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Systems of Linear Equations

This lecture is on solving
Ax=b (1)
Unless otherwise stated,
» Ais an n-by-n matrix,
> x, b are vectors of size n.
> A, b given, x unknown.
Topics:
» Diagonal systems
Triangular systems
Gaussian Elimination and LU decomposition

>
>
» Cholesky Decomposition
» Sparse Matrices

>

Error and condition number
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Introduction and notation

Problem in matrix form:

a1 a2 - aia| [x by
a1 a2 -+ daxnp X2 by

= (2)
dnl dpn2 -°° dnn Xn bn
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Diagonal systems

The simplest of all matrix equations; n independent linear equations.

41,1 0 s 0 X1 b1
0 a2 - 0 X2 b2
: = (3)
0 o0 ann| |Xn by
Solution:
Vi, xj = — (4)
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(Upper) Triangular systems

Triangular systems are only slightly more complicated than diagonal
systems.

a1 aip - ain-1 ai,n X1 b
0 ax2 -+  a@n-1 an X2 by

0 0 **+ dp—1,n-1 @dn—1,n Xn—1 bn_1

| 0 o .- 0 ann | | xn | | bn |

Solution: start from last equation
by

dan.n

Xp =

Iteratively update from n — 1 to 1 in reverse order (backward solve):

. — by — 27:k+1 ak jXj (7)
k ak k
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(Lower) Triangular systems

Lower Triangular Systems are similar to Upper triangular systems

[ a1,1 0 0 0 i X1 b1
a1 ao 0 0 X2 by
. . — (8)
ap—11 @n—12 - an—1n-1 O Xn—1 bn—1
| an1 an2 e dn,n—1 ann| [ Xn | L by i

Solution: start from first equation

b
X] = — 9
1= (9)

Iteratively update from 2 to n in forward order (forward solve):
k—1
bk — 3271 akjXj

= 1
Xk 2k (10)
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Gaussian Elimination

Finally, we consider general matrices and have Gaussian Elimination

a1 alp v arn—1 ai,n X1 by
a1 a2 - ap-1 an X2 by
. . . . — (11)
dn—1,1 ap—-12 -°° dn—1,n—1 @n—1n Xn—1 bn_1
L 4n1 an2 - dn,n—1 dnn | [ Xn | L bn ]

Solution: transform to upper triangular system. First step, for i > 1:
ai; = aij — (ai1/av1)ar (12)

and

b; = b,' — (a,-,l/aljl)b,- (13)

if j =1, aj1 becomes assigned to zero.

We get the system of equations on the following page:
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Gaussian Elimination (II)

_31,1 a1,2 s a1,n—1 a1.n X1 by
0 3/2,2 e aé,n—l a/2,n X2 é
o i 5 = (14)
0 32—1,2 T a:'l—l,n—l 3;7—1,n Xn—1 o1

L 0 32,2 a;,nfl a;,n 4L X L b;1 i

Repeat the process for the system of equations with aL/- and b/ (ignore the
blue components)

» Review from Linear Algebra
» We focus on how to use computers to carry out this algorithm.
» We will discuss some numerical issues that arise from this algorithm.

> We will also generalize it to make it more stable.
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LU decomposition

Recall Gaussian Elimination where we transform the following system to a
triangular system:

a1 a2 -t aip—1 ai,n X1 b1
a1 ao o axp—1 a n X2 bo
. . . . — (15)
ap—1,1 a@n—12 *°° a@n—1n—1 an—1,n| |[Xn—1 bn—1
L 9n1 an?2 ce dnn—-1 dnn | [ Xn | L by i

» LU decomposition expresses the above procedure as a matrix.

» Hence, it factors the matrix A into an lower triangular matrix L and an
upper triangular matrix U such that A= LU.
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LU decomposition (11)

Recall Gaussian Elimination:

a1 alp vt arp—1 ai,n X1 by
a1 a2 ce a2 n—1 azn X2 by
. . . — (16)
ap—11 an—12 -°° a@n—1n—1 an—1,n| |[Xn—1 bn—1
L 9n1 an2 - dnn—1 dnn | [ Xn | L bn ]

Let /i1 = (ai1/a1,1). Then,

af-,j =ajj— /,"1317j (17)

This is a linear combination of matrix entries, hence
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LU decomposition (I1)

Let M; be defined as

[ 1 -+ 0 0]
—hy 1 -~ 00
: : A (18)
—~lpg1 O - 10
| —fp1 0 - 0 1)
Then, M; A produces
(@11 a12 -+ a1n-1 ain |
0 a/2,2 e 3/2,an al2,n
0 : . : : (19)
0 a:;—1,2 a;1—1,n—1 a;;—lm
L0 a, o @,y ah, |
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LU decomposition (1V)

Repeat the procedure from the previous slide for My, Ms, ..., M,_1. Then,

Mp_1Mp_o--- MoMiA=U
where U is upper triangular.
Inverting each M; matrix gives us

—15,s—-1 -1
A= MMyt ML U

Last question/obstacle: What is M1?
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LU decomposition (V)

What is I\/ll-_l? Recall that

.y 1 - 0
= 22
~lh1 0 o 1

To invert, find a matrix which cancels out the terms in the lower diagonal.

1 0 - 0
[V (23)
i 0 - 1

You can verify this fact for yourself.
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LU decomposition (V1)

Product of L = M *My - - MY

b1 1 - 0
MM ML = :’ L (24)
/n,l ln,2 e 1

Hence, the Gaussian elimination process produces both L and U, where
A= LU. Then, given Ax = b our algorithm is as follows:

1. Compute A= LU.
2. Solve Ly = b, for y
3. Solve Ux =y.
What is the purpose of LU when we already have Gaussian Elimination?

» Multiple b's: Can compute A = LU once, then use the more efficient
forward /backwards solves on each b vector.
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Partial Pivoting
So far, we have assumed that a; ; are nonzero. What if we have a; ; = 07
01 X1 o bl
5o (2] - 12 2
Clearly, x; = by, and x» = by. But LU will break down in the first step.

Solution: interchange (permute) rows 1 and 2.

b 312 12 =

Interchange rows, but not columns — partial pivoting.
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Partial Pivoting (I1)

Key idea of partial pivoting: At each stage, interchange the rows to get the
largest pivot:

(@11 @12 -+ a1 ain
0 a,2,2 e a/2,n—1 al2,n
0 S : : (27)
0 a;1—1,2 T 3;1—1,n—1 32—1,n

L 0 317,2 Z,nfl a;1,n |

Here, we would pick the largest pivot from a;, (2 </ < n) in absolute
value, and interchange the rows.

» Recall that L = I\/Ifll\/l;1 . I\/l;_l1 in GE without PP, in other words,
LY =My 1My My

» In GE with PP, B= M, _1Pp_1... MaP, M1 Py
> Next, we need to show that B = L~ 1P.
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Partial Pivoting (I11)

» Recall that B = M,_1Py_1... MoP,M;P;.
» Define
> A:/Infl = M,,,l,
> M, 2 =P, 1M, 2P,
> M, 3 =P, 1PaoM,_1PT ,PT | etc.
> Then, we have B = /\N/In,1 I\N/ln,Q ce Mlpn,1 P,,,z e P1.
» M; remain lower-triangular, because only diagonal entries and zero
entries get permuted.

» Hence, we have shown that B can be written as L1 P.
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Partial Pivoting (1V)

» Since we have shown that B = L1 P, then we have BA = U or
equivalently PA = LU.
» In Matlab, use [P, L, U] = 1lu(d)
> There are other options; such as no pivoting, complete pivoting, etc.

v

We are done with general linear equations, just a few more notes:

» We cannot demonstrate stability for partial pivoting or scaled partial
pivoting, only with complete pivoting.

» Complete pivoting will find the largest entry among the entire
submatrix rather than just the entries of the column in question, and
will interchange a pair of both rows and columns.

» However, in practice, most matrices are stable with just partial
pivoting.

> Additionally, some matrices that arise in practice require no pivoting.
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Cholesky Decomposition

> So far, we have looked at general matrices, where no special structure
exists.

> In practice, many matrices are symmetric positive definite (SPD). The
Cholesky decomposition factorizes SPD matrices into

A=RRT (28)

where R is triangular.
> Note that if n =1, this becomes a scalar square root.

> Symmetric positive definiteness is the matrix analogue of a positive
real number.

» Cholesky decomposition finds the "square root".

Ray Wu (University of Toronto) Lecture 3: Systems of Linear Equations January 25, 2023 19/34



Review: Symmetric positive definite matrices

A matrix A is symmetric positive definite (SPD) if

> A= AT (symmetry)

» for all nonzero vectors x, xT Ax > 0. (positive definite)
Where do SPD matrices arise? In this course:

> least squares

P convex optimization
Beyond this course:

» numerical methods for partial differential equations (PDEs)
> Finite Difference Methods
> Finite Element Methods

Many applications, such as structural engineering, computer graphics,
finance, etc.

Ray Wu (University of Toronto) Lecture 3: Systems of Linear Equations January 25, 2023 20 /34



Cholesky Decomposition

» We can consider the Cholesky decomposition as a symmetric LU
decomposition. Let
A=LU (29)

where A is symmetric positive definite.
> \We can factor out the diagonal to get

A= LDU (30)
» Due to symmetry, U = L7 and hence
A=LDLT (31)

> Let R =D'Y2LT, then, A= RTR.
» D1/2 is elementwise square root.

» NO permutations required!
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Cholesky Decomposition example

» Consider a 2x2 matrix
[311 312] _ [fll 0} [rll le] (32)
a1 axn rn1 | |0 m

» From the a1 entry we get a3 = r?;, hence ri; = \/ar1.
> From the a;» entry we get a;» = ri1ra, hence r»; = a1p/r1, with r3
already known.

» Full algorithm on p. 116 of Ascher & Greif.
» in Matlab, use R = chol(A) to calculate the Cholesky factor.
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Sparse matrices and fill-in

> Many matrices that arise from practical applications are sparse
> You will see one in assignment 2.

> Large size, but comparatively few nonzero entries. For example, a
tridiagonal matrix has n? entries but 3n — 2 nonzero entries.

> Sparse matrices are useful because they can be solved more efficiently
than non-sparse matrices (e.g. tridiagonal solvers, banded LU, etc).

» There are many reasons to not invert a matrix (conditioning, time,
etc), but one of the main reasons is that inverting a sparse matrix can
destroy the sparsity structure.
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Sparse Matrix Example

> Given a vector x, compute a new vector with the entries being the
average of itself and neighbouring entries.

» This can be represented as a linear transformation, hence, a matrix T.

» The computation can be represented by a sparse matrix:

1/2 1/2 0 0 ... 0
1/3 1/3 1/3 0 ... 0
T=1: : : A (33)
0 ... 0 1/3 1/3 1/3
0 ... 0 0 1/2 1/2]
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Sparse Matrix Example continued

» Plot of x and Tx:

1 -

0.8 r

0.6

04 r

0.2 r

0 L L L Il
0 10 20 30 40

> Matlab script on the website.
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Condition number and error propagation

» Consider again solving

Ax =b (34)
» Denote exact solution as x, computed solution as X. We want to
estimate
||X B XH (35)
[l

» Condition number: error amplification.
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> Let X denote the computed solution. Then, the residual is defined as

F=b— AX. (36)
> Additionally, note that b = Ax, so
F=Ax — AX = A(x — %) (37)
P> Rearrange to get
x—&=A"1p. (38)
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Review: Vector and matrix norms

Norms: length of a vector. Three requirements:

» Nonnegativity:
X[l =0, [Ix] =0iff x=10 (39)

» Absolute Homogeniety:
|lax|| = |a||x|| for « € R (40)
» Triangle inequality:

[+ y Il < lIx[l -+ llyll- (41)
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p (or L,) norm

Let p > 1 be a real number. Then the p-norm for vectors is defined as

Il = (32 bal?) (42)

Common values of p:
» p = 2: Euclidian norm (conventional "distance" norm).
» p = 1: Manhatten norm (taxicab norm)
» p = 0o: max-norm.

» p=0: "hamming distance" (number of differences between vector
entries)

» Not really a norm.
> Used in applications of machine learning, statistics, etc.
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Matrix norms

Two types of matrix norms you should know:

» Element norms: norms based on the entries of the individual elements.
Example: Forbenius norm:

i a,%,' (43)

ij=1

1AllF =

treats the matrix as a vector stored in a different arrangement.

» Induced (operator) norms: norms based on viewing the matrix as an
operation to a vector.

> Instead of viewing A as a matrix, view A as a function/operator,
where Ax is the output and x is the input.
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Operator norms

Since we are only considering the input x and the output Ax, we define the
operator norm as the "maximum stretching factor" between x and Ax.

IAx|
Al = max L = max [A4x] (44)

» Which vector norm for Ax, which vector norm for x not defined.
» Can pick any true vector norm.
Submultiplicativity:
[Ax]| < IA]l|x| (45)
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Condition number (II)

» Recall that
x—%=A"1p (46)
and
Ax =b (47)
» Use matrix norm bounds to get
I = %[ < [IA7H]1]171 (48)
and
IAlIx[[ = [15]] (49)

» Multiply and rearrange to get

Ix = X[l _
X

> ||A||[[A~}]| is the condition number, denoted by x(A).

Il
< [lAl[ljA~ 1||||b|| (50)
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Condition number (I11)

» Hence,
[x — Xl 1Irll

=g Gy

» The condition number is a measurement of the magnification of
relative error in residual to the relative error in solution.

» The exact condition number can be difficult to obtain, and rarely
matters. The order of magnitude is what’s important.

» Condition number can be computed with cond for dense matrices or
estimated with condest for sparse matrices in Matlab.
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Summary of Matlab commands in this lecture

name description usage
lu compute LU decomposition (P, L, U] = 1u(d)
chol compute Cholesky factor R = chol(4)
\ solve a system of linear equations x = A\b
spdiags create a sparse matrix A = spdiags([e, e, el,
-1:1, n, n)
speye sparse identity matrix I = speye(n,n)
norm compute vector norm 1 = norm(x, 2)
condest estimate condition number kappa = condest(4)
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