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Approximation vs Interpolation

Di�erence between approximation and interpolation

1. Approximation: Given a set of data points (xi , yi ) �nd a function that
�ts the data. If data is precise enough, may want to consider an
interpolant.

2. Function interpolation: for a complicated function, �nd a simpler
function that approximates it.

What's the di�erence?

▶ Once we specify the data points for function interpolation, they are
identical � so we have the freedom to choose the data points
intelligently.

▶ Additionally, we may be able to consider the global error.
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Polynomial interpolation: Motivation

Why interpolate, and why interpolate with polynomials?

▶ prediction: to calculate the function value at some intermmediate
point between the data points.

▶ manipulation: to �nd derivatives, integrals, etc of the function.

▶ Polynomials are easy to calculate, and easy to manipulate � derivative
and integral rules are easy.

▶ Polynomials are universal � can approximate any continuous function
(Stone-Weierstrass Theorem).
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Interpolation: General considerations

▶ We assume a linear form for interpolating functions, in other words,

v(x) =
n∑

j=0

cjϕj(x) (1)

cj are the unknown coe�cients, and ϕj are the basis functions.

▶ Assume that ϕj are linearly independent, which means that if v is zero
on the entire interval, then cj must all be zero.

▶ Assume that the number of basis functions is equal to the number of
data points.
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System of Equations

The following system of linear equations arise:
ϕ0(x0) ϕ1(x0) . . . ϕn(x0)
ϕ0(x1) ϕ1(x1) . . . ϕn(x1)

...
...

. . .
...

ϕ0(xn) ϕ1(xn) . . . ϕn(xn)



c0
c1
...
cn

 =


y0
y1
...
yn

 (2)
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Polynomial Interpolation � Monomial Basis

▶ The "easy" way to represent a polynomial of degree n is

pn(x) =
n∑

i=0

cix
i . (3)

Basis functions: ϕi = x i .

▶ Which equations must ci satisfy?

∀i , yi =
n∑

i=0

cix
i (4)

Set up system of linear equations to �nd ci :
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Polynomial Interpolation � system of linear equations

▶ System of linear equations Ac = y is given by
1 x10 x20 . . . xn

0

1 x11 x21 . . . xn
1

...
...

...
. . .

...
1 x1n x2n . . . xn

n



c0
c1
...
cn

 =


y0
y1
...
yn

 (5)

▶ A is known as the Vandermonde matrix.

▶ As long as the xi are distinct, the determinant is nonzero, and hence,
A is nonsingular which implies that there is a unique interpolating
polynomial.

▶ For a large number of data points, Vandermonde matrix A is
frequently ill-conditioned.

▶ Alternatives to Vandermonde matrix: Lagrange and Newton basis

Ray Wu (University of Toronto) Lecture 7: Function Interpolation March 1, 2023 7 / 35



Polynomial interpolation: Lagrange Basis

▶ The Lagrange polynomials Lj(x) satisfy:

Lj(xi ) =

{
1 i = j

0 otherwise.
(6)

▶ Then, cj = yj (easy to solve linear system of equations)

▶ How to determine such polynomials?
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Lagrange Polynomials

▶ Recall that we want Lj(x) to be

1. zero on every data point that is not xj

2. one at xj .

▶ To make it zero on every data point not xj , consider the polynomial

p(x) = (x − x0)(x − x1) . . . (x − xj−1)(x − xj+1) . . . (x − xn) (7)

▶ To make it one on xj , calculate the value at x = xj and divide by it:

Lj(x) = p(x)/p(xj) (8)
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Evaluating Lagrange basis

▶ Suppose now we actually want to evaluate the interpolating
polynomial using Lagrange basis at a certain point x .

▶ First, compute the barycentric weights:

wj =
1∏

i ̸=j(xj − xi )
(9)

▶ Next, calculate
ψ(x) =

∏
(x − xi ) (10)

▶ Finally, calculate

p(x) = ψ(x)
∑ wjyj

(x − xj)
(11)
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Newton Basis

▶ Newton's basis is "in-between" monomial and Lagrange basis:
coe�cients cj only depend on themselves and the past

▶ In other words, the linear system we solve is triangular.

▶ Can use forward/backward substitution.

▶ Two advantages of Newton's basis:
▶ Can add a data point without changing the rest of the interpolant
▶ Easy to use divided di�erences to come up with error estimates in

polynomial interpolation.

▶ Newton basis:

ϕj(x) =

j−1∏
i=0

(x − xi ) (12)
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Calculating the interpolant

▶ Recall the form of p(x):

p(x) = c0+c1(x−x0)+c2(x−x1)(x−x0)+· · ·+cn(x−xn−1)...(x−x0)
(13)

▶ Determine ci iteratively:
▶ Since p(x0) = f (x0), then c0 = f (x0).
▶ Since p(x1) = f (x1), then c1 =

f (x1)−f (x0)
x−x0

.
▶ Next, use the condition that p(x2) = f (x2) to determine c2. Note that

c0 and c1 have already been determined. With some algebra, we can
show that

c2 =

f (x2)−f (x1)
x2−x1

− f (x1)−f (x0)
x1−x0

x2 − x0
(14)

▶ This process continues until all the coe�cients are determined.
▶ The coe�cients cj are known as divided di�erences.
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Divided Di�erences

▶ Divided di�erences are de�ned recursively as follows:

f [xi ] = f (xi )

f [xi , . . . , xj ] =
f [xi+1, . . . , xj ]− f [xi , . . . , xj−1]

xj − xi

▶ Calculate them by listing out a table

▶ The polynomial is then given by

pn(x) =f [x0] + f [x0, x1](x − x0) + · · ·+ (15)

f [x0, x1, . . . , xn](x − x0) . . . (x − xn−1)

Ray Wu (University of Toronto) Lecture 7: Function Interpolation March 1, 2023 13 / 35



Monomial, Lagrange, and Newton

▶ All three methods yield the same result.

▶ Monomial is the simplest method.

▶ Lagrange is is the most stable - leads to decoupled equations.

▶ Newton basis allows for the addition of new points without
recalculating the entire polynomial.
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Error estimates of polynomial interpolation

▶ First, we come up with an expression for the error: if f is the original
function and pn the interpolating polynomial, then

en(x) = f (x)− pn(x). (16)

▶ Assume we are not on a data point (otherwise, error is zero...). Treat
(x , f (x)) as a new data point, then

f (x) = pn+1(x) = p(x) + f [x0, . . . , xn, x ]
∏

(x − xj) (17)

and we have
en(x) = f [x0, . . . , xn, x ]

∏
(x − xj) (18)
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Divided Di�erences and Derivatives

▶ Divided di�erences are approximations to derivatives, and there is a
theorem that states

∃ζ ∈ [a, b] : f [x0, x1, . . . , xk ] =
f (k)(ζ)

k!
(19)

It's like the mean value theorem for higher-order derivatives.

▶ Divided di�erence have a symmetrical de�nition, in other words, it
doesn't matter what order you list xi in.

▶ Hence, sub in f [x0, . . . , xn, x ] into the theorem, take upper bounds on
the product, and we know that there exists some ξ for which

|en(x)| ≤
f (n+1)(ξ)

(n + 1)!
(b − a)n+1 (20)

▶ This error could be very large if the derivative becomes large.
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What could go wrong with polynomial interpolation
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Figure 1: Polynomial interpolation of Runge's function, f (x) = 1

1+25x2
. As the

number of points increase, the approximation becomes less accurate.
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Chebyshev Interpolation

▶ So far, we have assumed uniform choice of points.

▶ This assumption is more strict than necessary � we have the freedom
to choose whatever points we wish.

▶ Chebyshev interpolation minimizes the error term

min
xj

max
s∈[a,b]

|
∏

(s − xj)| (21)

▶ Assume that a = −1, b = 1.

▶ Shift and scale them to the correct interval

ti = a +
b − a

2
(xi − 1) (22)

▶ Chebyshev points minimize the above expression, de�ned by

xi = cos

(
2i + 1

2n + 2
π

)
(23)
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Interpolating with Chebyshev points
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Figure 2: Polynomial interpolation of Runge's function, f (x) = 1

1+25x2
. The use

of Chebyshev points allows the interpolant to �t the original function better.
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Discussion of Chebyshev points

▶ A more detailed explanation of Chebyshev points go beyond this
course.

▶ For now, use of Chebyshev points is the only natural context in which
the number of points n can become large.

▶ Lagrange interpolation should be used in this case.

▶ Chebyshev points cannot work for every function, e.g. on [−1, 1]

exp(3(x + 1)) sin(100(x + 1))

1+ 20(x + 1)2
(24)

▶ Additionally, unique polynomial implies that if you chage the data
point a little bit, your polynomial can change a lot.

▶ No locality for polynomial interpolation
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Failure of Chebyshev interpolation
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Figure 3: An example where Chebyshev interpolation cannot save us
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Piecewise polynomial interpolation

▶ Let's look again at the error term:

|en(x)| ≤
f (n+1)(ξ)

(n + 1)!
(b − a)n+1 (25)

This term may not be small if the n + 1st derivative is not small.

▶ Additionally, higher-order polynomials tend to oscillate, which may not
be something we want.

▶ If we have data, we cannot force it to be at the "chebyshev points".

▶ No locality: if you change one data point, the entire interpolant will
be changed (possibly signi�cantly).
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Piecewise Polynomials

▶ Divide and conquer: partition the domain into n intervals.

▶ Piecewise polynomials split up the domain [a, b] into smaller
segments, to reduce the error.

▶ Partition at the points a = t0 < t1 < · · · < tr = b.

▶ Interpolate each segment with a low-degree polynomial.

▶ Enforce desireable conditions upon the piecewise polynomials.
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Linear Splines

▶ We pick ti = xi , and let r = n.

▶ Interpolate each subinterval with a line (draw the straight line from
(xk , yk) to (xk+1, yk+1)).

▶ Each partition can be written as

si (x) = ai (x − xi ) + bi (26)

▶ bi = yi , ai = (yi+1 − yi )/(xi+1 − xi )

▶ De�ne h = max |ti − ti−1|. Error on each subinterval is given by

en(x) ≤
h2

8
max
ζ∈[a,b]

|f ′′(ζ)| (27)

▶ Important parts: O(h2) error, assumes second derivative is bounded.
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Cubic splines

▶ Cubic splines assume every subinterval has a cubic function on it.

▶ We have 4n free parameters, need 4n equations to determine them.

▶ 2n equations are interpolation conditions:

si (xi ) = f (xi ) and si (xi+1) = f (xi+1) (28)

▶ 2n − 2 equations are continuity conditions

s ′i (xi ) = s ′i+1(xi ) and s ′′i (xi ) = s ′′i+1(xi ) (29)

▶ This leaves two more equations, which give rise to various speci�c
splines:
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Types of Cubic Splines

The three types of Cubic splines in this course:

1. Free boundary/natural spline: s ′′1 (x0) = 0 and s ′′n (xn) = 0
▶ Since the second derivatives of the original function are not necessarily

zero on the endpoints, this destroys the fourth-order convergence of
the method, and near the endpoints the method is only second-order
convergent.

2. Clamped boundary conditions: s ′1(x0) = f ′(x0) and s ′n(xn) = f ′(xn)
▶ Not an ideal choice if we do not have information about the derivative

on the endpoints. Otherwise, keeps fourth-order accuracy.

3. Not-a-knot: s ′′′1 (x1) = s ′′′2 (x1) and s ′′′n−1(xn−1) = s ′′′n (xn−1).
▶ Ideal if we do not know information about f ′(x) on the boundary;

keeps 4th order convergence.
▶ "not-a-knot" means that s1 and s2 (sn−1 and sn likewise) are really just

one cubic polynomial, hence, the knot is gone.
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Cubic Spline Algorithm

How do we compute the coe�cients?

▶ Each subinterval has the following cubic equation:

si (x) = ai + bi (x − xi ) + ci (x − xi )
2 + di (x − xi )

3 (30)

▶ The derivatives are given by the following:

s ′i (x) = bi + 2ci (x − xi ) + 3di (x − xi )
2 (31)

s ′′i (x) = 2ci + 6di (x − xi ) (32)

s ′′′i (x) = 6di (33)

▶ Interpolation conditions on left endpoints immediately give us

ai = yi (34)
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Cubic Spline Algorithm

▶ Denote hi = xi+1 − xi

▶ Next, we consider the interpolation conditions on the right endpoints

yi+1 = ai + bihi + cih
2
i + dih

3
i (35)

▶ Sub in ai = yi , and divide by hi , rearrange:

bi + cihi + dih
2
i =

yi+1 − yi

hi
(36)

▶ Smoothness conditions (�rst derivative):

bi + 2cihi + 3dih
2
i = bi+1 (37)

▶ Smoothness conditions (second derivative):

2ci + 6dihi = 2ci+1 (38)
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Cubic Spline Algorithm

▶ Use second derivative smoothness conditions to eliminate di

di =
ci+1 − ci

3hi
(39)

▶ Next, we use the right interpolation conditions to eliminate the bi 's:

bi + cihi +
ci+1 − ci

3
hi =

yi+1 − yi

hi
(40)

▶ Rearrange:

bi =
yi+1 − yi

hi
− hi

3
(2ci + ci+1) (41)

▶ Now, if we can determine the ci 's, all the coe�cients are determined.
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Cubic Spline Algorithm

▶ Reduce the counter by 1 from the smoothness condition:

bi−1 + 2ci−1hi−1 + 3di−1h
2
i−1 = bi (42)

▶ Sub in expressions for bi and di :

yi − yi−1

hi−1
− hi−1

3
(2ci−1 + ci ) + 2ci−1hi−1+ (43)

(ci − ci−1)hi−1 =
yi+1 − yi

hi
− hi

3
(2ci + ci+1)

▶ Now, we have our equations for only ci 's.

▶ Rearrange once again:

hi−1ci−1 + 2(hi + hi−1)ci + hici+1 = gi (44)

where gi is from combining the constants together.
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Cubic Spline Matrix

Assuming that we have a natural spline, we have c0 = cn = 0, then the
matrix that arises from the cubic spline is

A =


2(h0 + h1) h1

h1 2(h1 + h2) h2
. . .

. . .
. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)


Then, we can write

Ac = g (45)
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Other cubic Splines

▶ For Clamped boundary conditions, we look at b0 and bn. Sub them in
to the relevant equations, and simpli�cation leads to a tridiagonal
matrix.

▶ For not-a-knot boundary conditions, we set d0 = d1, and
dn−1 = dn−2. Once again we end up with a tridiagonal matrix.
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Cubic Spline Matrix

Let's look at the matrix in a bit more detail:

A =


2(h0 + h1) h1

h1 2(h1 + h2) h2
. . .

. . .
. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)


▶ Matrix is nonsingular as a consequence of diagonal dominance.

▶ Tridiagonal, symmetric positive de�nite.

▶ Represents a global coupling of the unknonwns.

▶ However, thanks to diagonal dominance, in A−1, the elements away
from the diagonal are exponentially decreasing.

▶ Almost local behavior, unlike linear spline.
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Error in the Cubic Spline interpolant

▶ What is the error in the cubic spline interpolant?

▶ Assume for simplicity, hi = h.

▶ Number of subintervals: n = (b − a)/h.

▶ Each subinterval: O(h4) accuracy as a result of substituting in the
endpoints of the interval.

▶ Max error: maximum on every interval, still O(h4).

▶ What assumptions about the function?

▶ Fourth derivative exists and is bounded.
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Summary of MATLAB commands

▶ p = polyfit(x, y, n): �ts an n-degree polynomial through the
data points speci�ed by x and y. The coe�cients are stored in the
vector p.

▶ y = polyval(p, x): evaluates the polynomial with coe�cients
de�ned by p at the points x.

▶ y = interp1(x0, y0, x): evaluates the linear spline de�ned by the
points x0 and y0 at x

▶ y = spline(x0, y0, x): evaluates the cubic spline de�ned by the
points x0 and y0 at x
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