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About this course

▶ Numerical Methods (aka Numerical Analysis, Scienti�c Computing)
has a long history, predating modern digital computers.

▶ Many of the algorithms we will learn in this class were derived on pen
and paper.

▶ The goal of this course is not to just focus on how the algorithms
work, but also to emphasize the requirements on the input,
interpreting the program output, etc.
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Teaching Team

▶ Instructor: Ray Wu (myself)
▶ O�ce Location: DH-3097D
▶ O�ce hours: Wednesday 13-14, after class

▶ Tutorial TAs:
▶ Akira Takaki (Wednesday 10-11, MN 2100)
▶ Harshit Gupta (Thursday 11-12, DH 4001)

▶ other TA: Mohan Zhao
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The �rst lecture

▶ Logistics (syllabus)

▶ Intro to numerical methods

▶ Intro to �oating point systems
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Overview of course

▶ We will have nine topics.
▶ Intro & Floating-point systems
▶ One-variable nonlinear equations
▶ Systems of linear equations
▶ Least squares
▶ Eigenvalues
▶ Systems of nonlinear equations and optimization
▶ Function interpolation
▶ Numerical integration
▶ Iterative methods for systems of linear equations

▶ In general, 2 lectures per assignment (except the last assignment).

▶ Not necessarily one topic per lecture. If we end early, use time for
review or more topics (none of which will be tested).
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Logistics

▶ Course Website: http://www.cs.toronto.edu/~rwu/csc338/
▶ Lecture Slides and Assignments posted here.

▶ Piazza discussion board:
https://piazza.com/class/lch0r4yvhw76xn
▶ If you have questions about the course content
▶ For private questions, post a private note on Piazza or e-mail me.
▶ When emailing, use [CSC338] in the header to ensure your email gets

read.

▶ Handin assignments using MarkUs. We will ask for both writeup and
code.

▶ In general, we are not marking your code, but we will be emphasizing
on the interpretation of your code's output.
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Grading

▶ Five assignments: 50% total, equally weighted.

▶ Midterm: 10%. On �rst two assignments.

▶ Final exam: 40%, cumulative, scheduled by the university.
▶ Must receive ≥40% on �nal to pass course.
▶ Do not make travel plans before the �nal exam schedule is released! I

can't give you an earlier exam time.

▶ Everything is to be done individually

▶ If you miss the midterm, the weight will go to the �nal exam.

▶ If you score better on the �nal, it will replace your midterm grade.
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Assignments

▶ You are free to use either Matlab or Python.
▶ The assignments are probably easier to complete in matlab, simply

because matlab is designed more for numerical computation.

▶ A combination of maths (derivations) and programming.

▶ Start the assignments early. Ask for help on piazza if you get stuck.

▶ You are not allowed to import any package(s) that will trivialize the
assignment question(s).
▶ If you are unsure, ask.
▶ If you use any such packages, you will probably get a zero.
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Asking for help

These are the places you can get help:

▶ Piazza

▶ Instructor o�ce-hours

▶ Tutorials

▶ Your classmates (make friends with your neighbour)

▶ Textbooks

▶ The general web (most topics are covered in many places, e.g.
Wikipedia)

Do not pass o� work that you claim to be your own, and do not allow
yourself to be copied o� from. Both are equally serious academic o�enses
(AO), and UofT takes AOs very seriously.
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Midterm and Final

▶ You will likely need a calculator on the �nal, but not the midterm.

▶ You are permitted one on both exams anyways (scienti�c,
non-programmable)

▶ You are allowed one sheet of notes, double-sided, either typed or
handwritten is �ne.
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Prerequisites

▶ Calculus up to integral calculus (Calc 2).
▶ We will use some Calc 3 for derivation of multi-dimensional algorithms,

but they will be covered as they come up.

▶ Introductory linear algebra (you should know what matrices and
vectors are, how multiplication between them works, solving linear
equations, etc)

▶ Introductory programming

▶ Basic algorithm analysis (Big-O).
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History of Numerical Methods

Figure 1: Babylonian clay tablet c. 1800-1600 BCE. approximating
√
2 to 6

decimal digits, the greatest known computational accuracy in the ancient world.
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Numerical Methods

In applied mathematics, we frequently use continuous variables. For
example, the temperature in this room or a person's height can be
measured to arbitrary precision, hence, a continuous variable.

▶ This causes di�culties in computation, because we have continuous
models and a discrete computing environment.
▶ errors are inevitable.

▶ Approach the study of numerical methods with the study of errors.
▶ When you know the error, you know a lot about the computed solution.
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Absolute vs Relative Error

▶ If a scalar quantity u′ approximates u, then

▶ The absolute error is given by

|u − u′| (1)

▶ The relative error is given by

|u − u′|
|u|

(2)

If |u| = 0, then the relative error is not de�ned.

▶ Generalizable to anything that has norms � we'll get into norms later
in the course.
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Types of error

▶ Model error

▶ Truncation error

▶ Discretization error

▶ Roundo� error
▶ Catastrophic cancellation
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Example: Model error

What is the volume of the earth? Model the earth as a sphere:

V =
4

3
πr3 (3)

What is the (obvious) problem that arises?

▶ Earth is not a perfect sphere � it is wider around the equator due to
centrifugal forces. (assumption doesn't hold).

▶ Not the emphasis/scope of the course, but important for
industry/practical applications

Even if you compute the model perfectly, it will be limited by any
simplifying assumptions that you have made.
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Impacts of model error

▶ Prior to 2008, �nancial derivatives (contracts for buying/selling assets
such as stocks, at predetermined prices) did not take into account
default risk � that is, the risk that either the buyer or seller would
default (not honor the contract).

▶ This contributed in part to excessive lending, which in part ultimately
led to the �nancial crisis of 2008.

▶ Subsequently, mathematical models took credit risk into account.
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Truncation Error

Computing the constant e ≈ 2.718... with the in�nite series

e =
∞∑

n=0

1

n!
(4)

▶ Cannot sum the series forever.

▶ Have to end somewhere.

First n terms Error

4 5.16e-02
5 9.95e-03
6 1.62e-03
7 2.26e-04
8 2.79e-05

Table 1: Table of errors for n = 4, 5, 6, 7, 8 terms in the series.
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Discretization Error

Consider computing the derivative of f (x) = sin(x) at x = x0 = 0.4 with
�nite di�erences:

f ′(x0) ≈
f (x0 + h)− f (x0)

h
(5)

h Error

1 3.25e-01
1/2 1.33e-01
1/4 5.80e-02
1/8 2.67e-02
1/16 1.28e-02

Table 2: Table of errors of computing derivative of sin(x) at x0 = 0.4

▶ Errors decrease predictably: the error is halved when h is halved

▶ Error is O(h).
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Taylor series

▶ We will use Taylor series often in this course:

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + . . . (6)

▶ Used to derive the approximation on the previous slide, by isolating
the term f ′(x) and dropping higher order terms.

▶ Generally we take h to be small, so the higher order terms in h are
even smaller and can be assumed to be approximately zero.
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Order notation

▶ You may have seen already seen big-O notation: e.g. a sorting
algorithm on an array of size n can be O(n log n).

▶ We can think of them as an ordering:

O(n2) > O(n log n) > O(n) > O(log n) (7)

▶ We use big-O notations in two ways in numerical methods: the above
way and use to describe the error as a function of a small parameter,
typically denoted as h.

▶ h is generally chosen to be much smaller than 1. Hence, the ordering
is reversed:

O(h) > O(h2) > O(h3) > O(h4) (8)

▶ In both cases, it's more desirable for the algorithm to be classi�ed
closer to the right side (smaller).
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Roundo� error

Easiest to illustrate with a code snippet:

>> x = 0.1

>> y = 0.2

>> z = 0.3

>> z-y-x

-2.7755575615628914e-17

▶ not zero

▶ unpredictable

▶ numbers not represented exactly on computer

▶ focus of next section
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Floating point systems

Representation of numbers in scienti�c notation:

−1.2345× 10−14

▶ sign: −
▶ mantissa: 1.2345

▶ base: 10

▶ exponent: −14

normalized representation: 1 ≤ mantissa < base
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General �oating point representation

De�ned by (β, t, L,U)

▶ β: base

▶ t: precision; number of digits in mantissa

▶ L, U: lower and upper bounds on exponent.
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Chopping vs Rounding

Suppose precision t = 5, then to represent the number 1.23456 in �oating
point:

▶ Chopping: �(x) = 1.2345

▶ Rounding: �(x) = 1.2346 (5 goes up, 4 goes down in decimal)

Error bounds (maximum possible error):

▶ Chopping: β1−tβe

▶ Rounding: 1
2
β1−tβe .

Relative errors: drop the βe .
Rounding unit:

η =
1

2
β1−t (9)

bound on relative error of �oating point calculations
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Floating point computations

Addition, subtraction, multiplication, division: Using guard digits (extra
digits), exact rounding is achieved. Then if a and b are �oating point
numbers:

�(a ± b) = (a ± b)(1+ ϵ1) (10)

�(a × b) = (a × b)(1+ ϵ2) (11)

�(a/b) = (a/b)(1+ ϵ3) (12)

where |ϵi | ≤ η.
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Algorithm Properties & Problem conditioning

Algorithm properties:

▶ Accuracy � what are the bounds on the error

▶ E�ciency � how fast the algorithm runs

▶ Robustness � does it handle edge cases well, etc.

▶ Stability � if we change the input a little bit, how much does it a�ect
the output?

Problem conditioning:

▶ Ill-conditioned if small change to data gives a large change in the result

▶ Well-conditioned otherwise.

▶ Problem conditioning is independent of any algorithm or �oating point
system.
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Condition Number (κ)

▶ The condition number (κ) is a quanti�cation of the problem
conditioning.

▶ The condition number is always positive and measures how much the
output changes for a small change in the input.

▶ In general, the condition number is measured on a logarithmic scale
(i.e. an increase from 1 to 10 is the same signi�cance as an increase
from 10 to 100).

▶ If the condition number κ is 10k , you may lose up to k digits of
accuracy in your computations.

▶ Next slide we will derive condition number for one-variable functions
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Condition Number of a function

▶ Consider the problem of evaluating a function f (x).

▶ A small change in the input is ∆x

▶ The relative change in the input is

∆x

x
(13)

▶ The relative change in the output is

f (x +∆x)

f (x)
(14)

▶ The condition number is de�ned by

relative change in output

relative change in input
(15)
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Condition Number of a function, part II

▶ Substituting in the relative change in output and input, we get

κ(f ) =

f (x+∆x)
f (x)

∆x

x

=
f (x +∆x)

f (x)
· x

∆x
(16)

▶ Rearrange the fraction:

κ(f ) =
f (x +∆x)

∆x
· x

f (x)
(17)

▶ Take the limit as ∆x → 0, and take absolute value to ensure positivity:

κ(f ) = f ′(x) · x

f (x)
=

∣∣∣∣xf ′(x)f (x)

∣∣∣∣ (18)
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Over�ow, under�ow, NaN

▶ over�ow: when exponent is too large, value stored as ±∞.
▶ fatal: computation cannot meaningfully continue.

▶ under�ow: when exponent is too small, value stored as zero.
▶ non-fatal: if added to another number, computation can continue.

▶ not-a-number (NaN): 0/0.
▶ also fatal
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IEEE standard (double precision)

▶ The standard that almost everyone uses in computing.

▶ binary notation

▶ 64 bits split between:
▶ 1 sign bit
▶ 11 exponent bits
▶ 53 fraction bits.

▶ Extra bit (1+11+53): �rst digit stored implicitly, since it must be one
in normalized scienti�c notation.

▶ machine epsilon: 1
2
21−53 = 2−53 ≈ 1.11× 10−16

▶ You should remember that machine epsilon is around 10−16 in double
precision.
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IEEE single precision

▶ Rarely used these days; artefact from early days of computing.

▶ binary notation

▶ 32 bits split between:
▶ 1 sign bit
▶ 8 exponent bits
▶ 24 fraction bits.

▶ implicit bit present also

▶ machine epsilon: 1
2
21−24 = 2−24 ≈ 5.96× 10−8

▶ We may use it for instructional purposes on an assignment.
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Floating point pitfalls � example 1

Consider computing the following expression, for large x :

y =
√
x + 1−

√
x (19)

>> x = 1e16;

>> y = sqrt(x+1) - sqrt(x)

0.0

▶ computation clearly not correct

▶ subtracting two large numbers of similar size causes large relative error
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Floating point pitfalls � example 1

Instead compute the following equivalent expression:

y =

(√
x + 1+

√
x√

x + 1+
√
x

)
(
√
x + 1−

√
x) =

1√
x + 1+

√
x

(20)

>> y = 1/(sqrt(x+1) + sqrt(x))

5e-09

▶ This is known as the conjugation trick

▶ correct computational result.

Ray Wu (University of Toronto) Lecture 1 January 11, 2023 35 / 38



Floating point pitfalls � example 2

The softplus function is de�ned as

ln(1+ exp(x)) (21)

It is intended to be an approximation to the ReLU function max(x , 0).

>> log(1.0 + exp(700))

700.0

>> log(1.0 + exp(750))

Inf

What happened?
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Floating point pitfalls � example 2

Computing exp(750) caused over�ow.
Alternative formula:

ln(1+ exp(x)) = ln(
1+ exp(x)

exp(x)
exp(x))

= ln(exp(x)) + ln(
1+ exp(x)

exp(x)
)

= x + ln(1+ exp(−x))

Computation:

>> 750 + log(1 + exp(-750))

750.0

Ray Wu (University of Toronto) Lecture 1 January 11, 2023 37 / 38



Error accumulation

▶ In general, we cannot avoid linear roundo� error accumulation:

En ≈ c0nE0 (22)

▶ An exponential error growth is usually problematic:

En ≈ cn
1E0 (23)

for some c1 > 1.
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