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Overview

» This lecture extends Lecture 2, where we considered methods of
solving nonlinear equations in one variable.

» First, study solving systems of nonlinear equations, then, the related
topic of optimization.
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Nonlinear Systems of Equations

» Nonlinear Systems of Equations are defined by

fA(x1,x2,...,xn) =0
fh(x1,x2,...,xp) =0
fo(x1,x2,...,xp) =0

or, in vector form, simply f(x) = 0.
» Recall the following methods for one-dimensional problems:
» Bisection Method
> Fixed-point iteration
» Newton's Method
» Secant Method
» The last three methods all have a multidimensional analogue, but we
will focus on Newton’s method.
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Multidimensional Taylor Series

> First, we need to review the concept of a derivative of a vector-valued
function

» The Taylor Expansion of a function f : R" — R™ gives

f(x +p) = F(x) + J(x)p+ O(llp]I?) (1)

where J is the Jacobian matrix of first derivatives:
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Derivation of Newton's Method

» By Taylor series,
f(x +p) = F(x) + J(x)p + O(|Ipl*) (3)
Replace x + p with x* and x with xx to get

F(x") = f(xi0) + J0)(x" = x) + O(lIx" = xi]|?) (4)

» When x = x*, f(x) = 0. Sub this in, and drop the O(h?) term
(linearization)
0 = f(xi) + J0x) (x* — xi) ()

» Define x* to be the next iterate xy;.

> Algorithm: on each iterate,
> Calculate p = xx+1 — xx by solving J(xi)(xk+1 — xx) = —F(xk)
» Calculate x441 =Xk +p
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When Does Newton's Method fail?

» One situation: When initial guess is too far away.

» Another situation: When Jacobian matrix J(x) is singular.
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One dimension vs Multiple dimensions

» Recall in one dimension, Newton's method gives

oot = xp— )f((kk)) (6)

» In multiple dimensions,

X1 = xk — I () F (xk) (7)

» Newton's method is exactly the same

» To compute J~1(x,)f(xx) we solve a linear system, and do not invert
the matrix.

> It is almost never a good idea to invert a matrix.
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Example 9.3 - Ascher & Greif - 1

Consider the nonlinear differential equation
' +exp(u) =0, 0<t<l (8)

with boundary conditions u(0) = u(1) = 0.
» Discretization: partition the interval [0,1] into n equal subintervals
at &1, 6, ..., th—1.
» Unknowns are now real numbers uy, us, ..., Us_1.
> leth=1/n=1t—t
> Apply finite difference for all ;:

i+1 — 2ui + Ui
flu) = " (v =0 ©

» \What is the Jacobian matrix of 7
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Example 9.3 - Ascher & Greif - 2

> System of equations:

Uiyl — 2u; + uj—1

fln) = T2 | o) = 0 (10)
» Jacobian:
of 1/hH? ifj=i—-1
Jij = 6ul- =< -2/ +exp(u;) ifj=i (11)
7 1y/m2 ifj=i+1

> Initial guess: Let’s choose at(1 — t).
» We know the boundaries are zero
> Can scale up/down as we want.

Ray Wu (University of Toronto) Lecture 5: Systems of nonlinear equation: February 8, 2023



Matlab implementation

» Show matlab implementation (L05.m)
> The two solutions to the nonlinear differential equation:

5
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www.cs.toronto.edu/~rwu/csc338/L05.m

Unconstrained optimization

» The unconstrained optimization problem is given by

min ¢(x), x € R" (12)
> Define the gradient of ¢ to be

Vo(x) = | 7 (13)
3¢
OXn

» Define the Hessian to be the Jacobian of the gradient.

» Gradient and Hessian are the n-dimensional analogues of first and
second derivatives of a one-variable function.
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Necessary and Sufficient conditions for minimum

» Recall from Calc 1, the critical points of a function are when its
derivative are zero. In n dimensions this means

Vo(x) =0 (14)

» Recall again from Calc 1, the second derivative test: if the function
has a positive second derivative at a critical point, that critical point is
a local minimum. In n dimensions this means that if the Hessian
V2¢(x) is positive-definite, we have a local minimum.

» Positive definite: if a matrix A is positive definite, then for any
nonzero vector x, x ' Ax > 0.
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Nonlinear Systems vs Optimization

» Nonlinear systems: Solve

f(x) =0 < min||f(x)]] (15)

» Optimization
min ¢(x) < V¢o(x) =0 (16)

» The relationship between solving nonlinear systems and optimization:

» We solve the left-hand side, but the problem can be cast as the
right-hand side.
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Newton's Method

» Newton's Method (for optimization) is the same as Newton's method
for nonlinear equations: Solve the system

Vo(x) = 0. (17)

» The iteration becomes
> Calculate p = xk11 — xx by solving V2 (xx)(xk11 — xx) = —V(xk)
> Calculate x441 =Xk +p
» Advantages: second order convergence
» Disadvantages: requires Hessian, requires solving linear systems, linear
systems may not be positive definite, etc.
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Descent Directions

> At a point x, the vector p is a descent direction if

Vo(x)p <0 (18)

> Note that Vé(x)T p is the directional derivative.

> If a step is small enough, then the objective function will decrease in a
descent direction:

o(x + ap) < ¢(x) for a small enough « (19)

> Hence, as long as we can compute a descent direction, we can
construct an iterative method that is guaranteed to decrease the
function value.
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Gradient Descent

» Gradient Descent chooses py = —V(xk).

» Guaranteed to be a descent direction (by norms of vectors):

—Vé(xk)T V(xi) < 0 (20)

» In fact, also the steepest descent, hence its alternative name.

» An analogy is that if you place a ball at x, it will roll in the steepest
direction — the direction of the negative gradient.

» Drawbacks: no 2nd order information used, convergence can be slow.
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> Gradient descent can take too large of a stepsize; the guarantees for
descent may not extend all the way from xj to x, + p.

» Instead, consider the update
Xk41 = Xk + QP (21)

» For pure methods, o, = 1. For constant stepsize, oy = ¢ for some
constant c.

» For a small enough «, we have

Xk + aupr) < d(xk) (22)

» Line search addresses the question of what value of « is appropriate.
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Line Search techniques

> We look along the line x; + aypx such that

D(xk + axpr) < o0x) + ok Vo) T pi (23)

This is known as the first Wolfe condition, also known as a "sufficient
decrease condition".

> Typically, o = 10~%.

» Backtracking line search: Start with o = 1, if the Wolfe condition is
not satisfied, halve it, etc.

» Exact line search: Find a such that

P(xk + apy) (24)

is minimized.
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Revisiting Newton's Method

> Newton’s method chooses the descent direction pg

pi = —[VZo(x)] " Ve (xk) (25)

» What happens when we test V(xi) " px < 0?
> Let B denote the matrix V2¢(xx), and we see that if B is
positive-definite, its inverse is also positive-definite, then we have a
descent direction.
» Recall that positive-definite means for any nonzero vector x, x" Bx > 0.
» Gradient Descent chooses B = /.

> What do we do if B is not positive-definite? — Quasi-Newton methods.
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Inexact Newton Methods

> Recall that we want the matrix By from the previous slide to be
positive-definite.

> Suppose By has some positive and some negative eigenvalues, list
theminorderof Ay > Xy > - >0>--- > )\,

» The matrix By + p/ has eigenvalues \; + p.

> Idea: Choose y large enough to move the eigenvalues postive, and we
have a descent direction.
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Quasi-Newton Methods — BFGS

» Start with an estimation of G = B™!, apply updates based on
gradient information every iteration.

» Superlinear convergence
> Positive-definite property of Gy is retained every iteration
» Considered to be the method of choice for most problems.

» Limited-memory versions L-BFGS exist for very large, sparse matrices.
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Constrained optimization

» Constrained optimization problems have the following form:

min ¢(x), subject to ¢;j(x) > 0. (26)

> ¢; is the constraint function.

» No equality constraints, because if we have ¢j(x) =0, ¢j(x) > 0 and
—¢j(x) > 0 impose the same condition.

» In general, we like our problems to be defined as simple as possible,
and avoid unnecessary families of constraints.
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Constrained optimization — penalty and barrier methods

» Penalty and Barrier methods are among the simplest methods for
solving constrained optimization problems

» Convert constrained optimization problem to unconstrained
optimization problem.

» Penalty methods, as the name suggests, penalize (in the value of the
objective function) solutions that violate the constraint ¢;(x) > 0.

ming(x) = ¢(x) +p Y _ cF( (27)

» Barrier methods, on the other hand, introduce terms that prevent the
constraints from being violated.

min ¢ (x) ,uZIog ci(x (28)
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Beyond this course

» Linear Optimization (Linear Programming): linear objective function,
linear constrants. Use simplex method/IPM.

» Karush-Kuhn-Tucker (KKT) conditions: necessary first-order
conditions for a minimum in constrained optimization

» Example paper: Fast Energy Projection

» Underdetermined systems: Solving

Ax=b (29)
when A is not full rank. The obvious answer is to
min ||x]|2 (30)
subject to
Ax = b (31)
» But also
min [|x||1 (32)

is of interest, since minimization in 1-norms lead to sparse solutions.
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https://users.cs.utah.edu/~ladislav/dinev18FEPR/dinev18FEPR.pdf

