Lecture 8: Numerical integration CSC 338: Numerical Methods

Ray Wu
University of Toronto

March 8, 2023

Numerical integration

- We consider computing definite integrals in one dimension, that is, approximate

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

- Specifically, we approximate I with a finite sum, that is

$$
\begin{equation*}
I \approx \sum a_{j} f\left(x_{j}\right) \tag{2}
\end{equation*}
$$

- x_{j} are the abscissae.
- a_{j} are the weights.

Basic rules

- Basic rules are defined on only the interval of integration $[a, b]$.
- When the interval is partitioned, then we have composite numerical integration (next subsection).
- Basic rules are defined based on polynomial interpolation: we choose $x_{0}, x_{1}, \ldots, x_{n}$, interpolate a polynomial through these points, and integrate the polynomial exactly.

Deriving Basic rules

- Assume that the interpolating polynomial is in Lagrange form:

$$
\begin{equation*}
p_{n}(x)=\sum f\left(x_{j}\right) L_{j}(x) \tag{3}
\end{equation*}
$$

- Then,

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \int_{a}^{b} p_{n}(x) d x=\int_{a}^{b} \sum f\left(x_{j}\right) L_{j}(x) d x \\
& =\sum f\left(x_{j}\right) \int_{a}^{b} L_{j}(x) d x
\end{aligned}
$$

- In other words,

$$
\begin{equation*}
a_{j}=\int_{a}^{b} L_{j}(x) d x \tag{4}
\end{equation*}
$$

Basic rules - Trapezoid rule

- We select $n=1$ (linear interpolant).
- This gives us $x_{0}=a, x_{1}=b$, and $f\left(x_{0}\right), f\left(x_{1}\right)$.
- We have

$$
\begin{equation*}
L_{0}(x)=\frac{x-b}{a-b} \quad L_{1}(x)=\frac{x-a}{b-a} \tag{5}
\end{equation*}
$$

- Integrating,

$$
\begin{align*}
& a_{0}=\int_{a}^{b} \frac{x-b}{a-b} d x=\frac{b-a}{2} \tag{6}\\
& a_{1}=\int_{a}^{b} \frac{x-a}{b-a} d x=\frac{b-a}{2} \tag{7}
\end{align*}
$$

- Resulting trapezoid rule:

$$
\begin{equation*}
I_{\text {trap }}=\frac{b-a}{2}(f(a)+f(b)) \tag{8}
\end{equation*}
$$

Simpson's rule

- Instead of interpolating with a line, consider interpolating with a quadratic, so we have three points x_{0}, x_{1}, x_{2}.
- This gives rise to Simpson's rule, which is given by

$$
\begin{equation*}
I_{\text {simp }}=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \tag{9}
\end{equation*}
$$

Newton-Cotes formulas

- Trapezoidal and Simpson's rules are examples of Newton-Cotes formulas.
- Based on polynomial interpolation at equidistant abscissae
- If we include the endpoints, the formula is closed. Otherwise, it is open.

Error in basic rules

- What is the error in these basic rules?
- Recall that the error of polynomial interpolation is given by

$$
\begin{equation*}
f(x)-p_{n}(x)=f\left[x_{0}, x_{1}, \ldots, x_{n}, x\right] \prod_{i=0}^{n}\left(x-x_{i}\right) \tag{10}
\end{equation*}
$$

- To compute the quadrature error, integrate the error over the entire domain:

$$
\begin{equation*}
E=\int_{a}^{b} f\left[x_{0}, x_{1}, \ldots, x_{n}, x\right] \prod_{i=0}^{n}\left(x-x_{i}\right) d x \tag{11}
\end{equation*}
$$

Error in Trapezoid

- From the trapezoid rule:

$$
\begin{equation*}
E=\int_{a}^{b} f[a, b, x](x-a)(x-b) d x \tag{12}
\end{equation*}
$$

- By IVT and nonpositivity of $(x-a)(x-b)$, there is some value ξ such that

$$
\begin{equation*}
E=f[a, b, \xi] \int_{a}^{b}(x-a)(x-b) d x \tag{13}
\end{equation*}
$$

- Additionally, there exists some value η such that $f[a, b, \xi]=f^{\prime \prime}(\eta) / 2$, the integral evaluates to $-\frac{1}{6}(b-a)^{3}$, so the basic trapezoid rule has error

$$
\begin{equation*}
E=\frac{f^{\prime \prime}(\eta)}{12}(b-a)^{3} \tag{14}
\end{equation*}
$$

Error in Simpson's rule

- Using a similar derivation, the error in Simpson's rule can be shown to be

$$
\begin{equation*}
-\frac{f^{\prime \prime \prime \prime}(\zeta)}{90}\left(\frac{b-a}{2}\right)^{5} \tag{15}
\end{equation*}
$$

- For the derivation, see p. 445 of Ascher \& Greif.
- How do we reduce the error?
- We can change the x_{i} to nonuniform gridpoints. However, if we need to sample many data points, this again goes back to high-degree polynomial interpolation - which is not guaranteed to have good results.
- Far more simple and stable is composite integration - just reduce the interval of integration $[a, b]$.

Composite integration

- Choose a partition of $[a, b]$ and apply a basic rule to each subinterval.
- For simplicity, choose a uniform partition: divide $[a, b]$ into r subintervals of size $h=(b-a) / r$ each.
- Then, we apply the integration rules to each of the r subintervals directly and add them up

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\sum_{i=1}^{r} \int_{t_{i-1}=a+(i-1) h}^{t_{i}=a+i h} f(x) d x \tag{16}
\end{equation*}
$$

- The associated error is the sum of the errors on each interval.
- Suppose we use some basic rule that has an error term $K(b-a)^{q+1}$
- Then, each subinterval has an error contribution $K_{i} h^{q+1}$.
- Since there are $r=(b-a) / h$ of these subintervals, then the total error is given by $K h^{q}$

Composite trapezoidal integration

- Recall that the trapezoidal rule gives

$$
\begin{equation*}
\int_{t_{i-1}}^{t_{i}} f(x) d x \approx \frac{h}{2}\left(f\left(t_{i-1}\right)+f\left(t_{i}\right)\right) \tag{17}
\end{equation*}
$$

- Hence, the composite trapezoidal method is

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left[f(a)+2 f\left(t_{1}\right)+\cdots+2 f\left(t_{r-1}\right)+f(b)\right] . \tag{18}
\end{equation*}
$$

- The error on each subinterval is $\mathcal{O}\left(h^{3}\right)$, hence, the total error is $\mathcal{O}\left(h^{2}\right)$
- In other words, if you double the number of subintervals, you reduce the error to a quarter of the previous size.

Composite Simpson

- Again, we partition the interval $[a, b]$ into subintervals of equal size. However, this time, we denote the length of each subinterval by $2 h$ instead of h.
- This is because we need to evaluate also the midpoints of each subinterval in Simpson's method.
- On each of the subintervals, apply Simpson's rule. Then we have

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left[f(a)+4 \sum_{i \text { odd }} f\left(t_{i}\right)+2 \sum_{i \text { even }} f\left(t_{i}\right)+f(b)\right] \tag{19}
\end{equation*}
$$

- Each subinterval has an $\mathcal{O}\left(h^{5}\right)$ contribution to the error, hence, the total error of composite Simpson is $\mathcal{O}\left(h^{4}\right)$ (assuming the fourth derivative is bounded).
- This means if you double the number of subintervals, the error is reduced to $1 / 16$ of the previous size.

Example of composite integration

- Function to integrate: $y=\sin (x)$.
- Interval: $[0, \pi]$.
- Rest of demo on blackboard

Second example of composite integration

- Function to integrate: $y=\sqrt{x}$.
- Interval: $[0,1]$.
- Rest of demo on blackboard

Gaussian Quadrature

- Gaussian Quadrature is one way to intelligently choose nonuniform points of integration
- Precision of a method: the highest degree polynomial that can be integrated exactly.
- Another closely related method is to use the Chebyshev points leading to Clenshaw-Curtis rules
- How can we intelligently choose the points of integration?
- Orthogonal polynomials will help us.

Vector spaces

- What is a vector space?
- Set of vectors, must satisfy two properties:

1. If u and v are elements of a vector space V, then so must $u+v$.
2. If u is an element in a vector space V and α is a real number, so must αu.

- Do vector spaces have to be comprised of vectors?

Function spaces

- Suppose we define a set of function F.
- As long as our elements f and g in F satisfy the two vector space properties, it's still a vector space.
- Example: The space of linear splines.

1. If you scale a linear spline by a constant, it's still a linear spline.
2. If you add two linear splines, it's still a linear spline.

Norms, Inner products, and orthogonality of functions

- Norms for functions are similar to norms of vectors. If g is a function, then

$$
\begin{align*}
\|g\|=\|g\|_{2} & =\left(\int_{a}^{b}(g(x))^{2} d x\right)^{1 / 2} \tag{20}\\
\|g\|_{1} & =\int_{a}^{b}|g(x)| d x \tag{21}\\
\|g\|_{\infty} & =\max _{x \in[a, b]}|g(x)| \tag{22}
\end{align*}
$$

- Inner product of two functions f and g is defined as

$$
\begin{equation*}
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x \tag{23}
\end{equation*}
$$

- Two functions f and g are orthogonal to each other if their inner product is zero (just like vectors in \mathbb{R}^{n}).

Intuition of Gaussian quadrature

- Suppoes $f(x)$ is a polynomial of degree m. If we use $n \geq m$ points, then

$$
\begin{equation*}
f\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}, x\right]=\frac{f^{(n+1)(\zeta)}}{(n+1)!}=0 \tag{24}
\end{equation*}
$$

- If we are allowed to choose the $n+1$ points, then intuitively, we can increase the precision by $n+1$ to $2 n+1$.
- For orthogonal polynomials $\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n+1}(x)$, we have

$$
\begin{equation*}
\int_{a}^{b} g(x) \phi_{n+1}(x) d x=0 \tag{25}
\end{equation*}
$$

if g has degree $\leq n$.

- g can be written as a linear combination of basis functions $\phi_{j}(x)$.
- Orthogonality directly follows and so does the integral being zero.

Legendre Polynomials and Gaussian Quadrature

- We choose the canoical interval $[-1,1]$.
- Other intervals can be obtained by scaling and shifting.
- Legendre polynomials are defined by the relation

$$
\begin{align*}
\phi_{0}(x) & =1 \tag{26}\\
\phi_{1}(x) & =x \tag{27}\\
\phi_{j+1}(x) & =\frac{2 j+1}{j+1} x \phi_{j}(x)-\frac{j}{j+1} \phi_{j-1}(x) \tag{28}
\end{align*}
$$

- These functions are orthogonal to each other.
- We pick the abscissae as the roots of these polynomials.
- The weights are obtained with integration, and are given by

$$
\begin{equation*}
a_{j}=\frac{2\left(1-x_{j}^{2}\right)}{\left[(n+1) \phi_{n}\left(x_{j}\right)\right]^{2}} \tag{29}
\end{equation*}
$$

- The precision is $2 n+1$.

Examples of Gaussian Quadrature

- Show derivation of 2 and 4 point Gaussian on blackboard.
- The rules for the canonical interval can be found at https://en.wikipedia.org/wiki/Gaussian_quadrature

Richardson Extrapolation

- It can be shown that the error term of composite trapezoidal rule is a sum of the even powers of h :

$$
\begin{equation*}
E=K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+\ldots \tag{30}
\end{equation*}
$$

- As a result, if we compute the integral twice with h and $h / 2$ resulting in R_{1} and R_{2}, then

$$
\begin{aligned}
& E_{1}=K_{1} h^{2}+K_{2} h^{4}+\ldots \\
& E_{2}=(1 / 4) K_{1} h^{2}+(1 / 16) K_{2} h^{4}+\ldots
\end{aligned}
$$

- Then, Richardson Extrapolation is the process of cancelling out the principle error term $K h^{2}$: consider $\left(4 R_{2}-R_{1}\right) / 3$, the associated error is

$$
\begin{equation*}
\frac{4 E_{2}-E_{1}}{3}=\frac{1}{3}\left(4\left((1 / 4) K_{1} h^{2}+(1 / 16) K_{2} h^{4}\right)-\left(K_{1} h^{2}+K_{2} h^{4}\right)\right)=4 K_{2} h^{4} \tag{31}
\end{equation*}
$$

Romberg Integration

- Romberg integration is an iterative process where we repeatedly apply Richardson Extrapolation to cancel out lower and lower power terms
- we construct a triangular table of values:

$\mathcal{O}\left(h^{2}\right)$	$\mathcal{O}\left(h^{4}\right)$	$\mathcal{O}\left(h^{6}\right)$
$R_{1,1}$		
$R_{2,1}$	$R_{2,2}$	
$R_{3,1}$	$R_{3,2}$	$R_{3,3}$

$$
\begin{array}{lllll}
R_{s, 1} & R_{s, 2} & R_{s, 3} & \ldots & R_{s, s}
\end{array}
$$

- First row: computed with composite trapezoidal rule, double the gridpoints each time.
- Subsequent rows: use Richardson Extrapolation:

$$
\begin{equation*}
R_{j+1, k}=R_{j+1, k-1}+\frac{R_{j+1, k-1}-R_{j, k-1}}{4^{k-1}-1} \tag{32}
\end{equation*}
$$

Adaptive integration

- Suppose we are writing general-purpose software, and the user is not interested in technical questions such as
- Which rule we are using
- How many subintervals is appropriate
- Only obtain the necessary information: the function f to integrate, the interval $[a, b]$, and the accuracy ϵ required.
- Our function's job is to produce a number Q such that

$$
\begin{equation*}
|Q-I| \leq \epsilon \tag{33}
\end{equation*}
$$

- For convenience, let's pick trapezoidal rule.

Error estimates

- We must be able to estimate the error. Without that, there is no guidance for how many subintervals we need.
- Recall that for composite rules, we have error given as

$$
\begin{equation*}
E=K h^{q}+\mathcal{O}\left(h^{q+1}\right) \tag{34}
\end{equation*}
$$

- The first term $K h^{q}$ is called the principle error term, and with two approximations we can estimate it:
- Compute R_{1} and R_{2} with h and $h / 2$ respectively.
- Error in R_{1} is approximately $K h^{2}$ (using trapezoid rule)
- Error in R_{2} is approximately $\frac{1}{4} K h^{2}$
- Then we have

$$
\begin{equation*}
I-R_{1}=\left(I-R_{2}\right)+\left(R_{2}-R_{1}\right) \approx \frac{1}{4}\left(I-R_{1}\right)+\left(R_{2}-R_{1}\right) \tag{35}
\end{equation*}
$$

- and we get the immediate error estimate

$$
\begin{equation*}
I-R_{1} \approx \frac{4}{3}\left(R_{2}-R_{1}\right), \quad I-R_{2} \approx \frac{1}{3}\left(R_{2}-R_{1}\right) \tag{36}
\end{equation*}
$$

Adaptive subdivision

- Let l_{i} be the value of the integral on the i-th partition.
- Then, if we require that

$$
\begin{equation*}
\left|Q_{i}-I_{i}\right|<\frac{h_{i}}{b-a} \epsilon \tag{37}
\end{equation*}
$$

then summing over every subinterval, the left side becomes at most $|Q-I|$, and the right side becomes simply ϵ since $\sum h_{i}=b-a$.

- So the idea of adaptive integration is
- Evaluate R_{1} and R_{2} for the partitions $[a, b]$ and $\left[a, \frac{a+b}{2}, b\right]$;
- Estimate the error on each subinterval
- If the error is small enough, then end the computation for the subinterval, otherwise, double the number of gridpoints, but only on the subintervals where the error is not small enough.

More on adaptive integration

- Generally, we want to use adaptive integration when we know that the function is not uniformly varying on the domain of integration.
- One example would be functions that look like $\sin (1 / x)$.
- If the error estimate fails, then the adaptive integration also fails. For example,

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=\int_{0}^{1} \exp (-x) \sin (2 \pi x) d x \tag{38}
\end{equation*}
$$

would fail, due to the fact that $f(0), f(1 / 2), f(1)$ are all zero.

- Iterative refinement of a grid locally is difficult to parallelize/vectorize, which may be a significant drawback in certain applications.

