Lecture 2: Nonlinear Equations CSC 338: Numerical Methods

Ray Wu
University of Toronto
January 18, 2023

Root-finding

- Root-finding is the algorithmic process of finding zeros of a function

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

- We denote the root of interest to be x^{*}.
- Generally, x can be vectors, but in this section, x will be a scalar.
- Assume that f is continuous.

One-variable nonlinear equations

Why start with nonlinear equations?

- Linear equations are too simple

$$
\begin{equation*}
f(x)=a x+b=0 \tag{2}
\end{equation*}
$$

solution is given by $x=-b / a$.

- This kind of formula is known as a direct solution.
- Generally, we have direct solutions for linear equations, but not for nonlinear equations.
- Systems of linear equations are more complicated, later topic.
- Specific algorithms covered:
- Bisection method
- Fixed point iteration
- Newton's method
- Secant method

Iterative methods

- Nonlinear equations can be arbitrarily complex
- Exact formulas such as $x=-b / a$ is not realistic.
- Hence, we need to use iterative methods.
- Iterative methods start from an initial guess x_{0} and compute a sequence of iterates $x_{1}, x_{2}, x_{3}, \cdots$, eventually reaching an approximation of desired accuracy.

Terminating an iterative procedure

We do not expect the procedure to compute x^{*} exactly. Hence, we use "close enough" criteria.

- absolute error of iterate:

$$
\begin{equation*}
\left|x_{n}-x_{n-1}\right|<\text { atol } \tag{3}
\end{equation*}
$$

- relative error of iterates:

$$
\begin{equation*}
\left|x_{n}-x_{n-1}\right|<x_{n} \text { rtol } \tag{4}
\end{equation*}
$$

- function value:

$$
\begin{equation*}
\left|f\left(x_{n}\right)\right|<\mathrm{ftol} \tag{5}
\end{equation*}
$$

Desirable algorithm properties

How to compare algorithms?

- Efficient: the fewer function evaluations, the better
- Robust: fails rarely, if ever.
- Other information: function derivative, etc.
- Smoothness: the less requirements, the better.
- Generalization: Does the process generalize to many variables?

Rates of convergence

Linear, superlinear, quadratic.

- Linear convergence: There exists some constant $\rho<1$ such that

$$
\begin{equation*}
\left|x_{k+1}-x^{*}\right| \leq \rho\left|x_{k}-x^{*}\right| \tag{6}
\end{equation*}
$$

for large enough k.

- superlinear convergence: There exists a sequence $\rho_{k} \rightarrow 0$ such that

$$
\begin{equation*}
\left|x_{k+1}-x^{*}\right| \leq \rho_{k}\left|x_{k}-x^{*}\right| \tag{7}
\end{equation*}
$$

- quadratic convergence: There exists a constant M such that

$$
\begin{equation*}
\left|x_{k+1}-x^{*}\right| \leq M\left|x_{k}-x^{*}\right|^{2} \tag{8}
\end{equation*}
$$

You should understand these definitions.

A representative problem

Consider finding the root of

$$
\begin{equation*}
f(x)=\exp (-x)-x^{3} \tag{9}
\end{equation*}
$$

We know that the derivative is negative:

$$
\begin{equation*}
f^{\prime}(x)=-\exp (-x)-3 x^{2}<0 \tag{10}
\end{equation*}
$$

hence, there can be at most one root.

Bisection method

Assume we have $a, b>a$, and $f(a)$ and $f(b)$ have opposite signs.

- A continuous analogue to binary search.
- By intermmediate value theorem, there must be an x^{*} between a and b such that $f\left(x^{*}\right)=0$.
- Divide-and-conquer strategy:
- At each iteration, evaluate $f((a+b) / 2)$.
- Choose the bracket that ensures both ends have opposite signs.
- repeat until bracket is small enough or function value is small enough.

Suppose we want to find a zero of $f(x)=\exp (-x)-x^{3}$.

- Bracketing:
- Observe that $f(0)=\exp (0)-0^{3}=1$, therefore, pick $a=0$
- Observe that $f(1)=\exp (-1)-1=1 / e-1<0$, therefore, pick $b=1$

Fixed-point iteration

Given $f(x)$, construct a function $g(x)$ such that when $f(x)=0, g(x)=x$.

- Some examples:

$$
\begin{align*}
& g(x)=x-f(x) \tag{11}\\
& g(x)=2 f(x)+x \tag{12}\\
& g(x)=x-f(x) / f^{\prime}(x) \tag{13}
\end{align*}
$$

After determining $g(x)$, we compute $x_{i+1}=g\left(x_{i}\right)$.
Many questions arise, such as:

- Is there a fixed point?
- If there is, is the fixed point unique?
- Does the sequence of iterates converge?
- If yes, at what rate?
- If it doesn't converge, does that mean no root exists?

Fixed point theorem

- Suppose we have for two values a and b :

$$
\begin{equation*}
g(a)>a \text { and } g(b)<b \tag{14}
\end{equation*}
$$

- Apply the intermediate value theorem to show that a fixed point exists.
- If g is also differentiable and there is some $\rho<1$ such that

$$
\begin{equation*}
\left|g^{\prime}(x)\right| \leq \rho \quad \forall x \in[a, b] \tag{15}
\end{equation*}
$$

then the root x^{*} is unique.

- Assume that there exists another root y^{*}, then

$$
\begin{equation*}
\left|x^{*}-y^{*}\right|=\left|g\left(x^{*}\right)-g\left(y^{*}\right)\right|=\left|g^{\prime}(z)\left(x^{*}-y^{*}\right)\right| \leq \rho\left|x^{*}-y^{*}\right| \tag{16}
\end{equation*}
$$

- If $\rho<1$, then y^{*} must equal x^{*}.

Rate of convergence of fixed point iteration

- Since we know there is a unique solution, we can show that

$$
\begin{equation*}
\left|x_{k+1}-x^{*}\right|=\left|g\left(x_{k}\right)-g\left(x^{*}\right)\right| \leq \rho\left|x_{k}-x^{*}\right| \tag{17}
\end{equation*}
$$

- Error reduces to at most ρ of error at previous iterate. Hence, convergence is established.
- Rate of convergence defined as

$$
\begin{equation*}
\text { rate }=-\log _{10} \rho \tag{18}
\end{equation*}
$$

- For bisection, rate of convergence is $-\log _{10}(1 / 2)=0.301$
- For fixed point, depends on ρ and hence g.
- What kind of g should we choose?
- The one that has a small value of ρ. (Ideally, close to zero!)

Newton's method

General idea: Linearize the equations locally, solve the linear equations, and repeat until convergence.

- Linearization: Using Taylor series,

$$
\begin{equation*}
f(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2} / 2+\ldots \tag{19}
\end{equation*}
$$

- Drop the higher-order terms to get linearized equations:

$$
\begin{equation*}
f(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right) \tag{20}
\end{equation*}
$$

- Now, set $f(x)=0$ and solve the linear equation to get

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \tag{21}
\end{equation*}
$$

- repeat until convergence.

Newton's Method and fixed-point iteration

- Newton's Method is a special case of fixed-point iteration.

$$
\begin{equation*}
g(x)=x-\frac{f(x)}{f^{\prime}(x)} \tag{22}
\end{equation*}
$$

- What is ρ ?

$$
\begin{equation*}
g^{\prime}(x)=1-\frac{f^{\prime}(x) f^{\prime}(x)-f^{\prime \prime}(x) f(x)}{\left[f^{\prime}(x)\right]^{2}}=\frac{f^{\prime \prime}(x) f(x)}{\left[f^{\prime}(x)\right]^{2}} \tag{23}
\end{equation*}
$$

- Sub in x^{*} :

$$
\begin{equation*}
g^{\prime}\left(x^{*}\right)=\frac{f^{\prime \prime}\left(x^{*}\right) f\left(x^{*}\right)}{\left[f^{\prime}\left(x^{*}\right)\right]^{2}} \tag{24}
\end{equation*}
$$

- As $x \rightarrow x^{*}, g^{\prime}\left(x^{*}\right) \rightarrow 0$.
- At least superlinear convergence, as long as $f^{\prime}\left(x^{*}\right)$ is nonzero

Convergence of Newton's method

- Taylor expand f around x_{k} :

$$
\begin{equation*}
f\left(x^{*}\right)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x^{*}-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(\xi_{n}\right)\left(x^{*}-x_{k}\right)^{2} \tag{25}
\end{equation*}
$$

- Since x^{*} is the root, sub in $f\left(x^{*}\right)=0$, divide by $f^{\prime}\left(x_{k}\right)$, rearrange:

$$
\begin{equation*}
\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}+\left(x^{*}-x_{k}\right)=-\frac{f^{\prime \prime}\left(\xi_{n}\right)\left(x^{*}-x_{k}\right)^{2}}{f^{\prime}\left(x_{k}\right)} \tag{26}
\end{equation*}
$$

- Recall that $x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$. Hence,

$$
\begin{equation*}
\left(x^{*}-x_{k+1}\right)=-\frac{f^{\prime \prime}\left(\xi_{n}\right)\left(x^{*}-x_{k}\right)^{2}}{f^{\prime}\left(x_{k}\right)} \tag{27}
\end{equation*}
$$

- quadratic rate of convergence, if $f^{\prime}(x) \neq 0, f^{\prime \prime}(x)$ is continuous, and the iterates are close enough to the root.

Secant method

Newton's method relies on being able to evaluate $f^{\prime}(x)$. Secant method avoids this.

- Instead of using derivative, start at two initial points x_{0} and x_{1}, and compute the linearization.

$$
\begin{equation*}
f(x)=f\left(x_{1}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} x \tag{28}
\end{equation*}
$$

- Solving $f(x)=0$ gives the update

$$
\begin{equation*}
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} \tag{29}
\end{equation*}
$$

- Relies on both previous estimates - two-step method.
- Convergence is superlinear.
- Intuition: approximation of derivative is more and more accurate.
- Proof: beyond the scope of this course

Multiple roots

A multiple root is when $f(x)=0$ and $f^{\prime}(x)=0$.

- Newton and Secant method become linearly convergent.
- Example: $f(x)=x^{m}, m>1$.
- Writing down the Newton update, we get

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=x_{k}-\frac{x_{k}}{m}=\frac{m-1}{m} x_{k} \tag{30}
\end{equation*}
$$

- Clearly, this is linear convergence to the root $x^{*}=0$, with $\rho=\frac{m-1}{m}$.

Summary - bisection method vs Newton's method

Bisection Method:

- Efficient? no - convergence is only linear
- Robust? yes - never fails
- Other information? none required
- Smoothness requirements? Minimal
- Generalizes easily? No

Newton's Method:

- Efficient? yes - quadratic convergence
- Robust? no - sometimes fails
- Other information? need function derivative
- Smoothness requirements? Some requirements.
- Generalizes easily? Yes

