
Multiplexing I/O
CSC209H5: Software Tools & Systems Programming

Robert (Rupert) Wu
rupert.wu@utoronto.ca

Department of Computer Science
University of Toronto

March 27, 2023

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 1 / 44

https://www.cs.toronto.edu/~rupert/
mailto:rupert.wu@utoronto.ca
https://web.cs.toronto.edu
https://web.cs.toronto.edu
https://utm.calendar.utoronto.ca/course/csc209h5

Lesson Plan

1 Reading From Multiple Sources
2 I/O Models
3 Multiplexing I/O with select()
4 More on Multiplexing
5 Practice with Multiplexing
6 Multiplexing I/O Alternatives

Acknowledgements
Some material was borrowed from Andi Bergen and Karen Reid.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 2 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Section 1

I/O Models for Multiple Sources

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 3 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Reading From Multiple Sources

Assume that a process p0 has any two file descriptors open for reading (e.g., from a
socket, regular file, pipe). Keep in mind that read() is blocking.

p0

fd1

fd2

read()

read()

Figure 1: a process p0 reading from two file descriptors fd1, fd2

If p0 reads from fdX, it will block until fdX has data ready to read. But what if the
other fdY already has data available to be read?

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 4 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Reading From Multiple Sources: Another Perspective

Another way to view the problem is the following.

while true
accept a new connection
for each existing connection

read
write

Which of the system calls might block indefinitely?

read() and accept()

So what happens if there is only one connection?

The program will stall until the one read() has available data.

And what if there are multiple connections?

The program will stall on the first read() that doesn’t have available data and
not be able to operate on existing connections or accept new ones.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 5 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Reading From Multiple Sources: Using fork()

p0 can fork one child process per file descriptor to be read from; each child calls
read on one file descriptor and communicates data to parent over a pipe.

p0

p1

p2

fd1

fd2

pipe1

pipe2

write()

write()

read()

read()

read()

read()

wait()

wait()

Figure 2: using a new server-side pipe()+fork() to handle each read()

Which should be called first: read() or wait()?Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 6 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Reading From Multiple Sources: Using fork() and Sockets

It is common for server software to fork() a new process for each client that
connects: SSH does exactly that.
Performance benefit: Solves the issue of blocking read() calls that we just
discussed.
Security benefit: Each process has its own memory space, making it less likely
for there to be a bug that allows one user to read confidential information that
belongs to another user
Drawback: Each process takes up memory.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 7 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Section 2

I/O Models

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 8 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

I/O Models

Let’s review some different I/O models…

blocking I/O
nonblocking I/O
signal driven I/O (SIGIO)
I/O multiplexing (select and poll)
asynchronous I/O (the POSIX aio_functions)

Most of the time, there are two distinct phases of input operation.

1 Waiting for data to be ready (arriving from the network to the kernel’s buffer).
2 Copying the data from the kernel to the process (from kernel’s buffer to

application’s buffer).

Source
www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch06lev1sec2.html

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 9 / 44

https://www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch06lev1sec2.html
https://utm.calendar.utoronto.ca/course/csc209h5

I/O Models: Blocking

Figure 3: a blocking I/O model; based on Haviland 7.1.6

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 10 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

I/O Models: Non-Blocking

Figure 4: a non-blocking I/O model; based on Haviland 7.1.6

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 11 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

I/O Models: Signal-Driven

Figure 5: a signal-driven I/O model; based on Haviland 7.1.6

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 12 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

I/O Models: Multiplexing

Figure 6: a multiplexiing I/O model; based on Haviland 7.1.6

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 13 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

I/O Models: Asynchronous

Figure 7: an async I/O model; based on Haviland 7.1.6

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 14 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

I/O Models: Comparison

Figure 8: how the models compare in control flow; based on Haviland 7.1.6
Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 15 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Section 3

Multiplexing I/O with select()

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 16 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select()

select() monitors several file descriptors (FDs) simultaneously, without needing to
fork() children processors to handle them.

#include "sys/select.h"
int select(int nfds, fd_set *restrict readfds, fd_set *restrict writefds,

fd_set *restrict exceptfds, struct timeval *restrict timeout);

Arguments include the upper bound of FDs (nfds), sets of FDs to monitor
(readfds, writefds, exceptfds) and a timeout.

This function blocks until some monitored FD is “ready” or when timeout exceeded.
Then, it returns the number of FDs that are ready, or -1 on error.

Motivation
The bottom line is that we never want to block on any calls to read() or accept().

Otherwise, we risk the possibility of waiting forever, even when there might be
data ready to be read from other FDs.
Instead, we write our client/server programs to block only on select().

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 17 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select(): Parameters

int select(int nfds,
fd_set *restrict readfds,
fd_set *restrict writefds,
fd_set *restrict exceptfds,
struct timeval *restrict timeout);

select() takes several arguments…

1 nfds: The (exclusive) upper bound on the FDs that’re monitored.
Set it to just above the highest-numbered FD of interest
If you’re interested in FDs 3, 9, 50, let nfds be 51.

2 readfds: set of FDs to monitor for reading.
3 writefds: set of FDs to monitor for writing.
4 exceptfds: set of FDs to monitor for exceptions.
5 timeout: how long we’re willing to wait for a given FD to be ready.

More About Exceptions
www.gnu.org/software/libc/manual/html_node/Out_002dof_002dBand-Data.html

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 18 / 44

https://www.gnu.org/software/libc/manual/html_node/Out_002dof_002dBand-Data.html
https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select(): Readiness

select() blocks until some monitored FD is “ready”. What does that mean?

Ready for Reading (readfds)
a FD is ready for reading when read() can be called once without blocking; this
happens on socket errors, or under the following condictions:

there is data in the receive buffer to be read;
end-of-file state (EOF) is detected on the FD;
the socket is a listening socket and there’s a pending connection.

Most of the time, we are interested in monitoring FDs in readfds.

Ready for Writing (writefds)
FD is ready for writing if there’s space in the write buffer or a pending socket error.

Ready for Exceptions (exceptfds)
In the TCP protocol, some data is urgent, so the receiver should process it
immediately outside the buffer stream. a FD can have an exception condition when it
has this “out-of-band” data.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 19 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select(): Readiness is Level- or Edge-Triggered

When is an FD ready? In the following scenarios:

1 Level-triggered: when an operation (e.g. read) won’t block; or
2 Edge-triggered: when there is new action on the FD since the last check.

select() is level-triggered: if you don’t read everything, select() will keep telling
you that the FD is ready

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 20 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select(): Descriptor Sets

#include "sys/select.h"
#define __FDS_BITS(set) ((set)->__fds_bits)
typedef struct { // for POSIX/Berkeley/BSD sockets

__fd_mask __fds_bits[__FD_SETSIZE / __NFDBITS];
} fd_set;

File descriptor sets (fd_set’s) are similar to signal sets but typically implemented as
an array of integers where each bit corresponds to a FD.

Implementation is hidden in the fd_set data type (e.g. Windows doesn’t use
integer arrays).
FD_SETSIZE is the number of FDs in the data type.
The argument nfds specifies the number of FDs (counting from 0) to test.

You can use these macro functions to manipulate/operate on fd_set’s:

#include "sys/select.h"
void FD_CLR(int fd, fd_set *set); // remove fd from set
int FD_ISSET(int fd, fd_set *set); // check if fd in set
void FD_SET(int fd, fd_set *set); // add fd to set
void FD_ZERO(fd_set *set); // empty/zero out set

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 21 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select(): Timeout

select() returns when (and blocks until) some monitored FD is “ready” or when
timeout exceeded. The timeout specifies how long we’re willing to wait for a FD to
become ready.

struct timeval {
long tv_sec; // seconds
long tv_usec; // microseconds

};

Depending on a value of the timeval struct, select() might wait.

If timeout is 0, test and return immediately.
If timeout is NULL, wait forever (or until we catch a signal).
Otherwise wait up to specified timeout.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 22 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select(): A Variant

There exists a variant of select() called pselect().

#define _POSIX_C_SOURCE 200112L
#include <sys/select.h>
int pselect(int nmsgsfds, fd_set *__restrict__ readlist,

fd_set *__restrict__ writelist, fd_set *__restrict__ exceptlist,
const struct timespec *__restrict__ timeout,
const sigset *__restrict__ sigmask);

The key differences are as follows:

select() takes a timeval while pselect() takes timespec.
What’s the difference? Their second members (tv_usec, tv_nsec) are in
microseconds and nanoseconds, respectively.

pselect() adds a sigmask argument. If sigmask is a null pointer, this is
equivalent to select().

What does this do? It’s a bit vector indicating which signals to ignore.
Unlikely select(), pselect() cannot modify timeout upon success.

Why would you want to? You can modify timeout to indicate remaining time.

Source: www.ibm.com/docs/en/zos/2.2.0
Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 23 / 44

https://www.ibm.com/docs/en/zos/2.2.0?topic=lf-select-pselect-monitor-activity-files-sockets-message-queues
https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O with select(): Some Examples/Demos

Arnold provided some examples:

[www]/lectures/src/select/selectExample0.c
[www]/lectures/src/select/selectExample1.c
[www]/lectures/src/select/selectExample2.c
[www]/lectures/src/select/muffinman.c

[www] = mcs.utm.utoronto.ca/~209/23s

Chat Room Demo
And of course, chat rooms were a motivating use case..

mcs.utm.utoronto.ca/~209/23s/lectures/src/select/charserver.c
mcs.utm.utoronto.ca/~209/23s/lectures/src/select/charserver2.c
github.com/kirintwn/socket-chat-room

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 24 / 44

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/select/selectExample0.c
https://mcs.utm.utoronto.ca/~209/23s/lectures/src/select/selectExample1.c
https://mcs.utm.utoronto.ca/~209/23s/lectures/src/select/selectExample2.c
https://mcs.utm.utoronto.ca/~209/23s/lectures/src/select/muffinman.c
https://mcs.utm.utoronto.ca/~209/23s
https://mcs.utm.utoronto.ca/~209/23s/lectures/src/select/charserver.c
https://mcs.utm.utoronto.ca/~209/23s/lectures/src/select/charserver2.c
https://github.com/kirintwn/socket-chat-room
https://utm.calendar.utoronto.ca/course/csc209h5

Section 4

More On Multiplexing

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 25 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Reading From Clients

When a server does a read(), it is not guaranteed to receive a complete line or all of
the desired bytes. For example:

The client could be sending each character separately.
The client could send data that gets split over several segments.

Want to operate only on full lines? The server must keep each partial line in a buffer
until it gets the newline from the client.

Buffering for Full Lines
The following code assumes there’s at most one line in the buffer.
struct client {

int fd;
char buf[300];
int inbuf;
struct client *next;

};

The server should keep a buffer for each client, and keep track of the number of
bytes in each buffer following the previous message.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 26 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Buffering for Full Lines…

Read bytes, check for errors, and null-terminate the string.

void myread(struct client *p) {
int room = sizeof(p->buf) - p->inbuf;
if (room <= 1) { ... } // clean up this client: buffer full

char *startbuf = p->buf + p->inbuf;
char *tok, *cr, *lf;
int crlf;

int len = read(p->fd, startbuf, room - 1);
if (len <= 0) { ... } // clean up this client: eof or error

p->inbuf += len;
p->buf[p->inbuf] = '\0';
...

}

Making sure to start at the point up to which the buffer’s filled.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 27 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Buffering for Full Lines…

If a full line exists, process it and shift it out of the buffer.

void myread(struct client *p) {
...
lf = strchr(p->buf, '\n');
cr = strchr(p->buf, '\r');
if (!lf && !cr) return; // no complete line

tok = strtok(p->buf, "\r\n");
if (tok) { ... } // use tok (complete string)

// compute how many bytes we're removing
if (!lf) crlf = cr - p->buf;
else if (!cr) crlf = lf - p->buf;
else crlf = ((lf > cr) ? lf : cr) - p->buf;
crlf++; // include the CRLF

p->inbuf -= crlf; // shift the remainder towards the head
memmove(p->buf, p->buf + crlf, p->inbuf);

}

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 28 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

SIGPIPE

Suppose you’re writing to a broken pipe/socket generates a SIGPIPE. By default,
most signals (including sigpipe) will terminate your program. Here’s how you can
protect against sigpipe:

/*
* Turn off SIGPIPE: write() to a socket that
* is closed on the other end will return -1
* with errno set to EPIPE, instead of generating
* a SIGPIPE signal that terminates the process.
*/

if (signal(SIGPIPE, SIG_IGN) == SIG_ERR) {
perror("signal");
exit(1);

}

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 29 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Non-Blocking Reads

You can change the behaviour of read() so that it returns -1 and sets errno to
EAGAIN if no data is available.

In this mode, read() will never block.
Downside is that it will lead to inefficient code, e.g., using an infinite loop that
repeatedly calls read().

Remember, read() will return immediately in non-blocking mode, so you will be
calling it many times per second.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 30 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Non-Blocking Reads: Sample Code

char buf[1024];
ssize_t bytesread;
/* set O_NONBLOCK flags on fd1 and fd2 */
if (fcntl(fd1, F_SETFL, O_NONBLOCK) == -1) perror("fcntl"); exit(1);
if (fcntl(fd2, F_SETFL, O_NONBLOCK) == -1) perror("fcntl"); exit(1);

for (;;) {
bytesread = read(fd1, buf, sizeof(buf));
if ((bytesread == -1) && (errno != EAGAIN))

return; // real error
else if (bytesread > 0)

doSomething(buf, bytesread);

bytesread = read(fd2, buf, sizeof(buf));
if ((bytesread == -1) && (errno != EAGAIN))

return; // real error
else if (bytesread > 0)

doSomething(buf, bytesread);
}

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 31 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Section 5

Practice with Multiplexing

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 32 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Descriptor Sets

You can use these macro functions to manipulate/operate on fd_set’s:

#include "sys/select.h"
void FD_CLR(int fd, fd_set *set); // remove fd from set
int FD_ISSET(int fd, fd_set *set); // check if fd in set
void FD_SET(int fd, fd_set *set); // add fd to set
void FD_ZERO(fd_set *set); // empty/zero out set

Suppose you have a server S and two clients c1, c2.

1 S should read on FDs 4 and 6 from c1 and c2, respectively.
2 FD 3 on S should also be flagged for everything.
3 No other FDs should be marked as ready.
4 Some time after calling select(), let’s also mark FD 3 as not ready at all.

Try drawing a graph between S, c1, c2 and writing the representative bit vectors for
the sets right before and after select(). Then use the macro function calls to
perform the above operations. Start here:

fd_set *readfds, *writefds, *exceptfds;
/* some code */

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 33 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Descriptor Sets

Suppose you have a server S and two clients c1, c2.

1 S should read on FDs 4 and 6 from c1 and c2, respectively.
2 FD 3 on S should also be flagged for everything.
3 No other FDs should be marked as ready.
4 Some time after calling select(), let’s also mark FD 3 as not ready at all.

The representative bit vectors immediately before/after select():

readfds: 00011010... → 00010000...
writefds/exceptfds: 00010000... (don’t change)

And the code would look like this:

fd_set *readfds, *writefds, *exceptfds; /* some code */
FD_ZERO(readfs); FD_ZERO(writefds); FD_ZERO(exceptfds); // why clear?
FD_SET(4, readfds); FD_SET(6, readfds);
FD_SET(3, readfds); FD_SET(3, writefds); FD_SET(3, exceptfds);
select(7, readfds, writefds, exceptfds, NULL); // why 7?
FD_ZERO(writefds);

What does a timeout of value NULL do?
Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 34 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Office Hours Analogy

Consider the following man page of an imaginary system call office_hours().

OFFICE_HOURS(2) BSD System Calls Manual OFFICE_HOURS(2)

NAME: IS_CLR, IS_ISSET, IS_SET, IS_ZERO, office_hours

SYNOPSIS
void IS_CLR(is, is_set *isset); int IS_ISSET(is, is_set *isset);
void IS_SET(is, is_set *isset); void IS_ZERO(is_set *isset);
int office_hours(is_set *instr, struct timeval window);

DESCRIPTION: office_hours() examines the schedules for the instructors in the instructor
set instrs to see which have office hours scheduled within the given window from the
current time. office_hours() replaces the instructor set with the subset of instructors
who have office hours in the given window.

RETURN VALUE: office_hours() returns the number of instructors from the is_set who have
office hours in the window, or -1 if an error occurs. If office_hours() returns with an
error, the descriptor sets will be unmodified and the global variable errno will be set
to indicate the error.

is_set, office_hours() and the (macro) functions are very similar analogs to
fd_set, select(), and those in sys/select.h.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 35 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Office Hours Analogy

is_set, office_hours() and the (macro) functions are very similar analogs to
fd_set, select(), and those in sys/select.h. Suppose that (like FDs) instructors
are represented by small integers and there are instructors defined as follows:

#define ANDREW 1
#define ARNOLD 2
#define BAHAR 3
#define RENATO 4
#define RUPERT 5
#define TINGTING 6

You want help in CSC258 in the next 24 hours. Finish the program on the next slide,
so that it calls office_hours() and then prints either the message “Andrew has
office hours” or the message “Renato has office hours” or both messages as
appropriate.

As an additional exercise, properly check for errors on a system call by writing
the code to give the conventional behaviour if office_hours() fails.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 36 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Office Hours Analogy (Solution)

#include "stdio.h"
#include "sys/select.h"
int main() {

struct timeval window = {24 * 60 * 60, 0};

// set up first argument to office_hours()
is_set instrs; IS_ZERO(&instrs);
IS_SET(ANDREW, &instrs);
IS_SET(RENATO, &instrs);

// call office_hours()
if (office_hours(&instrs, window) == -1) {

perror("office_hours");
exit(1);

}

// print the appropriate message
if (IS_ISSET(RENATO, &instrs)) printf("Renato has office hours\n");
if (IS_ISSET(ANDREW, &instrs)) printf("Andrew has office hours\n");
return 0;

}
Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 37 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Other Questions

Suppose your server is written to block on both read() and write() calls.

1 Recalling last lecture, how might a write() call block?
2 Why might you write it this way? How is it useful?
3 How do we solve this?

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 38 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Other Questions

Suppose your server is written to block on both read() and write() calls.

1 Recalling last lecture, how might a write() call block?

TCP buffers if a server is sending data faster than a client can handle.

2 Why might you write it this way? How is it useful?

Example: your server is responsible for selling tickets and clients can buy as
many as possible. These tickets could be unique and involve some very complex
hash composed of a large number of bytes.
Example: your server S1 ingests local data and shards it across multiple remote
clients. The datagrams sent include timestamps of shards’ transmission times.

3 How do we solve this? Use select() for both reads and writes.

4 Expanding on the latter example in Question 2, how might you write a second
server downstream that concurrently reads from the clients and reconstructs the
original data in order?

5 Same as Question 4, but reconstructing in reverse order.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 39 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Practice with Multiplexing: Other Questions

Scenario: your server ingests local data and shards it across multiple remote clients.
The datagrams sent include timestamps and precedence of shards.

How might you write a second server S2 downstream that concurrently reads from the
clients and reconstructs the original data in order? Here are some potential solutions:

1 Use blocking I/O and call read() on the clients sequentially.

But this is problematic if the clients have their own timeouts i.e. they shutdown
after their FDs have been open/ready for a while.

2 Instead, use multiplexing I/O.

1 Introduce an ordering index (timestamps were of transmission time, not
precedence) into the datagrams.

2 Call select()+read() to write into an ordered buffer.
3 How do you know how big the buffer should be?

Use dynamic memory for and memmove() on the buffer. But this wouldn’t work in the
reverse order case…
Instead, have S1 transmit the sizes of the shards to S2. The value represnting the lenth
of a shard doesn’t grow in memory footprint.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 40 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Section 6

Multiplexing I/O Alternatives

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 41 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing I/O Alternatives: poll()/ppoll()

Although portable, select() has some performance limitations, and can only
monitor at most FD_SETSIZE (1024, on Linux) FDs. Consider poll()/ppoll().

#include "poll.h"
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
int ppoll(struct pollfd *fds, nfds_t nfds, // analog to pselect()

const struct timespec *tmo_p, const sigset_t *sigmask);

select() iterates over the array of all possible FDs (up to nfds) while only the
active FDs are polled by poll(). By definition, 𝒪(poll) ≤ 𝒪(select) and in most
cases 𝒪(poll) ≪ 𝒪(select) because most FDs between 0 and nfds are inactive.

Portability & Modernity
Nowadays, poll() is widespread enough that it’s considered the new portable
standard. In other iterations of CSC209, poll() might be taught instead.

Can we do better?
Some OS-specific system calls perform even better but are less portable. Conditional
directives #ifdef/#else/#endif can sometimes offer a workaround.

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 42 / 44

https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing Alternatives: More Efficient, Less Portable (epoll on Linux)

epoll() is an API that performs a similar task to poll() but is much more scalable
(𝒪(1)). It’s both level- and edge-triggered.

#include "sys/epoll.h"
int epoll_create(int size);
int epoll_create1(int flags);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event *events,

int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,

int maxevents, int timeout,
const sigset_t *sigmask);

int epoll_pwait2(int epfd, struct epoll_event *events,
int maxevents, const struct timespec *timeout,
const sigset_t *sigmask);

Variations of epoll() - libevent, libev, …
libevent.org/
software.schmorp.de/pkg/libev.html

There are probably more…

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 43 / 44

https://libevent.org/
http://software.schmorp.de/pkg/libev.html
https://utm.calendar.utoronto.ca/course/csc209h5

Multiplexing Alternatives: More Efficient, Less Portable (kqueue on BSD)

kqueue() also scales well (𝒪(1)) on BSD/MacOS.

#include "sys/event.h"
kqueue(void);
kevent(int kq, const struct kevent *changelist, int nchanges,

struct kevent *eventlist, int nevents,
const struct timespec *timeout);

EV_SET(&kev, ident, filter, flags, fflags, data, udata);

struct kevent {
uintptr_t ident; /* identifier for this event */
short filter; /* filter for event */
u_short flags; /* action flags for kqueue */
u_int fflags; /* filter flag value */
int64_t data; /* filter data value */
void *udata; /* opaque user data identifier */

};

man.openbsd.org/kqueue.2

Multiplexing I/O CSC209: Software Tools & Sys Prog. March 27, 2023 44 / 44

https://man.openbsd.org/kqueue.2
https://utm.calendar.utoronto.ca/course/csc209h5

	I/O Models for Multiple Sources
	I/O Models
	Multiplexing I/O with select()
	More On Multiplexing
	Practice with Multiplexing
	Multiplexing I/O Alternatives

