Lecture 6: Eigenvalues
 CSC 338: Numerical Methods

Ray Wu
University of Toronto

February 15, 2023

Overview

- Eigenvalues review
- Pagerank
- Power Method/Iteration
- Inverse Iteration
- Rayleigh Quotient Iteration

Eigenvalues

- For a real, square matrix A, an eigenpair $\left(\lambda \in \mathbb{R}, v \in \mathbb{R}^{n}\right)$ satisfy

$$
\begin{equation*}
A v=\lambda v \tag{1}
\end{equation*}
$$

- If A is non-defective - that is, has n linearly independent eigenvectors - then A can be decomposed into

$$
\begin{equation*}
A=M D M^{-1} \tag{2}
\end{equation*}
$$

where M contains the eigenvectors and the diagonal entries of D the corresponding eigenvalues.

- The singular values of a general matrix A are the square roots of the eigenvalues of $A^{T} A$.

Motivating example: PageRank

- Consider a web of n webpages, and we want to judge which webpages are the most important.

- Represent the importance of each webpage as a real number in a vector x, with all entries positive: $x_{i}>0$
- Only the relative sizes of x_{i} matter, so we can normalize: $\sum x_{i}=1$.
- Assume that from an arbitrary webpage, a user is equally likely to click on any link.
- We want to find a vector that satisfies $A x=x$, where A is the probability transition matrix.

Example of PageRank

- Probability transition matrix:

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 1 / 3 & 0 & 0 & 0 \tag{3}\\
1 / 2 & 0 & 0 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 0 & 0 & 1 \\
1 / 2 & 0 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 / 3 & 0 & 1 / 2 & 0
\end{array}\right]
$$

- Perron-Frobenius Theorem implies that there exists a vector v such that $A v=v$.
- Can also interpret v as a probability distribution: v_{j} is the percentage of time a user surfing randomly expected to be on page j.
- Our model is a user randomly surfing, we are interested in the average time spent on each page

Issues with PageRank

There are two main issues with PageRank that need correcting:

- Dangling Node
- Cyclic path/Disjoint component

Dangling Node

Figure 1: A dangling node

Correcting for Dangling Nodes

- The issue with dangling nodes is that once we enter the node, we cannot leave.
- In our matrix A, this would be a zero column.
- It can be a very important webpage, for example: https://laws-lois.justice.gc.ca/eng/const/
- It can also be an unimportant webpage, for example: http://www.cs.toronto.edu/ rwu/csc338/danglingpage.html
- Solution: assume the user jumps randomly to another page in the network.
- This is equivalent

Cyclic Components

Figure 2: A terminal-strong cyclic component

Correcting Cyclic Components

- The issue here is similar; once we are in a cyclic component, we are not leaving.
- One example could be the documentation for a programming language.
- One solution is to replace A with a rank-1 update:

$$
\begin{equation*}
\alpha A+(1-\alpha) u e^{T} \tag{4}
\end{equation*}
$$

- convex combimation of A and $u e^{T}$ (outer product).
- e is all ones, and u is a personalization vector that sums to 1 .
- α indicates what weight we give to the links, and what weight we give to the user.
- Choice of α : modelling problem.
- Smaller α means faster convergence, because non-dominant eigenvalues are bounded by α.

Power Method

- The Power Method starts from an initial guess of an eigenvector v_{0} and iteratively computes $v_{k+1}=A v_{k}$, and normalizes v_{k+1}.
- After termination, v approximates the normalized dominant eigenvector, and the corresponding eigenvalue λ is given by the Rayleigh quotient $v^{T} A v / v^{T} v$.
- Ensures convergence if the dominant eigenvalue is unique (has only one linearly independent corresponding eigenvector).
- Suppose A has n linearly independent eigenvectors x_{i}, with the dominant eigenvector being x_{1}.
- Then, we can write $v=\sum \beta_{i} x_{i}$. As long as $\beta_{1}>0$, we have

$$
\begin{equation*}
A v=\sum \beta_{i} \lambda_{i} x_{i} \tag{5}
\end{equation*}
$$

- For k iterations we have

$$
\begin{equation*}
A^{k} v=\sum \beta_{i} \lambda_{i}^{k} x_{i} \tag{6}
\end{equation*}
$$

Power Method continued

- Recall from the previous slide, after k iterations we have

$$
\begin{equation*}
A^{k} v=\sum \beta_{i} \lambda_{i}^{k} x_{i} \tag{7}
\end{equation*}
$$

- Now, recall that we normalized every iteration: let γ_{k} be a normalization factor:

$$
\begin{equation*}
v_{k}=\gamma_{k} \lambda_{1}^{k} \sum \beta_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} x_{i}=\gamma_{k} \lambda_{1}^{k} \beta_{1} x_{1}+\gamma_{k} \lambda_{1}^{k} \sum_{i=2}^{n} \beta_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} x_{j} \tag{8}
\end{equation*}
$$

- Since λ_{1} is the dominant eigenvalue, the remaining terms converge to 0.
- Therefore,

$$
\begin{equation*}
v_{k} \rightarrow \gamma_{k} \lambda_{1}^{k} \beta_{1} x_{1}=x_{1} \tag{9}
\end{equation*}
$$

Issues with the Power Method - slow convergence

- Consider two matrices,

$$
A=\left[\begin{array}{cc}
32 & 0 \tag{10}\\
0 & 31
\end{array}\right], \quad B=\left[\begin{array}{cc}
32 & 0 \\
0 & 30
\end{array}\right]
$$

- Of course, the dominant eigenvalues of A and B are 32, with corresponding eigenvector $[1,0]^{T}$.
- The convergence rate is given by

$$
\begin{equation*}
-\log \left(\frac{\lambda_{2}}{\lambda_{1}}\right)=-\log \frac{31}{32}=0.0138 \text { or }-\log \frac{30}{32}=0.028 \tag{11}
\end{equation*}
$$

if they are almost the same size then convergence may be slow.

- The inverse iteration addresses this issue of slow convergence - at the cost of solving a linear system of equations.

Inverse Iteration

- The idea of the inverse iteration is: If the eigenvalues of A are λ_{i}, then the eigenvalues of $A-\alpha I$ are $\lambda_{i}-\alpha$, and the eigenvalues of $B=(A-\alpha l)^{-1}$ are

$$
\begin{equation*}
\mu_{j}=\frac{1}{\lambda_{i}-\alpha} \tag{12}
\end{equation*}
$$

- Convergence rate is

$$
\begin{equation*}
\left|\frac{\lambda_{1}-\alpha}{\lambda_{2}-\alpha}\right| \tag{13}
\end{equation*}
$$

- We essentially run the power method on B by alternating between normalization and solving the linear system

$$
\begin{equation*}
(A-\alpha I) v_{k+1}=v_{k} \tag{14}
\end{equation*}
$$

- Difficulties: Choosing a value of α close to the dominant eigenvalue.
- Advantages: Can use this method to find any eigenvalue λ_{i}, not just the dominant one (pick α close to λ_{i})

Rayleigh Quotient Iteration

- Recall the inverse iteration:

$$
\begin{equation*}
(A-\alpha I) v_{k+1}=v_{k} \tag{15}
\end{equation*}
$$

- No reason to use the same α on each iteration.
- Rayleigh Quotient Iteration chooses α to be the estimated value of the eigenvalue λ_{1}.
- λ_{1} is estimated with the Rayleigh Quotient $v^{\top} A v / v^{\top} v$.

