# Lecture 5: Systems of nonlinear equations and optimization 

## CSC 338: Numerical Methods

Ray Wu<br>University of Toronto

February 8, 2023

## Overview

- This lecture extends Lecture 2, where we considered methods of solving nonlinear equations in one variable.
- First, study solving systems of nonlinear equations, then, the related topic of optimization.


## Nonlinear Systems of Equations

- Nonlinear Systems of Equations are defined by

$$
\begin{array}{r}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{array}
$$

or, in vector form, simply $f(x)=0$.

- Recall the following methods for one-dimensional problems:
- Bisection Method
- Fixed-point iteration
- Newton's Method
- Secant Method
- The last three methods all have a multidimensional analogue, but we will focus on Newton's method.


## Multidimensional Taylor Series

- First, we need to review the concept of a derivative of a vector-valued function
- The Taylor Expansion of a function $f: R^{n} \rightarrow R^{m}$ gives

$$
\begin{equation*}
f(x+p)=f(x)+J(x) p+\mathcal{O}\left(\|p\|^{2}\right) \tag{1}
\end{equation*}
$$

where $J$ is the Jacobian matrix of first derivatives:

$$
J(x)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \ldots & \frac{\partial f_{1}}{\partial x_{n}}  \tag{2}\\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \ldots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \ldots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

## Derivation of Newton's Method

- By Taylor series,

$$
\begin{equation*}
f(x+p)=f(x)+J(x) p+\mathcal{O}\left(\|p\|^{2}\right) \tag{3}
\end{equation*}
$$

Replace $x+p$ with $x^{*}$ and $x$ with $x_{k}$ to get

$$
\begin{equation*}
f\left(x^{*}\right)=f\left(x_{k}\right)+J\left(x_{k}\right)\left(x^{*}-x_{k}\right)+\mathcal{O}\left(\left\|x^{*}-x_{k}\right\|^{2}\right) \tag{4}
\end{equation*}
$$

- When $x=x^{*}, f(x)=0$. Sub this in, and drop the $\mathcal{O}\left(h^{2}\right)$ term (linearization)

$$
\begin{equation*}
0=f\left(x_{k}\right)+J\left(x_{k}\right)\left(x^{*}-x_{k}\right) \tag{5}
\end{equation*}
$$

- Define $x^{*}$ to be the next iterate $x_{k+1}$.
- Algorithm: on each iterate,
- Calculate $p=x_{k+1}-x_{k}$ by solving $J\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)=-f\left(x_{k}\right)$
- Calculate $x_{k+1}=x_{k}+p$


## When Does Newton's Method fail?

- One situation: When initial guess is too far away.
- Another situation: When Jacobian matrix $J(x)$ is singular.


## One dimension vs Multiple dimensions

- Recall in one dimension, Newton's method gives

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \tag{6}
\end{equation*}
$$

- In multiple dimensions,

$$
\begin{equation*}
x_{k+1}=x_{k}-J^{-1}\left(x_{k}\right) f\left(x_{k}\right) \tag{7}
\end{equation*}
$$

- Newton's method is exactly the same
- To compute $J^{-1}\left(x_{k}\right) f\left(x_{k}\right)$ we solve a linear system, and do not invert the matrix.
- It is almost never a good idea to invert a matrix.


## Example 9.3-Ascher \& Greif - 1

Consider the nonlinear differential equation

$$
\begin{equation*}
u^{\prime \prime}+\exp (u)=0, \quad 0<t<1 \tag{8}
\end{equation*}
$$

with boundary conditions $u(0)=u(1)=0$.

- Discretization: partition the interval $[0,1]$ into $n$ equal subintervals at $t_{1}, t_{2}, \ldots, t_{n-1}$.
- Unknowns are now real numbers $u_{1}, u_{2}, \ldots, u_{n-1}$.
- Let $h=1 / n=t_{i}-t_{i-1}$
- Apply finite difference for all $i$ :

$$
\begin{equation*}
f_{i}(u) \equiv \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}+\exp \left(u_{i}\right)=0 \tag{9}
\end{equation*}
$$

- What is the Jacobian matrix of $f$ ?


## Example 9.3-Ascher \& Greif - 2

- System of equations:

$$
\begin{equation*}
f_{i}(u) \equiv \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}+\exp \left(u_{i}\right)=0 \tag{10}
\end{equation*}
$$

- Jacobian:

$$
J_{i, j}=\frac{\partial f_{i}}{\partial u_{j}}= \begin{cases}1 / h^{2} & \text { if } j=i-1  \tag{11}\\ -2 / h^{2}+\exp \left(u_{i}\right) & \text { if } j=i \\ 1 / h^{2} & \text { if } j=i+1\end{cases}
$$

- Initial guess: Let's choose $\alpha t(1-t)$.
- We know the boundaries are zero
- Can scale up/down as we want.


## Matlab implementation

- Show matlab implementation (L05.m)
- The two solutions to the nonlinear differential equation:



## Unconstrained optimization

- The unconstrained optimization problem is given by

$$
\begin{equation*}
\min \phi(x), x \in \mathbb{R}^{n} \tag{12}
\end{equation*}
$$

- Define the gradient of $\phi$ to be

$$
\nabla \phi(x)=\left[\begin{array}{c}
\frac{\partial \phi}{\partial x_{1}}  \tag{13}\\
\frac{\partial \phi}{\partial x_{2}} \\
\cdots \\
\frac{\partial \phi}{\partial x_{n}}
\end{array}\right]
$$

- Define the Hessian to be the Jacobian of the gradient.
- Gradient and Hessian are the n-dimensional analogues of first and second derivatives of a one-variable function.


## Necessary and Sufficient conditions for minimum

- Recall from Calc 1, the critical points of a function are when its derivative are zero. In $n$ dimensions this means

$$
\begin{equation*}
\nabla \phi(x)=0 \tag{14}
\end{equation*}
$$

- Recall again from Calc 1, the second derivative test: if the function has a positive second derivative at a critical point, that critical point is a local minimum. In $n$ dimensions this means that if the Hessian $\nabla^{2} \phi(x)$ is positive-definite, we have a local minimum.
- Positive definite: if a matrix $A$ is positive definite, then for any nonzero vector $x, x^{\top} A x>0$.


## Nonlinear Systems vs Optimization

- Nonlinear systems: Solve

$$
\begin{equation*}
f(x)=0 \Longleftrightarrow \min \|f(x)\| \tag{15}
\end{equation*}
$$

- Optimization

$$
\begin{equation*}
\min \phi(x) \Longleftrightarrow \nabla \phi(x)=0 \tag{16}
\end{equation*}
$$

- The relationship between solving nonlinear systems and optimization:
- We solve the left-hand side, but the problem can be cast as the right-hand side.


## Newton's Method

- Newton's Method (for optimization) is the same as Newton's method for nonlinear equations: Solve the system

$$
\begin{equation*}
\nabla \phi(x)=0 \tag{17}
\end{equation*}
$$

- The iteration becomes
- Calculate $p=x_{k+1}-x_{k}$ by solving $\nabla^{2} \phi\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)=-\nabla \phi\left(x_{k}\right)$
- Calculate $x_{k+1}=x_{k}+p$
- Advantages: second order convergence
- Disadvantages: requires Hessian, requires solving linear systems, linear systems may not be positive definite, etc.


## Descent Directions

- At a point $x$, the vector $p$ is a descent direction if

$$
\begin{equation*}
\nabla \phi(x)^{T} p<0 \tag{18}
\end{equation*}
$$

- Note that $\nabla \phi(x)^{T} p$ is the directional derivative.
- If a step is small enough, then the objective function will decrease in a descent direction:

$$
\begin{equation*}
\phi(x+\alpha p)<\phi(x) \text { for a small enough } \alpha \tag{19}
\end{equation*}
$$

- Hence, as long as we can compute a descent direction, we can construct an iterative method that is guaranteed to decrease the function value.


## Gradient Descent

- Gradient Descent chooses $p_{k}=-\nabla \phi\left(x_{k}\right)$.
- Guaranteed to be a descent direction (by norms of vectors):

$$
\begin{equation*}
-\nabla \phi\left(x_{k}\right)^{T} \nabla \phi\left(x_{k}\right)<0 \tag{20}
\end{equation*}
$$

- In fact, also the steepest descent, hence its alternative name.
- An analogy is that if you place a ball at $x_{k}$, it will roll in the steepest direction - the direction of the negative gradient.
- Drawbacks: no 2nd order information used, convergence can be slow.


## Line Search

- Gradient descent can take too large of a stepsize; the guarantees for descent may not extend all the way from $x_{k}$ to $x_{k}+p_{k}$.
- Instead, consider the update

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} p_{k} \tag{21}
\end{equation*}
$$

- For pure methods, $\alpha_{k}=1$. For constant stepsize, $\alpha_{k}=c$ for some constant $c$.
- For a small enough $\alpha$, we have

$$
\begin{equation*}
\phi\left(x_{k}+\alpha_{k} p_{k}\right)<\phi\left(x_{k}\right) \tag{22}
\end{equation*}
$$

- Line search addresses the question of what value of $\alpha$ is appropriate.


## Line Search techniques

- We look along the line $x_{k}+\alpha_{k} p_{k}$ such that

$$
\begin{equation*}
\phi\left(x_{k}+\alpha_{k} p_{k}\right) \leq \phi\left(x_{k}\right)+\sigma \alpha_{k} \nabla \phi\left(x_{k}\right)^{T} p_{k} \tag{23}
\end{equation*}
$$

This is known as the first Wolfe condition, also known as a "sufficient decrease condition".

- Typically, $\sigma=10^{-4}$.
- Backtracking line search: Start with $\alpha=1$, if the Wolfe condition is not satisfied, halve it, etc.
- Exact line search: Find $\alpha$ such that

$$
\begin{equation*}
\phi\left(x_{k}+\alpha p_{k}\right) \tag{24}
\end{equation*}
$$

is minimized.

## Revisiting Newton's Method

- Newton's method chooses the descent direction $p_{k}$

$$
\begin{equation*}
p_{k}=-\left[\nabla^{2} \phi\left(x_{k}\right)\right]^{-1} \nabla \phi\left(x_{k}\right) \tag{25}
\end{equation*}
$$

- What happens when we test $\nabla \phi\left(x_{k}\right)^{T} p_{k}<0$ ?
- Let $B$ denote the matrix $\nabla^{2} \phi\left(x_{k}\right)$, and we see that if $B$ is positive-definite, its inverse is also positive-definite, then we have a descent direction.
- Recall that positive-definite means for any nonzero vector $x, x^{\top} B x>0$.
- Gradient Descent chooses $B=I$.
- What do we do if $B$ is not positive-definite? - Quasi-Newton methods.


## Inexact Newton Methods

- Recall that we want the matrix $B_{k}$ from the previous slide to be positive-definite.
- Suppose $B_{k}$ has some positive and some negative eigenvalues, list them in order of $\lambda_{1}>\lambda_{2}>\cdots>0>\cdots>\lambda_{n}$.
- The matrix $B_{k}+\mu l$ has eigenvalues $\lambda_{i}+\mu$.
- Idea: Choose $\mu$ large enough to move the eigenvalues postive, and we have a descent direction.


## Quasi-Newton Methods - BFGS

- Start with an estimation of $G=B^{-1}$, apply updates based on gradient information every iteration.
- Superlinear convergence
- Positive-definite property of $G_{k}$ is retained every iteration
- Considered to be the method of choice for most problems.
- Limited-memory versions L-BFGS exist for very large, sparse matrices.


## Constrained optimization

- Constrained optimization problems have the following form:

$$
\begin{equation*}
\min \phi(x), \text { subject to } c_{i}(x) \geq 0 \tag{26}
\end{equation*}
$$

- $c_{i}$ is the constraint function.
- No equality constraints, because if we have $c_{j}(x)=0, c_{j}(x) \geq 0$ and $-c_{j}(x) \geq 0$ impose the same condition.
- In general, we like our problems to be defined as simple as possible, and avoid unnecessary families of constraints.


## Constrained optimization - penalty and barrier methods

- Penalty and Barrier methods are among the simplest methods for solving constrained optimization problems
- Convert constrained optimization problem to unconstrained optimization problem.
- Penalty methods, as the name suggests, penalize (in the value of the objective function) solutions that violate the constraint $c_{i}(x) \geq 0$.

$$
\begin{equation*}
\min \psi(x)=\phi(x)+\mu \sum c_{i}^{2}(x) \tag{27}
\end{equation*}
$$

- Barrier methods, on the other hand, introduce terms that prevent the constraints from being violated.

$$
\begin{equation*}
\min \psi(x)=\phi(x)-\mu \sum \log c_{i}(x) \tag{28}
\end{equation*}
$$

## Beyond this course

- Linear Optimization (Linear Programming): linear objective function, linear constrants. Use simplex method/IPM.
- Karush-Kuhn-Tucker (KKT) conditions: necessary first-order conditions for a minimum in constrained optimization
- Example paper: Fast Energy Projection
- Underdetermined systems: Solving

$$
\begin{equation*}
A x=b \tag{29}
\end{equation*}
$$

when $A$ is not full rank. The obvious answer is to

$$
\begin{equation*}
\min \|x\|_{2} \tag{30}
\end{equation*}
$$

subject to

$$
\begin{equation*}
A x=b \tag{31}
\end{equation*}
$$

- But also

$$
\begin{equation*}
\min \|x\|_{1} \tag{32}
\end{equation*}
$$

is of interest, since minimization in 1-norms lead to sparse solutions.

