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Numerical integration

▶ We consider computing de�nite integrals in one dimension, that is,
approximate

I =

∫ b

a

f (x) dx (1)

▶ Speci�cally, we approximate I with a �nite sum, that is

I ≈
∑

aj f (xj) (2)

▶ xj are the abscissae.
▶ aj are the weights.
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Basic rules

▶ Basic rules are de�ned on only the interval of integration [a, b].

▶ When the interval is partitioned, then we have composite numerical

integration (next subsection).

▶ Basic rules are de�ned based on polynomial interpolation: we choose
x0, x1, . . . , xn, interpolate a polynomial through these points, and
integrate the polynomial exactly.
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Deriving Basic rules

▶ Assume that the interpolating polynomial is in Lagrange form:

pn(x) =
∑

f (xj)Lj(x) (3)

▶ Then, ∫ b

a

f (x) dx ≈
∫ b

a

pn(x) dx =

∫ b

a

∑
f (xj)Lj(x) dx

=
∑

f (xj)

∫ b

a

Lj(x) dx

▶ In other words,

aj =

∫ b

a

Lj(x) dx (4)
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Basic rules � Trapezoid rule

▶ We select n = 1 (linear interpolant).

▶ This gives us x0 = a, x1 = b, and f (x0), f (x1).

▶ We have

L0(x) =
x − b

a − b
L1(x) =

x − a

b − a
(5)

▶ Integrating,

a0 =

∫ b

a

x − b

a − b
dx =

b − a

2
(6)

a1 =

∫ b

a

x − a

b − a
dx =

b − a

2
(7)

▶ Resulting trapezoid rule:

Itrap =
b − a

2
(f (a) + f (b)) (8)
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Simpson's rule

▶ Instead of interpolating with a line, consider interpolating with a
quadratic, so we have three points x0, x1, x2.

▶ This gives rise to Simpson's rule, which is given by

Isimp =
b − a

6
[f (a) + 4f (

a + b

2
) + f (b)]. (9)
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Newton-Cotes formulas

▶ Trapezoidal and Simpson's rules are examples of Newton-Cotes
formulas.

▶ Based on polynomial interpolation at equidistant abscissae

▶ If we include the endpoints, the formula is closed. Otherwise, it is
open.
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Error in basic rules

▶ What is the error in these basic rules?

▶ Recall that the error of polynomial interpolation is given by

f (x)− pn(x) = f [x0, x1, . . . , xn, x ]
n∏

i=0

(x − xi ) (10)

▶ To compute the quadrature error, integrate the error over the entire
domain:

E =

∫ b

a

f [x0, x1, . . . , xn, x ]
n∏

i=0

(x − xi ) dx (11)
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Error in Trapezoid

▶ From the trapezoid rule:

E =

∫ b

a

f [a, b, x ](x − a)(x − b) dx (12)

▶ By IVT and nonpositivity of (x − a)(x − b), there is some value ξ such
that

E = f [a, b, ξ]

∫ b

a

(x − a)(x − b) dx (13)

▶ Additionally, there exists some value η such that f [a, b, ξ] = f ′′(η)/2,
the integral evaluates to −1

6
(b − a)3, so the basic trapezoid rule has

error

E =
f ′′(η)

12
(b − a)3 (14)
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Error in Simpson's rule

▶ Using a similar derivation, the error in Simpson's rule can be shown to
be

− f ′′′′(ζ)

90

(
b − a

2

)5

(15)

▶ For the derivation, see p. 445 of Ascher & Greif.

▶ How do we reduce the error?
▶ We can change the xi to nonuniform gridpoints. However, if we need

to sample many data points, this again goes back to high-degree
polynomial interpolation � which is not guaranteed to have good
results.

▶ Far more simple and stable is composite integration - just reduce the
interval of integration [a, b].

Ray Wu (University of Toronto) Lecture 8: Numerical integration March 8, 2023 10 / 28



Composite integration

▶ Choose a partition of [a, b] and apply a basic rule to each subinterval.

▶ For simplicity, choose a uniform partition: divide [a, b] into r

subintervals of size h = (b − a)/r each.

▶ Then, we apply the integration rules to each of the r subintervals
directly and add them up∫ b

a

f (x) dx =
r∑

i=1

∫ ti=a+ih

ti−1=a+(i−1)h
f (x) dx (16)

▶ The associated error is the sum of the errors on each interval.
▶ Suppose we use some basic rule that has an error term K (b − a)q+1

▶ Then, each subinterval has an error contribution Kih
q+1.

▶ Since there are r = (b − a)/h of these subintervals, then the total error
is given by Khq
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Composite trapezoidal integration

▶ Recall that the trapezoidal rule gives∫ ti

ti−1

f (x) dx ≈ h

2
(f (ti−1) + f (ti )). (17)

▶ Hence, the composite trapezoidal method is∫ b

a

f (x) dx ≈ h

2
[f (a) + 2f (t1) + · · ·+ 2f (tr−1) + f (b)]. (18)

▶ The error on each subinterval is O(h3), hence, the total error is O(h2)

▶ In other words, if you double the number of subintervals, you reduce
the error to a quarter of the previous size.
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Composite Simpson

▶ Again, we partition the interval [a, b] into subintervals of equal size.
However, this time, we denote the length of each subinterval by 2h
instead of h.
▶ This is because we need to evaluate also the midpoints of each

subinterval in Simpson's method.

▶ On each of the subintervals, apply Simpson's rule. Then we have∫ b

a

f (x) dx ≈ h

3

[
f (a) + 4

∑
i odd

f (ti ) + 2
∑
i even

f (ti ) + f (b)

]
(19)

▶ Each subinterval has an O(h5) contribution to the error, hence, the
total error of composite Simpson is O(h4) (assuming the fourth
derivative is bounded).

▶ This means if you double the number of subintervals, the error is
reduced to 1/16 of the previous size.
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Example of composite integration

▶ Function to integrate: y = sin(x).

▶ Interval: [0, π].

▶ Rest of demo on blackboard
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Second example of composite integration

▶ Function to integrate: y =
√
x .

▶ Interval: [0, 1].

▶ Rest of demo on blackboard
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Gaussian Quadrature

▶ Gaussian Quadrature is one way to intelligently choose nonuniform
points of integration

▶ Precision of a method: the highest degree polynomial that can be
integrated exactly.

▶ Another closely related method is to use the Chebyshev points �
leading to Clenshaw-Curtis rules

▶ How can we intelligently choose the points of integration?

▶ Orthogonal polynomials will help us.
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Vector spaces

▶ What is a vector space?

▶ Set of vectors, must satisfy two properties:

1. If u and v are elements of a vector space V , then so must u + v .
2. If u is an element in a vector space V and α is a real number, so must

αu.

▶ Do vector spaces have to be comprised of vectors?
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Function spaces

▶ Suppose we de�ne a set of function F .

▶ As long as our elements f and g in F satisfy the two vector space
properties, it's still a vector space.

▶ Example: The space of linear splines.

1. If you scale a linear spline by a constant, it's still a linear spline.
2. If you add two linear splines, it's still a linear spline.
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Norms, Inner products, and orthogonality of functions

▶ Norms for functions are similar to norms of vectors. If g is a function,
then

∥g∥ = ∥g∥2 =
(∫ b

a

(g(x))2 dx

)1/2

(20)

∥g∥1 =
∫ b

a

|g(x)| dx (21)

∥g∥∞ = max
x∈[a,b]

|g(x)| (22)

▶ Inner product of two functions f and g is de�ned as

⟨f , g⟩ =
∫ b

a

f (x)g(x) dx (23)

▶ Two functions f and g are orthogonal to each other if their inner
product is zero (just like vectors in Rn).
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Intuition of Gaussian quadrature

▶ Suppoes f (x) is a polynomial of degree m. If we use n ≥ m points,
then

f [x0, x1, x2, . . . , xn, x ] =
f (n+1)(ζ)

(n + 1)!
= 0 (24)

▶ If we are allowed to choose the n + 1 points, then intuitively, we can
increase the precision by n + 1 to 2n + 1.

▶ For orthogonal polynomials ϕ0(x), ϕ1(x), . . . , ϕn+1(x), we have∫ b

a

g(x)ϕn+1(x) dx = 0 (25)

if g has degree ≤ n.

▶ g can be written as a linear combination of basis functions ϕj(x).

▶ Orthogonality directly follows and so does the integral being zero.
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Legendre Polynomials and Gaussian Quadrature

▶ We choose the canoical interval [−1, 1].

▶ Other intervals can be obtained by scaling and shifting.

▶ Legendre polynomials are de�ned by the relation

ϕ0(x) = 1 (26)

ϕ1(x) = x (27)

ϕj+1(x) =
2j + 1

j + 1
xϕj(x)−

j

j + 1
ϕj−1(x) (28)

▶ These functions are orthogonal to each other.

▶ We pick the abscissae as the roots of these polynomials.

▶ The weights are obtained with integration, and are given by

aj =
2(1− x2j )

[(n + 1)ϕn(xj)]2
(29)

▶ The precision is 2n + 1.
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Examples of Gaussian Quadrature

▶ Show derivation of 2 and 4 point Gaussian on blackboard.

▶ The rules for the canonical interval can be found at
https://en.wikipedia.org/wiki/Gaussian_quadrature
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Richardson Extrapolation

▶ It can be shown that the error term of composite trapezoidal rule is a
sum of the even powers of h:

E = K1h
2 + K2h

4 + K3h
6 + . . . (30)

▶ As a result, if we compute the integral twice with h and h/2 resulting
in R1 and R2, then

E1 = K1h
2 + K2h

4 + . . .

E2 = (1/4)K1h
2 + (1/16)K2h

4 + . . . .

▶ Then, Richardson Extrapolation is the process of cancelling out the
principle error term Kh2: consider (4R2−R1)/3, the associated error is

4E2 − E1

3
=

1

3
(4((1/4)K1h

2+(1/16)K2h
4)− (K1h

2+K2h
4)) = 4K2h

4

(31)
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Romberg Integration

▶ Romberg integration is an iterative process where we repeatedly apply
Richardson Extrapolation to cancel out lower and lower power terms

▶ we construct a triangular table of values:
O(h2) O(h4) O(h6) . . . O(h2s)

R1,1

R2,1 R2,2

R3,1 R3,2 R3,3
...

...
...

. . .

Rs,1 Rs,2 Rs,3 . . . Rs,s

▶ First row: computed with composite trapezoidal rule, double the
gridpoints each time.

▶ Subsequent rows: use Richardson Extrapolation:

Rj+1,k = Rj+1,k−1 +
Rj+1,k−1 − Rj ,k−1

4k−1 − 1
(32)
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Adaptive integration

▶ Suppose we are writing general-purpose software, and the user is not
interested in technical questions such as
▶ Which rule we are using
▶ How many subintervals is appropriate

▶ Only obtain the necessary information: the function f to integrate, the
interval [a, b], and the accuracy ϵ required.

▶ Our function's job is to produce a number Q such that

|Q − I | ≤ ϵ (33)

▶ For convenience, let's pick trapezoidal rule.

Ray Wu (University of Toronto) Lecture 8: Numerical integration March 8, 2023 25 / 28



Error estimates

▶ We must be able to estimate the error. Without that, there is no
guidance for how many subintervals we need.

▶ Recall that for composite rules, we have error given as

E = Khq +O(hq+1) (34)

▶ The �rst term Khq is called the principle error term, and with two
approximations we can estimate it:
▶ Compute R1 and R2 with h and h/2 respectively.
▶ Error in R1 is approximately Kh2 (using trapezoid rule)
▶ Error in R2 is approximately 1

4
Kh2

▶ Then we have

I − R1 = (I − R2) + (R2 − R1) ≈
1

4
(I − R1) + (R2 − R1) (35)

▶ and we get the immediate error estimate

I − R1 ≈
4

3
(R2 − R1), I − R2 ≈

1

3
(R2 − R1) (36)
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Adaptive subdivision

▶ Let Ii be the value of the integral on the i-th partition.

▶ Then, if we require that

|Qi − Ii | <
hi

b − a
ϵ (37)

then summing over every subinterval, the left side becomes at most
|Q − I |, and the right side becomes simply ϵ since

∑
hi = b − a.

▶ So the idea of adaptive integration is
▶ Evaluate R1 and R2 for the partitions [a, b] and [a, a+b

2
, b];

▶ Estimate the error on each subinterval
▶ If the error is small enough, then end the computation for the

subinterval, otherwise, double the number of gridpoints, but only on
the subintervals where the error is not small enough.
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More on adaptive integration

▶ Generally, we want to use adaptive integration when we know that the
function is not uniformly varying on the domain of integration.
▶ One example would be functions that look like sin(1/x).

▶ If the error estimate fails, then the adaptive integration also fails. For
example, ∫ 1

0

f (x) dx =

∫ 1

0

exp(−x) sin(2πx) dx (38)

would fail, due to the fact that f (0), f (1/2), f (1) are all zero.

▶ Iterative re�nement of a grid locally is di�cult to parallelize/vectorize,
which may be a signi�cant drawback in certain applications.

Ray Wu (University of Toronto) Lecture 8: Numerical integration March 8, 2023 28 / 28


