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1. Introduction

The problem of finding optimal deep learning architectures has recently been automated by
neural architecture search (NAS) algorithms. These algorithms continually sample opera-
tions from a predefined search space to construct neural networks to optimize a performance
metric over time, eventually converging to better child architectures. This intuitive idea
greatly reduces human intervention by restricting human bias in architecture engineering
to just the selection of the predefined search space (Elsken et al., 2019). Although NAS has
the potential to revolutionize architecture search across many applications, human selection
of the search space remains a security risk that needs to be evaluated before NAS can be
deployed in security-critical domains. While NAS has been studied to further develop more
adversarially robust networks through addition of dense connections (Guo et al., 2020),
little work has been done in the past to assess the adversarial robustness of NAS itself. In
this project, we are focused on a particular REINFORCE based NAS algorithm known as
Efficient NAS (ENAS) (Pham et al., 2018), which significantly cuts down on the expensive
computational complexity of NAS with reinforcement learning (RL) (Zoph and Le, 2016)
by incorporating weight sharing.

Search phase analysis has shown that computationally efficient algorithms such as ENAS
are worse at truly ranking child networks due to their reliance on weight sharing (Yu et al.,
2019). In Wu et al. (2021), we validated these concerns by evaluating the robustness of
ENAS against data-agnostic search space poisoning (SSP) attacks on the CIFAR-10 dataset.
The domain of ENAS is a macro search space of network operations that form convolutional
neural networks (CNNs), whose construction is determined by how the REINFORCE-based
controller chooses network operations and skip connections. In (Pham et al., 2018), they
define the pre-optimized ENAS search space Ê = {Identity, 3x3 Separable Convolution,
5x5 Separable Convolution, Max Pooling (3x3), Average Pooling (3x3)}. In learning tasks
such as CIFAR-10/100 classification, the resulting networks vary in performance, which the
controller treats as a surrogate reward. The quality of the controller’s decision-making is
affected by not only the system’s hyperparameters, but also the search space itself. We
hypothesize that there are many ways ENAS (and NAS algorithms in general) can still be
improved to produce better networks and be more robust or more efficient.
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2. Related Works

A comprehensive overview of NAS algorithms can be found in Wistuba et al. (2019) and
Elsken et al. (2019), with Chakraborty et al. (2018) summarising advances in adversarial
machine learning including poisoning attacks. NAS algorithms have recently been employed
in healthcare and applied in various clinical settings for diseases like COVID-19, cancer
and cystic fibrosis (van der Schaar, 2020). Furthermore, architectures derived from NAS
procedures have shown state of the art performance, often outperforming manually created
networks in semantic segmentation (Chen et al., 2018), image classification (Real et al., 2019;
Zoph et al., 2018) and object detection (Zoph et al., 2018). In the context of adversarial
attacks, most traditional poisoning attacks involve injecting mislabeled examples in the
training data, which is fairly limited. The expected result is higher prediction error and in
some cases a complete reversal of what the network should be predicting. Some examples
of traditional poisoning attacks have been executed against feature selection methods (Xiao
et al., 2015), support vector machines (Biggio et al., 2012) and neural networks (Yang
et al., 2017). Recent works have been improving ENAS from a pure RL perspective such
as reward modifications and policy optimization. For instance, in I-ENAS (Nagy and Ábel
Boros, 2021) they change the RL training process by modifying the reward of each tested
architecture according to the results based on previous architectures. On CIFAR-10, I-
ENAS reached higher maximum accuracy than ENAS and consistently produced better
architectures, with an accuracy of 95.3%. Policy gradient methods have have made several
breakthroughs in Deep RL. It’s been studied that typical policy gradient methods have
poor sampling efficiency and tend to have larger variance compared to other Q-Learning
methods. REINFORCE is the most elementary policy gradient method, used to train the
ENAS controller. In (Gallo et al., 2020), they modify the training of the ENAS controller
to use Proximal Policy Optimization (PPO) instead of REINFORCE in effort to improve
the sampling efficiency of ENAS. The main difference between traditional REINFORCE &
PPO is that in PPO they compute the loss and update the policy’s parameters achieving
slightly better performance than a controller trained with REINFORCE using fewer sample
architectures.

3. Preliminaries

3.1 Search Space Poisoning (SSP)

Briefly summarized, we developed SSP as a data agnostic poisoning attack on the original
search space ENAS search space E . The idea is to inject precisely designed multiset P of
ineffective operations into E , where we define a poisonous search space as Ê := E ∪ P. In
Wu et al. (2021), we exploited the core functionality of the ENAS controller to sample child
networks from a large computational graph of operations by introducing highly ineffective
local operations into the search space. We first propose multiple-instance poisoning which
increases the likelihood of sampling bad operations by including duplicates of these bad
operations in the search spaces. Through experimental results we discovered that biasing
the search space this way resulted in final networks that are mostly comprised of these
poor operations with error rates exceeding 80%. On the attacker’s behalf, this requires
no a priori knowledge of the problem domain or dataset being used, making this new
approach more favourable than traditional data poisoning attacks. However, we were quick
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to realize for multiple-instance poisoning attacks to perform well it requires overwhelming
the original search space with up to 300 bad operations which results in a ratio of 50:1 of
bad operations per each good operation which is unreasonable. The motivation was then
shifted to reduce the ratio of bad to good operations down to 1:1 or even lower. In (Saxena
et al., 2022), one-shot poisoning attacks were introduced where we reduced the ratio of bad
to good operations to 1:3. We injected just two operations into Ê , (i) Dropout(p = 1) & (ii)
Stretched Convolution (k = 3, padding, dilation = 50), and achieved error rates shooting
up to 90%. In section 4, we hypothesize a Q-Learning like based approach to defend against
both multiple-instance & one-shot poisoning attacks.

3.2 REINFORCE in Neural Architecture Search

The ENAS controller is an LSTM cell which is trained using REINFORCE.

Algorithm 1 Training process for REINFORCE in ENAS

1: procedure REINFORCE
2: C ← controller
3: for each controller epoch:

4: SAMPLE M architectures in each epoch, with a fixed policy.
5: for each child model m ∈M :

6: TRAIN m

7: reward ← calculate the val. accuracy
8: baseline ← calculate mean val. accuracy for previous 5 controller epochs
9: p ← sampled log probabilities of the controller’s decisions

10: h← sampled entropy of the controller’s decisions
11: l ← p × (reward - baseline) + h

12: Perform gradient ascent on l and update C parameters, ω.

13: end
14: end

4. Methods

The LSTM-based controller is powerful, but it’s quite expensive. As we found in Wu et al.
(2021), depending on the hardware, the shared CNN training step was able to consistently
perform anywhere between 3 to 6 iterations per second, resulting in training times ranging
between 20 to 36 hours for 300 epochs. We hypothesize that using some form of Q-Learning
would be more efficient and potentially improve performance.

To formulate the Q-Learning problem, we must discuss the state space S. In tradi-
tional Q-Learning, the state space can be conveniently described as naturally discrete or
discretized. Unfortunately, after removing part or all of the LSTM, the only notion of state
remaining is the parameters ω of the shared CNN. This immediately becomes complicated
because ω is complex and not differentiable in the context of network construction. A poten-
tial work-around is stateless Q-Learning, which black-boxes the states. Therefore, we will
will disregard state in developing the Q-table and we reference Q-values as Q(a) := Q(·, a).
As we use Q-Learning to develop a model representing the combination of operations o
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and their relationships, we henceforth refer to this technique as QENAS: Q-Learning for
Efficient Neural Architecture Search. Below, we describe the two approaches we considered.

4.1 HalfQENAS

We want to measure the quality of a search space with respect to not only the individual
operations o, but also the relationship between each pair (oi, oj) ∈ E . For this purpose, we
use a two-dimensional action space A. The resulting action space is of the order E × E .

Q(a) := Q(·, (oi, oj))

When constructing networks, the controller iteratively selected operation layers o and
stochastically applied skip connections from all previous layers. Previously, the LSTM was
used to produce a probability distribution π from which to sample these new layers o. In
this method, we opt to directly sample using Q-table rows. Note that architectures A are
reduced to operation sets with undirected relationships between each pair (oi, oj). However,
the previously mentioned LSTM is still retained to sample skip connections. We henceforth
refer to this as HalfQENAS and provide the pseudocode in Algorithm 2. In sampling
one operation ô for A, we provide HalfQENAS-Sampling with the current Q-table, a
partial architecture A′. The cumulative vector C sums the values v, which are the (possibly
already soft-maxed) Q-values for each operation. C is further soft-maxed to produce the
probability distribution π from which to sample a new operation. And finally, the LSTM
makes skip connections between all previous layers o ∈ A′ to ô.

Algorithm 2 Sampling o from the Q-Table in Half QENAS

1: procedure HalfQENAS-Sampling(Q, A′, sandwich)
2: D ← dim(Q)
3: C ← 0 ∈ R

D

4: for (o, s) ∈ A′ do
5: v← Q[o]
6: if sandwich then
7: v← softmax(v)

8: C ← C + v

9: π ← softmax(C)
10: return π

The Q-table stores the most extreme (either minimum or maximum) performance per
operation pair (oi, oj). Precisely, Q((oi, oj)) is equal to the most extreme reward R for
any architecture A that includes both oi and oj . For example, in a search space Ex of 3
operations, consider theQ-table below. Q1,2 = 0.63 represents the best reward R∗

1,2 achieved
by any network A that includes both o1 and o2. Q is therefore necessarily symmetric.

Q((oi, oj)) := max
{A|oi,oj∈A}

R QEx =





0.87 0.63 0.77
0.63 0.84 0.84
0.77 0.84 0.88



 (example)

As with ENAS, our training step entails sampling architectures A and training shared
CNN parameters ω. Similarly, REINFORCE is used to train the controller, but instead of
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training the LSTM, we now update the Q-table. This is done by using an element-wise or
vectorized Bellman-style update function f , which updates Q-values to any more extreme
values. Both minimum and maximum are options for f to bootstrap Q. See Algorithm 3.

Algorithm 3 Updating the Q-Table in Half QENAS

1: procedure HalfQENAS-Update(Q, A, R ∈ R, f ∈ {min,max})
2: for oi ∈ set(A) do
3: for oj ∈ set(A) do
4: Q((oi, oj))← f(Q((oi, oj)), R)

5: return Q

4.2 Full Q-Learning

However, neural network architectures are best described as a directed computation graph.
And previously, the Q-table is half-represented (and in-fact symmetric) and the LSTM is
half-trained (refer to our codebase). Close inspection of HalfQENAS reveals a decorre-
lated LSTM whose learned decision-making about skip connections become less meaningful.
Furthermore, it’s inefficient to have to train both a Q-table and a half-baked LSTM.

To remedy this dilemma, we remove the LSTM entirely, and employ an augmented Q-
table as a Q-Learning-based controller. We can now incorporate directed 0-1 relationships
between operations oi, oj . We let the tuple represent (oi, oj , c) the fact that operations
oi, oj ∈ A coexist and that oi has a feed-forward connection to oj if and only if c is true.
The Q(a) := Q(·, (oi, oj , c)) table (now a tensor, not matrix) can be rewritten with an extra
inner-most binary dimension to reflect this. This action space is in the order of E × E × 2.

Algorithm 4 Sampling o from the Q-Table in Full QENAS

1: procedure FullQENAS-Sampling(Q, A′, sandwich)
2: D ← dim(Q)
3: C ← 0 ∈ R

D

4: for (o, s) ∈ A′ do
5: v← Q[o]
6: if sandwich then
7: v ← softmax(v)

8: C ← C + v

9: π ← softmax(C)
10: ô← o ∼ π

11: ŝ← []
12: for (o, s) ∈ A′ do
13: v← Q[o][ô]
14: ĉ← c ∼ πc(v)
15: append(ŝ, ĉ)

16: append(A′, (ô, ŝ))
17: return A′
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Accordingly, with the LSTM removed, the Q-table sampling process now includes both
the operations selected and feed-forward connections made. The procedure for sampling op-
erations hasn’t changed, but instead of returning the probability distribution π, we directly
sample ô ∼ π, and then use it to further sample feed-forward relationships from previous
operations (o, s). Logits for these relationships are captured in v, and used in ĉ ∼ πc(v) to
sample whether or not to make a skip connection, where ĉ ∈ {0, 1}. And finally, because this
FullQENAS-Sampling procedure (described in Algorithm 4) covers the entire sampling
process, the updated partial architecture A′ is returned.

Algorithm 5 Updating the Q-Table in Half QENAS

1: procedure FullQENAS-Update(Q, A, R ∈ R, f ∈ {min,max})
2: for (o, s) ∈ set(A) do
3: if o isn’t the first operation then
4: Q((oprev, o, 1))← f(Q((oprev, o, 1)), R) # OPTIONAL

5: for h, sh ∈ enumerate(s) do
6: Q((A[h].o, o, sh))← f(Q((A[h].o, o, sh)), R)

7: return Q

Similarly, the process for learning the Q-table will also consider directed edges to rep-
resent relationships. For every operation layer o, we first update Q((oprev, o, c = 1)) to
account for the direct connection from the previous layer oprev (if it exists); this is optional.
We then enumerate through all the previous relationships sh ∈ s to update values in the
Q-table corresponding to the 0-1 feed-forward relationship. See Algorithm 5.

5. Experiments

We had initially attempted to defend against one-shot poisoning (?). Unfortunately, because
of the effectiveness of such poisoning attacks, the shared CNN parameters ω were spoiled
beyond repair by exploding gradients that produce NaN’s. One technique we had attempted
to employ was a mechanism to reset ω every time these attacks produced randomly guessing
networks beyond repair, from ?.

Our experiments were therefore set-up to defend against conventional search space poi-
soning (SSP) (Wu et al., 2021). As before, the task is CIFAR-10 classification. We had
chosen our previous experiments with the dropout operation, as dropout was the single
most poisonous but blatant operation we could inject into a search space E . The basic
experiments carried out by Wu et al. (2021) involved adding |E| bad operations as P into E
such that |Ê | = 2|E|. Note here that Ê is a multiset, which allows for duplicated elements.

E :=







3x3 Convs, 3x3 Separable Conv,
5x5 Conv, 5x5 Separable Conv,
Max Pool, Avg Pool







Ê0 := E0 ∪ 6{Dropout(p = 1.0)}

However, we hypothesized that these experiments would require an unreasonable run-
time to produce meaningful results. Instead, we opt to add just a single dropout operation
that brings the search space Ê1 to size |Ê1| = |E|+ 1.
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Ê1 := E0 ∪ {Dropout(p = 1.0)} =















3x3 Convs, 3x3 Separable Conv,
5x5 Conv, 5x5 Separable Conv,
Max Pool, Avg Pool,

Dropout(p = 1.0)















5.1 Ablations

As we had multiple options when building this Q-learning system, we conducted the follow-
ing experiments all on Ê1 for 300 epochs on NVIDIA Quadro RTX 5000/8000 GPUs. Each
experiment’s controller was trained with the REINFORCE algorithm.

1. Baseline LSTM-based controller.

2. HalfQENAS controller with extrema f := max; another with f := min.

3. FullQENAS controller with extrema f := max; another with f := min.

FullQENAS will likely outperform HalfQENAS in both accuracy and efficiency due
to the latter’s use of a decorrelated LSTM for skip connection sampling. However, we were
interested to see how Q-Learning in general would compare to the baseline LSTM.

6. Results

Right off the bat, it’s clear that in terms of classification accuracy, the LSTM-based con-
troller from the ENAS baseline far outperforms our Q-Learning methods. In fact, it achieves
nearly the same performance with Ê1 as it does E0 (Wu et al., 2021). This is somewhat
expected because we were under the impression that our three-dimensional Q-table would
retain more information from the relationships between operations in each architecture A.

Experiment Op Sampling Skip Sampling f Val Error Test Error

Baseline ENAS LSTM LSTM N/A 21.75% 24.87%

HalfQENAS max Q-table LSTM max 54.27% 54.06%

HalfQENAS min Q-table LSTM min 52.87% 56.97%

FullQENAS max Q-table Q-table max 39.26% 42.92%

FullQENAS min Q-table Q-table min 46.29% 51.47%

Table 1: Child network classification errors on CIFAR-10 (lower is better).

Between our Q-learning methods however, it appears that we were right that aiding
Q-Learning with the LSTM for connection sampling in HalfQENAS resulted in lower
performance than FullQENAS due to the decorrelated LSTM. Another observation of
note was that using extreme function f := max tends to be more effective than f := min.
We suspect this is because it doesn’t mean as much how bad the worst performance of an
operation o or pair (oi, oj) is because there will always stochastically bad outliers. While
the same is technically true for the better outliers, they are a better estimation of the true
performance over time with lower variance near the upper performance bound.
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Figure 1: Comparing HalfQENAS and FullQENAS to the ENAS baseline.

6.1 Computational Cost

While the overall outcome disappointingly favours the LSTM-based controller from the
ENAS baseline, Q-Learning did show promise in computational efficiency. All of our ab-
lations performed faster than the baseline, slightly in controller training, and significantly
in shared CNN parameters ω training. In both steps, it appears that the use of the LSTM
directly slows down the sampling and update processes. The minor differences between the
extrema in each variation were likely just due to randomness.

Experiment Op Sampling Skip Sampling CNN Training Speed Controller Training Speed

Baseline ENAS LSTM LSTM 4.78± 1.13 it/s 1.57± 0.41 it/s

HalfQENAS max Q-table LSTM 6.43± 0.79 it/s 1.97± 0.14 it/s

HalfQENAS min Q-table LSTM 6.23± 0.85 it/s 1.92± 0.11 it/s

FullQENAS max Q-table Q-table 10.40± 1.03 it/s 2.46± 0.08 it/s

FullQENAS min Q-table Q-table 9.72± 1.42 it/s 2.49± 0.17 it/s

Table 2: Training step speeds as iterations per second (higher is better).

7. Conclusion

Unfortunately, we were not able to outperform the ENAS baseline with theHalfQENAS or
FullQENAS variations; perhaps simple Q-Learning is just not powerful enough. However,
we still believe that RL-based controllers can still bring good performance to the table,
especially in the context of one-shot poisoning (?) and more complex tasks. At the very
least, we have shown that Q-Learning-based methods are much faster than the LSTM
architecture when training both the shared parameters and controller.

7.1 Source Code

• FullQENAS: https://github.com/rusbridger/ENAS-Experiments/tree/qenas

• HalfQENAS: Commit 6fe528f892b3f4a0f98bd4cef136677bbd945b4f

• Ê1: github.com/rusbridger/enas poisoning/blob/master/P3 001 100.py
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