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Overview

▶ Eigenvalues review

▶ Pagerank

▶ Power Method/Iteration

▶ Inverse Iteration

▶ Rayleigh Quotient Iteration
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Eigenvalues

▶ For a real, square matrix A, an eigenpair (λ ∈ R, v ∈ Rn) satisfy

Av = λv (1)

▶ If A is non-defective � that is, has n linearly independent eigenvectors
� then A can be decomposed into

A = MDM−1 (2)

where M contains the eigenvectors and the diagonal entries of D the
corresponding eigenvalues.

▶ The singular values of a general matrix A are the square roots of the
eigenvalues of ATA.
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Motivating example: PageRank

▶ Consider a web of n webpages, and we want to judge which webpages
are the most important.

▶ Represent the importance of each webpage as a real number in a
vector x , with all entries positive: xi > 0

▶ Only the relative sizes of xi matter, so we can normalize:
∑

xi = 1.

▶ Assume that from an arbitrary webpage, a user is equally likely to click
on any link.

▶ We want to �nd a vector that satis�es Ax = x , where A is the
probability transition matrix.

Ray Wu (University of Toronto) Lecture 6: Eigenvalues February 15, 2023 4 / 15



Example of PageRank

▶ Probability transition matrix:

A =



0 0 1/3 0 0 0
1/2 0 0 1/2 1/2 0
0 1/2 0 0 0 1
1/2 0 1/3 0 0 0
0 0 0 1/2 0 0
0 1/2 1/3 0 1/2 0

 (3)

▶ Perron-Frobenius Theorem implies that there exists a vector v such
that Av = v .

▶ Can also interpret v as a probability distribution: vj is the percentage
of time a user sur�ng randomly expected to be on page j .

▶ Our model is a user randomly sur�ng, we are interested in the average
time spent on each page
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Issues with PageRank

There are two main issues with PageRank that need correcting:

▶ Dangling Node

▶ Cyclic path/Disjoint component
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Dangling Node

Figure 1: A dangling node
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Correcting for Dangling Nodes

▶ The issue with dangling nodes is that once we enter the node, we
cannot leave.

▶ In our matrix A, this would be a zero column.

▶ It can be a very important webpage, for example:
https://laws-lois.justice.gc.ca/eng/const/

▶ It can also be an unimportant webpage, for example:
http://www.cs.toronto.edu/ rwu/csc338/danglingpage.html

▶ Solution: assume the user jumps randomly to another page in the
network.

▶ This is equivalent
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Cyclic Components

Figure 2: A terminal-strong cyclic component
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Correcting Cyclic Components

▶ The issue here is similar; once we are in a cyclic component, we are
not leaving.

▶ One example could be the documentation for a programming language.

▶ One solution is to replace A with a rank-1 update:

αA+ (1− α)ueT (4)

▶ convex combimation of A and ueT (outer product).

▶ e is all ones, and u is a personalization vector that sums to 1.

▶ α indicates what weight we give to the links, and what weight we give
to the user.

▶ Choice of α: modelling problem.

▶ Smaller α means faster convergence, because non-dominant
eigenvalues are bounded by α.
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Power Method

▶ The Power Method starts from an initial guess of an eigenvector v0
and iteratively computes vk+1 = Avk , and normalizes vk+1.

▶ After termination, v approximates the normalized dominant
eigenvector, and the corresponding eigenvalue λ is given by the
Rayleigh quotient vTAv/vT v .

▶ Ensures convergence if the dominant eigenvalue is unique (has only
one linearly independent corresponding eigenvector).

▶ Suppose A has n linearly independent eigenvectors xi , with the
dominant eigenvector being x1.
▶ Then, we can write v =

∑
βixi . As long as β1 > 0, we have

Av =
∑

βiλixi (5)

▶ For k iterations we have

A
k
v =

∑
βiλ

k

i
xi (6)
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Power Method continued

▶ Recall from the previous slide, after k iterations we have

Akv =
∑

βiλ
k
i xi (7)

▶ Now, recall that we normalized every iteration: let γk be a
normalization factor:

vk = γkλ
k
1

∑
βi (

λi

λ1
)kxi = γkλ

k
1β1x1 + γkλ

k
1

n∑
i=2

βi (
λi

λ1
)kxj (8)

▶ Since λ1 is the dominant eigenvalue, the remaining terms converge to
0.

▶ Therefore,
vk → γkλ

k
1β1x1 = x1 (9)
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Issues with the Power Method � slow convergence

▶ Consider two matrices,

A =

[
32 0
0 31

]
, B =

[
32 0
0 30

]
(10)

▶ Of course, the dominant eigenvalues of A and B are 32, with
corresponding eigenvector [1, 0]T .

▶ The convergence rate is given by

− log(
λ2

λ1
) = − log

31

32
= 0.0138 or − log

30

32
= 0.028 (11)

if they are almost the same size then convergence may be slow.

▶ The inverse iteration addresses this issue of slow convergence � at
the cost of solving a linear system of equations.
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Inverse Iteration

▶ The idea of the inverse iteration is: If the eigenvalues of A are λi , then
the eigenvalues of A− αI are λi − α, and the eigenvalues of
B = (A− αI )−1 are

µj =
1

λi − α
(12)

▶ Convergence rate is

|λ1 − α

λ2 − α
| (13)

▶ We essentially run the power method on B by alternating between
normalization and solving the linear system

(A− αI )vk+1 = vk (14)

▶ Di�culties: Choosing a value of α close to the dominant eigenvalue.

▶ Advantages: Can use this method to �nd any eigenvalue λi , not just
the dominant one (pick α close to λi )
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Rayleigh Quotient Iteration

▶ Recall the inverse iteration:

(A− αI )vk+1 = vk (15)

▶ No reason to use the same α on each iteration.

▶ Rayleigh Quotient Iteration chooses α to be the estimated value of the
eigenvalue λ1.

▶ λ1 is estimated with the Rayleigh Quotient vTAv/vT v .
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