sparsity.
- LU can't solve the linear system to an arbitrary degree of accuracy more efficiently.
- LU can't make use of an educated guess of the solution. This arises frequently in time-dependent problems and is known as a warm start.

The representative problem

- We have looked at one-dimensional problems. However, for applications in our real world, we often require two or three dimensional modelling.
- Example two-dimensional PDE (Poisson Equation):

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = g(x, y) \tag{1}$$

for some given function g.

Additionally, let us assume that the domain is a square $(x, y \in [0, 1])$ and that the boundary values of u on the square is 0 (u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0). Poission Equation:

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = g(x, y)$$
(2)

Discretization with finite differences:

$$(2u_{i,j} - u_{i-1,j} - u_{i+1,j}) + (2u_{i,j} - u_{i,j-1} - u_{i,j+1}) = h^2 g_{i,j}$$
(3)

- These are linear equations, and combining them all gives rise to a linear system of equations Au = b.
- Notation:
 - *u_{i,j}* is shorthand for *u(ih,jh)*.
 - Assumed equal number of gridpoints in both dimensions.

What does the matrix look like?

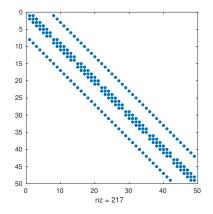


Figure 1: The matrix arising from the discretization of the two-dimensional problem. $O(n^2)$ entries are stored (n = 8).

Constructing *d*-dimensional discretizations

- The easiest way to construct these matrices is using the kronecker product
- ▶ Denoted as kron(A, B) in Matlab, or \otimes .
- Defined by the following:

$$A\otimes B=a_{i,j}B.$$
 (4)

- To construct the two dimensional discretization, let T₂ be the size n matrix that computes the 2nd derivative.
- ► Then,

$$A = T_2 \otimes I_n + I_n \otimes T_2 \tag{5}$$

- Three-dimensional case is similar.
- Must be careful about which dimension is which for nonsymmetric problems!

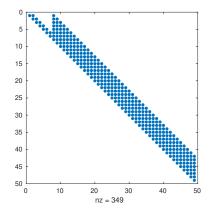


Figure 2: The Cholesky factor of the matrix arising from the discretization of the two-dimensional problem. $\mathcal{O}(n^3)$ entries are stored (n = 8).

Digression: algorithmic efficiency

What is the computational complexity of evaluating a polynomial

$$p_n(x) = \sum c_i x^i \tag{6}$$

- The simple way that you were taught in math class:
 - ▶ For each i = 0, 1, 2, ..., n, calculate xⁱ
 - Calculate c_ixⁱ, then sum together.
 - Computational complexity: $\mathcal{O}(n^2)$.
- Consider problem in terms of input size/output size.
- ► Input size is n + 2, output size is 1.
- Computational complexity is lower-bounded by input/output size.

Algorithmic efficiency continued

- The computational complexity is lower-bounded by input size $\mathcal{O}(n)$.
- Naive algorithm is $\mathcal{O}(n^2)$.
- We can consider avoiding computing unnecessary powers of x.
- Consider instead Horner's method

$$p_n(x) = \sum c_i x^i = c_0 + x(c_1 + x(c_2 + \dots + x(c_{n-1} + xc_n)))$$
(7)

- Computational complexity: n multiplications and n additions, $\mathcal{O}(n)$.
- Optimal because input size is $\mathcal{O}(n)$, and we must read the input.

Another example of algorithmic efficiency

- Matrix Multiplication of two *n* by *n* matrices: Naive method from the definition of matrix multiplication is $O(n^3)$.
 - i.e. compute the matrix product as the dot product of the corresponding row and columns, each entry is O(n) computational complexity to compute and we have n² entries.
- Input size: 2n².
- This means that the straightforward matrix multiplication method is not optimal.
- Strassen algorithm (1969): O(n^{log₂(7)}) ≈ O(n^{2.81}). https://en.wikipedia.org/wiki/Strassen_algorithm
- Open question in theoretical computer science
- Duan, Wu, Zhou (2022): O(n^{2.37188}). https://arxiv.org/pdf/2210.10173.pdf

Going back to our example

- One dimension: *n* entries, computational complexity is O(n), optimal.
- ▶ Two dimensions: n^2 entries, computational complexity is $\mathcal{O}(n^4)$.
- Iterative methods can be used to reduce this computational complexity.

Splitting Methods

- Consider a splitting of a matrix A = M N.
- Then, Ax = b is equivalent to Mx = Nx + b.
- Fixed-point iteration results in

$$x_{k+1} = M^{-1}(Nx_k + b) = x_k + M^{-1}(b - Ax_k) = x_k + M^{-1}r_k$$
 (8)

- Choice of *M* leads to different iterative schemes.
- ▶ Of course, need to choose *M* that is easily invertible.

Two simple direct methods

> Jacobi method: choose M = D, leading to

$$x_{k+1} = x_k + D^{-1}r_k (9)$$

- D is the diagonal matrix with the same diagonal entries as A.
- Gauss-Seidel: choose M = E, leading to

$$x_{k+1} = x_k + E^{-1} r_k \tag{10}$$

- E is the lower-triangular part of A.
- Note that D and E are both easily invertible.
- The more advanced methods SOR (successive over-relaxation) build upon these methods.

Convergence of stationary methods

It is useful to consider the general form:

$$x_{k+1} = x_k + M^{-1} r_k \tag{11}$$

At each iteration k the residual is rk, and the error is A⁻¹rk.
 Write

$$x_{k+1} = M^{-1}b + (I - M^{-1}A)x_k$$

 $x = M^{-1}b + (I - M^{-1}A)x$

Take the difference to get

$$e_{k+1} = (I - M^{-1}A)e_k = Te_k$$
 (12)

- T is called the iteration matrix and the method converges if $\rho(T) < 1$.
- ρ denotes the spectral radius
- The rate of convergence is $-\log_{10}(\rho(T))$.

Gradient based methods

Assume that A is SPD.

The matrix from Poission's equation satisfies this assumption.

Solving Ax = b is equivalent to minimizing

$$\phi(x) = \frac{1}{2}x^{T}Ax - b^{T}x$$
(13)

- Update iterate with $x_{k+1} = x_k + \alpha_k p_k$.
- Gradient descent: Choose $p_k = r_k$.

16 / 23

Exact Line-search

- How to choose α_k ?
- Greedy approach: minimize the function

$$\phi(x_k + \alpha_k r_k) = \frac{1}{2} (x_k + \alpha_k r_k)^T A(x_k + \alpha_k r_k) - b^T (x_k + \alpha_k r_k) \quad (14)$$

Find the minimizer by differentiating with respect to α and setting to zero. Choose

$$\alpha_k = \frac{r_k^T r_k}{r_k^T A r_k} \tag{15}$$

Issues with Gradient Descent

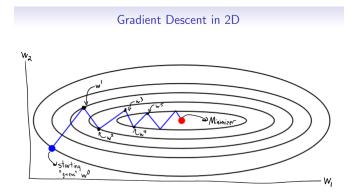


Figure 3: Convergence of Gradient Descent. Note that the search directions are orthogonal to each other. Figure from https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L4.pdf

Conjugate directions

- ▶ What if, once we search a direction, we are done with it forever?
- Conjugate directions: Two vectors p_j and p_k are A-conjugate if

$$\rho_j^T A \rho_k = 0 \tag{16}$$

Energy norm:

$$\|x\|_{\mathcal{A}} = \sqrt{x^{T} \mathcal{A} x} \tag{17}$$

assuming that A is positive definite.

- Choosing conjugate directions allows us to search in one direction and be done with it. Algorithm:
 - Find n conjugate directions
 - Solve in each direction.

Conjugate gradient

- First search direction: nothing changes.
- Every subsequent direction: enforce A-conjugate condition. Set

$$p_{k+1} = r_{k+1} + \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} p_k$$
(18)

The stepsize α_k is chosen to be the same as in gradient descent:

$$\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k} \tag{19}$$

- We can show that the residuals are all orthogonal to each other.
- We can show that the search directions are all A-orthogonal to each other.

- Conjugate gradient is both an iterative method and a direct method, since it is guaranteed to terminate in *n* iterations.
 - Additionally, if the matrix has m < n distinct eigenvalues, then the number of iterations is at most m.
- However, generally we consider Conjugate Gradient to be an iterative method.
- Only O(√κ(A)) iterations are required to reduce the error ||e_k||_A by a fixed amount, with an error bound given by

$$\|e_k\|_A \le 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^k \|e_0\|_A$$
 (20)

This is in contrast to gradient descent, where O(κ(A)) iterations are required to reduce the norm by a fixed amount.

Computational complexity of conjugate gradient

- Recall that for a one-dimensional problem, the condition number of A increases like O(n²).
- The same thing can be shown for a two-dimensional problem. Hence, the number of iterations is O(n).
- How much does each iteration cost? Computational complexity of matrix-vector multiplication is O(n²).
- Improved efficiency.

Final comments on iterative methods

- Conjugate gradient method is for symmetric positive definite matrices.
 For general matrices
 - biconjugate gradient method (bicg)
 - generalized mean residual (gmres)
- Preconditioning: computing a matrix P such that P⁻¹A has a reduced condition number.
- Implementation: in these iterative methods (gradient descent, conjugate gradient, biconjugate gradient, generalized mean residual), the matrix itself is not necessary to construct.
- We only use the matrix as an operator to a vector.
- Hence, in certain applications we do not construct the matrix, but rather write a function that takes input x and outputs Ax.
- Can lead to improved efficiency.