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Overview

▶ This lecture extends Lecture 2, where we considered methods of
solving nonlinear equations in one variable.

▶ First, study solving systems of nonlinear equations, then, the related
topic of optimization.
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Nonlinear Systems of Equations

▶ Nonlinear Systems of Equations are de�ned by

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

. . .

fn(x1, x2, . . . , xn) = 0

or, in vector form, simply f (x) = 0.

▶ Recall the following methods for one-dimensional problems:
▶ Bisection Method
▶ Fixed-point iteration
▶ Newton's Method
▶ Secant Method

▶ The last three methods all have a multidimensional analogue, but we
will focus on Newton's method.
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Multidimensional Taylor Series

▶ First, we need to review the concept of a derivative of a vector-valued
function

▶ The Taylor Expansion of a function f : Rn → Rm gives

f (x + p) = f (x) + J(x)p +O(∥p∥2) (1)

where J is the Jacobian matrix of �rst derivatives:

J(x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 (2)
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Derivation of Newton's Method

▶ By Taylor series,

f (x + p) = f (x) + J(x)p +O(∥p∥2) (3)

Replace x + p with x∗ and x with xk to get

f (x∗) = f (xk) + J(xk)(x
∗ − xk) +O(∥x∗ − xk∥2) (4)

▶ When x = x∗, f (x) = 0. Sub this in, and drop the O(h2) term
(linearization)

0 = f (xk) + J(xk)(x
∗ − xk) (5)

▶ De�ne x∗ to be the next iterate xk+1.
▶ Algorithm: on each iterate,

▶ Calculate p = xk+1 − xk by solving J(xk)(xk+1 − xk) = −f (xk)
▶ Calculate xk+1 = xk + p
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When Does Newton's Method fail?

▶ One situation: When initial guess is too far away.

▶ Another situation: When Jacobian matrix J(x) is singular.
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One dimension vs Multiple dimensions

▶ Recall in one dimension, Newton's method gives

xk+1 = xk −
f (xk)

f ′(xk)
(6)

▶ In multiple dimensions,

xk+1 = xk − J−1(xk)f (xk) (7)

▶ Newton's method is exactly the same
▶ To compute J−1(xk)f (xk) we solve a linear system, and do not invert

the matrix.
▶ It is almost never a good idea to invert a matrix.
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Example 9.3 - Ascher & Greif - 1

Consider the nonlinear di�erential equation

u′′ + exp(u) = 0, 0 < t < 1 (8)

with boundary conditions u(0) = u(1) = 0.

▶ Discretization: partition the interval [0, 1] into n equal subintervals
at t1, t2, . . . , tn−1.
▶ Unknowns are now real numbers u1, u2, . . . , un−1.
▶ Let h = 1/n = ti − ti−1

▶ Apply �nite di�erence for all i :

fi (u) ≡
ui+1 − 2ui + ui−1

h2
+ exp(ui ) = 0 (9)

▶ What is the Jacobian matrix of f ?
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Example 9.3 - Ascher & Greif - 2

▶ System of equations:

fi (u) ≡
ui+1 − 2ui + ui−1

h2
+ exp(ui ) = 0 (10)

▶ Jacobian:

Ji ,j =
∂fi
∂uj

=


1/h2 if j = i − 1

−2/h2 + exp(ui ) if j = i

1/h2 if j = i + 1

(11)

▶ Initial guess: Let's choose αt(1− t).
▶ We know the boundaries are zero
▶ Can scale up/down as we want.
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Matlab implementation

▶ Show matlab implementation (L05.m)
▶ The two solutions to the nonlinear di�erential equation:

0 0.5 1

0

1

2

3

4

5
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Unconstrained optimization

▶ The unconstrained optimization problem is given by

minϕ(x), x ∈ Rn (12)

▶ De�ne the gradient of ϕ to be

∇ϕ(x) =


∂ϕ
∂x1
∂ϕ
∂x2
. . .
∂ϕ
∂xn

 (13)

▶ De�ne the Hessian to be the Jacobian of the gradient.

▶ Gradient and Hessian are the n-dimensional analogues of �rst and
second derivatives of a one-variable function.
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Necessary and Su�cient conditions for minimum

▶ Recall from Calc 1, the critical points of a function are when its
derivative are zero. In n dimensions this means

∇ϕ(x) = 0 (14)

▶ Recall again from Calc 1, the second derivative test: if the function
has a positive second derivative at a critical point, that critical point is
a local minimum. In n dimensions this means that if the Hessian
∇2ϕ(x) is positive-de�nite, we have a local minimum.

▶ Positive de�nite: if a matrix A is positive de�nite, then for any
nonzero vector x , xTAx > 0.
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Nonlinear Systems vs Optimization

▶ Nonlinear systems: Solve

f (x) = 0 ⇐⇒ min ∥f (x)∥ (15)

▶ Optimization
minϕ(x) ⇐⇒ ∇ϕ(x) = 0 (16)

▶ The relationship between solving nonlinear systems and optimization:
▶ We solve the left-hand side, but the problem can be cast as the

right-hand side.
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Newton's Method

▶ Newton's Method (for optimization) is the same as Newton's method
for nonlinear equations: Solve the system

∇ϕ(x) = 0. (17)

▶ The iteration becomes
▶ Calculate p = xk+1 − xk by solving ∇2ϕ(xk)(xk+1 − xk) = −∇ϕ(xk)
▶ Calculate xk+1 = xk + p

▶ Advantages: second order convergence

▶ Disadvantages: requires Hessian, requires solving linear systems, linear
systems may not be positive de�nite, etc.
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Descent Directions

▶ At a point x , the vector p is a descent direction if

∇ϕ(x)Tp < 0 (18)

▶ Note that ∇ϕ(x)Tp is the directional derivative.

▶ If a step is small enough, then the objective function will decrease in a
descent direction:

ϕ(x + αp) < ϕ(x) for a small enough α (19)

▶ Hence, as long as we can compute a descent direction, we can
construct an iterative method that is guaranteed to decrease the
function value.
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Gradient Descent

▶ Gradient Descent chooses pk = −∇ϕ(xk).
▶ Guaranteed to be a descent direction (by norms of vectors):

−∇ϕ(xk)T∇ϕ(xk) < 0 (20)

▶ In fact, also the steepest descent, hence its alternative name.
▶ An analogy is that if you place a ball at xk , it will roll in the steepest

direction � the direction of the negative gradient.

▶ Drawbacks: no 2nd order information used, convergence can be slow.
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Line Search

▶ Gradient descent can take too large of a stepsize; the guarantees for
descent may not extend all the way from xk to xk + pk .

▶ Instead, consider the update

xk+1 = xk + αkpk (21)

▶ For pure methods, αk = 1. For constant stepsize, αk = c for some
constant c .

▶ For a small enough α, we have

ϕ(xk + αkpk) < ϕ(xk) (22)

▶ Line search addresses the question of what value of α is appropriate.
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Line Search techniques

▶ We look along the line xk + αkpk such that

ϕ(xk + αkpk) ≤ ϕ(xk) + σαk∇ϕ(xk)Tpk (23)

This is known as the �rst Wolfe condition, also known as a "su�cient
decrease condition".
▶ Typically, σ = 10−4.

▶ Backtracking line search: Start with α = 1, if the Wolfe condition is
not satis�ed, halve it, etc.

▶ Exact line search: Find α such that

ϕ(xk + αpk) (24)

is minimized.
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Revisiting Newton's Method

▶ Newton's method chooses the descent direction pk

pk = −[∇2ϕ(xk)]
−1∇ϕ(xk) (25)

▶ What happens when we test ∇ϕ(xk)Tpk < 0?
▶ Let B denote the matrix ∇2ϕ(xk), and we see that if B is

positive-de�nite, its inverse is also positive-de�nite, then we have a
descent direction.

▶ Recall that positive-de�nite means for any nonzero vector x , xTBx > 0.
▶ Gradient Descent chooses B = I .

▶ What do we do if B is not positive-de�nite? � Quasi-Newton methods.
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Inexact Newton Methods

▶ Recall that we want the matrix Bk from the previous slide to be
positive-de�nite.

▶ Suppose Bk has some positive and some negative eigenvalues, list
them in order of λ1 > λ2 > · · · > 0 > · · · > λn.

▶ The matrix Bk + µI has eigenvalues λi + µ.

▶ Idea: Choose µ large enough to move the eigenvalues postive, and we
have a descent direction.
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Quasi-Newton Methods � BFGS

▶ Start with an estimation of G = B−1, apply updates based on
gradient information every iteration.

▶ Superlinear convergence

▶ Positive-de�nite property of Gk is retained every iteration

▶ Considered to be the method of choice for most problems.

▶ Limited-memory versions L-BFGS exist for very large, sparse matrices.
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Constrained optimization

▶ Constrained optimization problems have the following form:

minϕ(x), subject to ci (x) ≥ 0. (26)

▶ ci is the constraint function.

▶ No equality constraints, because if we have cj(x) = 0, cj(x) ≥ 0 and
−cj(x) ≥ 0 impose the same condition.

▶ In general, we like our problems to be de�ned as simple as possible,
and avoid unnecessary families of constraints.
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Constrained optimization � penalty and barrier methods

▶ Penalty and Barrier methods are among the simplest methods for
solving constrained optimization problems

▶ Convert constrained optimization problem to unconstrained
optimization problem.

▶ Penalty methods, as the name suggests, penalize (in the value of the
objective function) solutions that violate the constraint ci (x) ≥ 0.

minψ(x) = ϕ(x) + µ
∑

c2i (x) (27)

▶ Barrier methods, on the other hand, introduce terms that prevent the
constraints from being violated.

minψ(x) = ϕ(x)− µ
∑

log ci (x) (28)
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Beyond this course

▶ Linear Optimization (Linear Programming): linear objective function,
linear constrants. Use simplex method/IPM.

▶ Karush-Kuhn-Tucker (KKT) conditions: necessary �rst-order
conditions for a minimum in constrained optimization

▶ Example paper: Fast Energy Projection
▶ Underdetermined systems: Solving

Ax = b (29)

when A is not full rank. The obvious answer is to

min ∥x∥2 (30)

subject to
Ax = b (31)

▶ But also
min ∥x∥1 (32)

is of interest, since minimization in 1-norms lead to sparse solutions.
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