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Systems of Linear Equations

This lecture is on solving
Ax = b (1)

Unless otherwise stated,

▶ A is an n-by-n matrix,

▶ x , b are vectors of size n.

▶ A, b given, x unknown.

Topics:

▶ Diagonal systems

▶ Triangular systems

▶ Gaussian Elimination and LU decomposition

▶ Cholesky Decomposition

▶ Sparse Matrices

▶ Error and condition number
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Introduction and notation

Problem in matrix form:
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n



x1
x2
...
xn

 =


b1
b2
...
bn

 (2)
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Diagonal systems

The simplest of all matrix equations; n independent linear equations.
a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . .

...
0 0 · · · an,n



x1
x2
...
xn

 =


b1
b2
...
bn

 (3)

Solution:

∀i , xi =
bi

ai ,i
(4)
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(Upper) Triangular systems

Triangular systems are only slightly more complicated than diagonal
systems. 

a1,1 a1,2 · · · a1,n−1 a1,n
0 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

0 0 · · · an−1,n−1 an−1,n

0 0 · · · 0 an,n




x1
x2
...

xn−1

xn

 =


b1
b2
...

bn−1

bn

 (5)

Solution: start from last equation

xn =
bn

an,n
(6)

Iteratively update from n − 1 to 1 in reverse order (backward solve):

xk =
bk −

∑n
j=k+1 ak,jxj

ak,k
(7)

Ray Wu (University of Toronto) Lecture 3: Systems of Linear Equations January 25, 2023 5 / 34



(Lower) Triangular systems

Lower Triangular Systems are similar to Upper triangular systems
a1,1 0 · · · 0 0
a2,1 a2,2 · · · 0 0
...

...
. . .

...
...

an−1,1 an−1,2 · · · an−1,n−1 0
an,1 an,2 · · · an,n−1 an,n




x1
x2
...

xn−1

xn

 =


b1
b2
...

bn−1

bn

 (8)

Solution: start from �rst equation

x1 =
b1

a1,1
(9)

Iteratively update from 2 to n in forward order (forward solve):

xk =
bk −

∑k−1
j=1 ak,jxj

ak,k
(10)
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Gaussian Elimination

Finally, we consider general matrices and have Gaussian Elimination
a1,1 a1,2 · · · a1,n−1 a1,n
a2,1 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an,1 an,2 · · · an,n−1 an,n




x1
x2
...

xn−1

xn

 =


b1
b2
...

bn−1

bn

 (11)

Solution: transform to upper triangular system. First step, for i > 1:

a′i ,j = ai ,j − (ai ,1/a1,1)a1,j (12)

and
b′i = bi − (ai ,1/a1,1)bi (13)

if j = 1, ai ,1 becomes assigned to zero.

We get the system of equations on the following page:
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Gaussian Elimination (II)


a1,1 a1,2 · · · a1,n−1 a1,n
0 a′2,2 · · · a′2,n−1 a′2,n

0
...

. . .
...

...
0 a′n−1,2 · · · a′n−1,n−1 a′n−1,n

0 a′n,2 · · · a′n,n−1 a′n,n




x1
x2
...

xn−1

xn

 =


b1
b′2
...

b′n−1

b′n

 (14)

Repeat the process for the system of equations with a′i ,j and b′i (ignore the
blue components)

▶ Review from Linear Algebra

▶ We focus on how to use computers to carry out this algorithm.

▶ We will discuss some numerical issues that arise from this algorithm.

▶ We will also generalize it to make it more stable.
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LU decomposition

Recall Gaussian Elimination where we transform the following system to a
triangular system:

a1,1 a1,2 · · · a1,n−1 a1,n
a2,1 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an,1 an,2 · · · an,n−1 an,n




x1
x2
...

xn−1

xn

 =


b1
b2
...

bn−1

bn

 (15)

▶ LU decomposition expresses the above procedure as a matrix.

▶ Hence, it factors the matrix A into an lower triangular matrix L and an
upper triangular matrix U such that A = LU.
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LU decomposition (II)

Recall Gaussian Elimination:
a1,1 a1,2 · · · a1,n−1 a1,n
a2,1 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an,1 an,2 · · · an,n−1 an,n




x1
x2
...

xn−1

xn

 =


b1
b2
...

bn−1

bn

 (16)

Let li ,1 = (ai ,1/a1,1). Then,

a′i ,j = ai ,j − li ,1a1,j (17)

This is a linear combination of matrix entries, hence
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LU decomposition (III)

Let M1 be de�ned as 
1 0 · · · 0 0

−l2,1 1 · · · 0 0
...

...
. . .

...
...

−ln−1,1 0 · · · 1 0
−ln,1 0 · · · 0 1

 (18)

Then, M1A produces
a1,1 a1,2 · · · a1,n−1 a1,n
0 a′2,2 · · · a′2,n−1 a′2,n

0
...

. . .
...

...
0 a′n−1,2 · · · a′n−1,n−1 a′n−1,n

0 a′n,2 · · · a′n,n−1 a′n,n

 (19)
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LU decomposition (IV)

Repeat the procedure from the previous slide for M2, M3, ..., Mn−1. Then,

Mn−1Mn−2 · · ·M2M1A = U (20)

where U is upper triangular.

Inverting each Mi matrix gives us

A = M−1
1 M−1

2 · · ·M−1
n−1U (21)

Last question/obstacle: What is M−1
i ?
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LU decomposition (V)

What is M−1
i ? Recall that

M1 =


1 0 · · · 0

−l2,1 1 · · · 0
...

...
. . .

...
−ln,1 0 · · · 1

 (22)

To invert, �nd a matrix which cancels out the terms in the lower diagonal.

M−1
1 =


1 0 · · · 0
l2,1 1 · · · 0
...

...
. . .

...
ln,1 0 · · · 1

 (23)

You can verify this fact for yourself.
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LU decomposition (VI)

Product of L = M−1
1 M−1

2 · · ·M−1
n−1

M−1
1 M−1

2 · · ·M−1
n−1 =


1 0 · · · 0
l2,1 1 · · · 0
...

...
. . .

...
ln,1 ln,2 · · · 1

 (24)

Hence, the Gaussian elimination process produces both L and U, where
A = LU. Then, given Ax = b our algorithm is as follows:

1. Compute A = LU.

2. Solve Ly = b, for y

3. Solve Ux = y .

What is the purpose of LU when we already have Gaussian Elimination?

▶ Multiple b's: Can compute A = LU once, then use the more e�cient
forward/backwards solves on each b vector.
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Partial Pivoting

So far, we have assumed that ai ,i are nonzero. What if we have ai ,i = 0?[
0 1
1 0

] [
x1
x2

]
=

[
b1
b2

]
(25)

Clearly, x1 = b2, and x2 = b1. But LU will break down in the �rst step.

Solution: interchange (permute) rows 1 and 2.[
1 0
0 1

] [
x2
x1

]
=

[
b2
b1

]
(26)

Interchange rows, but not columns � partial pivoting.
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Partial Pivoting (II)

Key idea of partial pivoting: At each stage, interchange the rows to get the
largest pivot: 

a1,1 a1,2 · · · a1,n−1 a1,n
0 a′2,2 · · · a′2,n−1 a′2,n

0
...

. . .
...

...
0 a′n−1,2 · · · a′n−1,n−1 a′n−1,n

0 a′n,2 · · · a′n,n−1 a′n,n

 (27)

Here, we would pick the largest pivot from a′i ,2 (2 ≤ i ≤ n) in absolute
value, and interchange the rows.

▶ Recall that L = M−1
1 M−1

2 · · ·M−1
n−1 in GE without PP, in other words,

L−1 = Mn−1Mn−2 · · ·M1

▶ In GE with PP, B = Mn−1Pn−1 . . .M2P2M1P1

▶ Next, we need to show that B = L−1P .
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Partial Pivoting (III)

▶ Recall that B = Mn−1Pn−1 . . .M2P2M1P1.

▶ De�ne
▶ M̃n−1 = Mn−1,
▶ M̃n−2 = Pn−1Mn−2P

T

n−1
,

▶ M̃n−3 = Pn−1Pn−2Mn−1P
T

n−2
PT
n−1

, etc.

▶ Then, we have B = M̃n−1M̃n−2 . . . M̃1Pn−1Pn−2 . . .P1.

▶ M̃i remain lower-triangular, because only diagonal entries and zero
entries get permuted.

▶ Hence, we have shown that B can be written as L−1P .
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Partial Pivoting (IV)

▶ Since we have shown that B = L−1P , then we have BA = U or
equivalently PA = LU.

▶ In Matlab, use [P, L, U] = lu(A)
▶ There are other options; such as no pivoting, complete pivoting, etc.

▶ We are done with general linear equations, just a few more notes:

▶ We cannot demonstrate stability for partial pivoting or scaled partial
pivoting, only with complete pivoting.

▶ Complete pivoting will �nd the largest entry among the entire
submatrix rather than just the entries of the column in question, and
will interchange a pair of both rows and columns.

▶ However, in practice, most matrices are stable with just partial
pivoting.

▶ Additionally, some matrices that arise in practice require no pivoting.
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Cholesky Decomposition

▶ So far, we have looked at general matrices, where no special structure
exists.

▶ In practice, many matrices are symmetric positive de�nite (SPD). The
Cholesky decomposition factorizes SPD matrices into

A = RRT (28)

where R is triangular.
▶ Note that if n = 1, this becomes a scalar square root.

▶ Symmetric positive de�niteness is the matrix analogue of a positive
real number.

▶ Cholesky decomposition �nds the "square root".
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Review: Symmetric positive de�nite matrices

A matrix A is symmetric positive de�nite (SPD) if

▶ A = AT (symmetry)

▶ for all nonzero vectors x , xTAx > 0. (positive de�nite)

Where do SPD matrices arise? In this course:

▶ least squares

▶ convex optimization

Beyond this course:

▶ numerical methods for partial di�erential equations (PDEs)
▶ Finite Di�erence Methods
▶ Finite Element Methods

Many applications, such as structural engineering, computer graphics,
�nance, etc.
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Cholesky Decomposition

▶ We can consider the Cholesky decomposition as a symmetric LU
decomposition. Let

A = LU (29)

where A is symmetric positive de�nite.

▶ We can factor out the diagonal to get

A = LDU (30)

▶ Due to symmetry, U = LT and hence

A = LDLT (31)

▶ Let R = D1/2LT , then, A = RTR .

▶ D1/2 is elementwise square root.

▶ NO permutations required!
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Cholesky Decomposition example

▶ Consider a 2x2 matrix[
a11 a12
a21 a22

]
=

[
r11 0
r21 r22

] [
r11 r21
0 r22

]
(32)

▶ From the a11 entry we get a11 = r2
11
, hence r11 =

√
a11.

▶ From the a12 entry we get a12 = r11r21, hence r21 = a12/r11, with r11
already known.

▶ Full algorithm on p. 116 of Ascher & Greif.

▶ in Matlab, use R = chol(A) to calculate the Cholesky factor.
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Sparse matrices and �ll-in

▶ Many matrices that arise from practical applications are sparse
▶ You will see one in assignment 2.

▶ Large size, but comparatively few nonzero entries. For example, a
tridiagonal matrix has n2 entries but 3n − 2 nonzero entries.

▶ Sparse matrices are useful because they can be solved more e�ciently
than non-sparse matrices (e.g. tridiagonal solvers, banded LU, etc).

▶ There are many reasons to not invert a matrix (conditioning, time,
etc), but one of the main reasons is that inverting a sparse matrix can
destroy the sparsity structure.

Ray Wu (University of Toronto) Lecture 3: Systems of Linear Equations January 25, 2023 23 / 34



Sparse Matrix Example

▶ Given a vector x , compute a new vector with the entries being the
average of itself and neighbouring entries.

▶ This can be represented as a linear transformation, hence, a matrix T .

▶ The computation can be represented by a sparse matrix:

T =


1/2 1/2 0 0 . . . 0
1/3 1/3 1/3 0 . . . 0
...

...
...

...
. . .

...
0 . . . 0 1/3 1/3 1/3
0 . . . 0 0 1/2 1/2

 (33)
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Sparse Matrix Example continued

▶ Plot of x and Tx :

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

x

T*x

▶ Matlab script on the website.
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Condition number and error propagation

▶ Consider again solving
Ax = b (34)

▶ Denote exact solution as x , computed solution as x̂ . We want to
estimate

∥x − x̂∥
∥x∥

(35)

▶ Condition number: error ampli�cation.

Ray Wu (University of Toronto) Lecture 3: Systems of Linear Equations January 25, 2023 26 / 34



Residual

▶ Let x̂ denote the computed solution. Then, the residual is de�ned as

r̂ = b − Ax̂ . (36)

▶ Additionally, note that b = Ax , so

r̂ = Ax − Ax̂ = A(x − x̂) (37)

▶ Rearrange to get
x − x̂ = A−1r̂ . (38)
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Review: Vector and matrix norms

Norms: length of a vector. Three requirements:

▶ Nonnegativity:
∥x∥ ≥ 0, ∥x∥ = 0 i� x = 0⃗ (39)

▶ Absolute Homogeniety:

∥αx∥ = |α|∥x∥ for α ∈ R (40)

▶ Triangle inequality:

∥x + y∥ ≤ ∥x∥+ ∥y∥. (41)

Ray Wu (University of Toronto) Lecture 3: Systems of Linear Equations January 25, 2023 28 / 34



p (or Lp) norm

Let p ≥ 1 be a real number. Then the p-norm for vectors is de�ned as

∥x∥p =
(∑

|xi |p
)1/p

(42)

Common values of p:

▶ p = 2: Euclidian norm (conventional "distance" norm).

▶ p = 1: Manhatten norm (taxicab norm)

▶ p = ∞: max-norm.

▶ p = 0: "hamming distance" (number of di�erences between vector
entries)
▶ Not really a norm.
▶ Used in applications of machine learning, statistics, etc.
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Matrix norms

Two types of matrix norms you should know:

▶ Element norms: norms based on the entries of the individual elements.
Example: Forbenius norm:

∥A∥F =

√√√√ n∑
i ,j=1

a2i ,j (43)

treats the matrix as a vector stored in a di�erent arrangement.

▶ Induced (operator) norms: norms based on viewing the matrix as an
operation to a vector.

▶ Instead of viewing A as a matrix, view A as a function/operator,
where Ax is the output and x is the input.
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Operator norms

Since we are only considering the input x and the output Ax , we de�ne the
operator norm as the "maximum stretching factor" between x and Ax .

∥A∥ = max
∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥ (44)

▶ Which vector norm for Ax , which vector norm for x not de�ned.

▶ Can pick any true vector norm.

Submultiplicativity:
∥Ax∥ ≤ ∥A∥∥x∥ (45)
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Condition number (II)

▶ Recall that
x − x̂ = A−1r̂ . (46)

and
Ax = b (47)

▶ Use matrix norm bounds to get

∥x − x̂∥ ≤ ∥A−1∥∥r̂∥ (48)

and
∥A∥∥x∥ ≥ ∥b∥ (49)

▶ Multiply and rearrange to get

∥x − x̂∥
∥x∥

≤ ∥A∥∥A−1∥ ∥r̂∥
∥b∥

(50)

▶ ∥A∥∥A−1∥ is the condition number, denoted by κ(A).
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Condition number (III)

▶ Hence,
∥x − x̂∥
∥x∥

≤ κ(A)
∥r∥
∥b∥

(51)

▶ The condition number is a measurement of the magni�cation of
relative error in residual to the relative error in solution.

▶ The exact condition number can be di�cult to obtain, and rarely
matters. The order of magnitude is what's important.

▶ Condition number can be computed with cond for dense matrices or
estimated with condest for sparse matrices in Matlab.
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Summary of Matlab commands in this lecture

name description usage

lu compute LU decomposition [P, L, U] = lu(A)

chol compute Cholesky factor R = chol(A)

\ solve a system of linear equations x = A\b

spdiags create a sparse matrix A = spdiags([e, e, e],

-1:1, n, n)

speye sparse identity matrix I = speye(n,n)

norm compute vector norm l = norm(x, 2)

condest estimate condition number kappa = condest(A)
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