Lecture 4: Linear Least Squares
 CSC 338: Numerical Methods

Ray Wu

University of Toronto

February 1, 2023

Overview

- Linear Least Squares
- Normal Equations and Derivation
- Application: Data fitting
- QR Decomposition
- Singular Value Decomposition
- Image compression

Linear Least Squares

- Last lecture, we focused on

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

when A is a square matrix.

- This lecture: what if A is not a square matrix? Example:

$$
\left[\begin{array}{ll}
3 & 4 \tag{2}\\
1 & 7 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
6 \\
3
\end{array}\right]
$$

- Least squares compute an approximate solution to these linear systems, by minimizing the residual $r=b-A x$ in the 2-norm.

$$
\begin{equation*}
\min _{x}\|b-A x\| \tag{3}
\end{equation*}
$$

Why the 2-norm?

- The choice of norm relates to how we "count" the distance.
- Alternative norms:
- 1-norm: $\min \|b-A x\|_{1}$. Used in least absolute deviations.
- max-norm: $\min \|b-A x\|_{\infty}=\min \max _{i}|b-A x|$
- Both 1-norm and max-norm problems lead to linear programming (linear optimization) problems.
- Simplex algorithm, IPMs (e.g. Karmarkar 1984), etc.
- Beyond the scope of this course. You may find coverage in optimization, machine learning, or theoretical computer science.
- 2-norm leads to simple solutions
- maximum likelihood estimate (MLE):
- 2-norm leads to the MLE for normal distributions, which are ubiquitous in modelling
- 1-norm leads to the MLE for double exponential (Laplace) distributions
- 1-norm is robust to outliers

Normal Equations - Derivation

Two derivations:

- Define $\phi(x)=\|b-A x\|^{2}$, set derivatives to zero.
- Using geometry and orthogonality.

Normal Equations

- Two vectors u and v are orthogonal if and only if $u^{T} v=0$.
- Recall that we wish to minimize $\|b-A x\|$.
- Find $y=A x$ that is the closest vector in $\operatorname{col}(A)$ to b.
- Want residual to be orthogonal to every vector in a spanning set of that space.
- Therefore, $r=b-A x$ is orthogonal to every column of A.

$$
\begin{equation*}
\forall i, a_{i}^{T}(b-A x)=0 \tag{4}
\end{equation*}
$$

or in other words (matrix notation),

$$
\begin{equation*}
A^{T}(b-A x)=\overrightarrow{0} \tag{5}
\end{equation*}
$$

- Rearranging, we get the normal equations:

$$
\begin{equation*}
A^{T} A x=A^{T} b \tag{6}
\end{equation*}
$$

Normal Equations visualized

Figure 1: Visualization of Geometric Interpretation of Least Squares. Source: Wikimedia Commons.

Normal Equations (II)

- From last slides,

$$
\begin{equation*}
A^{T}(b-A x)=0 \tag{7}
\end{equation*}
$$

- Normal equation method:

1. Compute $A^{T} A$ and $A^{T} b$.
2. Decompose $A^{T} A$ using Cholesky factorization and use forward/backward solves for triangular systems.

Application: data fitting

- Suppose we have observed data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- We want to fit this to some model, for example, $y=a x+b$.
- Create n equations with each pair of $\left(x_{i}, y_{i}\right)$.
- Solve the resulting overdetermined system of linear equations.

Data fitting example

Age	Height
2	87
3	96
4	103
\vdots	\vdots
18	176

Table 1: Median height of male children in Canada

Looking at the data

Setting up the equations

$$
\left[\begin{array}{cc}
1 & x_{1} \tag{8}\\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Linear regression model

With nonlinear functions

$$
\left[\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \tag{9}\\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Linear regression with nonlinear functions

Issues with Normal equation method

Suppose we have the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \tag{10}\\
\epsilon & 0 & 0 \\
0 & \epsilon & 0 \\
0 & 0 & \epsilon
\end{array}\right]
$$

for some small value of ϵ, say 10^{-10}. Then, symbolically,

$$
A^{T} A=\left[\begin{array}{ccc}
1+\epsilon^{2} & 1 & 1 \tag{11}\\
1 & 1+\epsilon^{2} & 1 \\
1 & 1 & 1+\epsilon^{2}
\end{array}\right]
$$

- Numerically, $A^{T} A$ is singular (and the calculations cannot continue), but A has full rank.
- Is this an issue of the problem, or an issue of the algorithm?

Singular Value Decomposition

- The singular value decomposition decomposes a general matrix A into the form

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{12}
\end{equation*}
$$

where U and V are orthogonal matrices, and Σ is a diagonal matrix, with the diagonal entries called the singular values.

- The SVD always exists, and is not unique. By convention, we arrange Σ such that the singular values are sorted and the largest singular value is in the $(1,1)$ location.
- The SVD is a generalization of the eigendecomposition of a matrix (i.e. $A=M D M^{-1}$).
- Since multiplication with orthogonal matrices do not change norm, we have

$$
\begin{equation*}
\|A\|=\|\Sigma\|=\sigma_{1} \tag{13}
\end{equation*}
$$

- Now consider the pesudoinverse of A : the norm is is $\frac{1}{\sigma_{n}}$, hence the condition number of A is $\frac{\sigma_{1}}{\sigma_{n}}$.

Condition number of normal equations

- The condition number of an symmetric positive definite matrix $B=A^{T} A$ is given by the ratio between its largest and smallest eigenvalues. This is equivalent to

$$
\begin{equation*}
\kappa(B)=\frac{\lambda_{1}}{\lambda_{n}}=\frac{\sigma_{1}^{2}}{\sigma_{n}^{2}}=\kappa(A)^{2} \tag{14}
\end{equation*}
$$

- because

$$
\begin{equation*}
B=A^{T} A=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T} \tag{15}
\end{equation*}
$$

giving a diagonalization of B.

- Hence, constructing the normal equations squares the condition number. So this is an issue of the algorithm, and not the problem.
- This means we should look for alternatives to the normal equation method.

QR decomposition and Householder reflections

- Suppose we have a decomposition

$$
A=Q\left[\begin{array}{c}
R \tag{16}\\
0
\end{array}\right]
$$

for some orthogonal matrix Q and a triangular matrix R. Then we have

$$
\|b-A x\|=\left\|b-Q\left[\begin{array}{l}
R \tag{17}\\
0
\end{array}\right] x\right\|=\left\|Q^{T} b-\left[\begin{array}{l}
R \\
0
\end{array}\right] x\right\| .
$$

- To minimize this expression, we rewrite $Q^{T} b$ as $\left[\begin{array}{ll}c & d\end{array}\right]^{T}$, where c has the same number of entries as $R x$ and d has the remaining entries.

$$
\left\|Q^{T} b-\left[\begin{array}{c}
R \tag{18}\\
0
\end{array}\right] x\right\|=\left\|\left[\begin{array}{c}
c-R x \\
d
\end{array}\right]\right\|
$$

- We have no control over d, so we solve the system $R x=c$ to minimize the other components.

Householder reflections

- We want to decompose $A=Q R$, so, we need to find orthogonal transformations that transform A into an upper triangular matrix R.
- The idea is to apply a sequence of orthogonal transformations that zero out the matrix entries that we want to.
- Consider the matrix $P=I-2 u u^{T}$, for an arbitrary unit vector u. Now, we want to find the right u such that $P z=\alpha e_{1}$.
- What do we know about P ? P is a reflection across the plane defined by the normal vector u.
- $P u=u-2 u\left(u^{T} u\right)=-u$
- $P v=v-2 u\left(u^{T} v\right)=v$ if v is orthogonal to u.

Householder reflections (II)

- Write $P z=z-2 u u^{T} z=z-\left(2 u^{T} z\right) u=\alpha e_{1}$
- Then u is the unit vector in the direction $z-\alpha \epsilon_{1}$ (rearrange and divied by $2 u^{T} z$).
- Since P is an orthogonal transformation (assignment question), $\|P z\|=\|z\|$ and hence $\alpha=\|z\|$.
- Therefore, $u=z \pm\|z\| e_{1}$ (In practice, pick the same sign as the first entry of z, to avoid any possibilty of cancellation error.)
- Finally, we apply householder reflections to zero out all entries below the i, i-th entry of A, and complete our orthogonal transformation.
- The series of reflections is the matrix Q, and the resulting matrix is R.

Singular Value Decomposition

Recall that the singular value decomposition is given by

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{19}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\|b-A x\|=\left\|U^{T} b-\Sigma V^{T} x\right\| \tag{20}
\end{equation*}
$$

- If the condition number is not too large, then we can directly solve the system.

$$
\begin{equation*}
U^{T} b-\Sigma V^{T} x \tag{21}
\end{equation*}
$$

- Kind of defeats the purpose of SVD, since QR will also work.
- QR is faster to compute than SVD (We will not get into computing SVD).
- The real benefit of SVD occurs when A is not numerically full rank.

Singular Value Decomposition, Part 2

- If A is not full rank numerically, then the ratio σ_{1} / σ_{n} is very large ($>10^{16}$).
- Solution: remove the singular values that are too small.
- Starting from n and going backwards, find a value r such that σ_{1} / σ_{r} is acceptable, and set the remaining singular values to zero.
- Truncate the matrices U and V to only store the first r rows/columns.
- A is compressed from $m \times n$ into $r(m+n+1)$ storage locations
- This is a rank-r approximation of the matrix A. In fact, it is the best rank- r approximation, as measured by the Frobinus norm.

Example - Image compression

Consider this cat with the croissant, with the pixels stored as real numbers in a matrix A :

There are $800 \times 576=460800$ entries we have to store in grayscale.

Example - Image compression

Rank-20 approximation of A :

We only need to store $20 \times(800+576+1)=27540$ entries.

Example - Image compression

Rank-10 approximation of A :

We only need to store $10 \times(800+576+1)=13770$ entries.

Example - Image compression

Rank-5 approximation of A :

We only need to store $5 \times(800+576+1)=6885$ entries.

